
Stateflow® 7
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Stateflow® User’s Guide

© COPYRIGHT 1997-2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1997 First printing New
January 1999 Second printing Revised for Version 2.0 (Release 11)
September 2000 Third printing Revised for Version 4.0 (Release 12))
June 2001 Fourth printing Revised for Version 4.1 (Release 12.1)
July 2002 Fifth printing Revised for Version 5.0 (Release 13)
January 2003 Online only Revised for Version 5.1 (Release 13SP1)
June 2004 Online only Revised for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.21 (Release 14SP2)
September 2005 Online only Revised for Version 6.3 (Release 14SP3)
March 2006 Online only Revised for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release 2006b)
March 2007 Online only Revised for Version 6.6 (Release 2007a)
September 2007 Online only Revised for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Revised for Version 7.5 (Release 2010a)
September 2010 Online only Revised for Version 7.6 (Release 2010b)
April 2011 Online only Revised for Version 7.7 (Release 2011a)

Contents

Stateflow Chart Concepts

1
Finite State Machine Concepts . 1-2
What Is a Finite State Machine? . 1-2
Finite State Machine Representations 1-2
Stateflow Chart Representations . 1-2
Notation . 1-3
Semantics . 1-3

Stateflow Charts and Simulink Models 1-4
The Simulink Model and the Stateflow Machine 1-4
Overview of Defining Stateflow Block Interfaces to Simulink
Models . 1-4

Stateflow Chart Objects . 1-6

Stateflow Hierarchy of Objects . 1-8

Bibliography . 1-10

Stateflow Chart Notation

2
Overview of Stateflow Objects . 2-2
Graphical Objects . 2-2
Nongraphical Objects . 2-3
For More Information on Stateflow Objects 2-4

Rules for Naming Stateflow Objects 2-5
Characters You Can Use . 2-5
Restriction on Name Length . 2-5
Reserved Keywords . 2-5

v

States . 2-8
What Is a State? . 2-8
State Hierarchy . 2-8
State Decomposition . 2-10
State Labels . 2-13

Transitions . 2-18
What Is a Transition? . 2-18
Transition Hierarchy . 2-19
Transition Label Notation . 2-20
Valid Transitions . 2-22

Transition Connections . 2-23
Transitions to and from Exclusive (OR) States 2-23
Transitions to and from Junctions . 2-24
Transitions to and from Exclusive (OR) Superstates 2-25
Transitions to and from Substates . 2-26
Self-Loop Transitions . 2-27
Inner Transitions . 2-27

Default Transitions . 2-32
What Is a Default Transition? . 2-32
Drawing Default Transitions . 2-32
Labeling Default Transitions . 2-32
Default Transition Examples . 2-33

Connective Junctions . 2-37
What Is a Connective Junction? . 2-37
Flow Graph Notation with Connective Junctions 2-37

History Junctions . 2-44
What Is a History Junction? . 2-44
History Junctions and Inner Transitions 2-45

Graphical Functions . 2-46
What Is a Graphical Function? . 2-46
Example of Using Graphical Functions 2-46
Advantages of Using Graphical Functions 2-47

Boxes . 2-48
What Is a Box? . 2-48

vi Contents

Example of Using a Box . 2-48

Stateflow Chart Semantics

3
What Do Semantics Mean for Stateflow Charts? 3-2
What Are Chart Semantics? . 3-2
Common Graphical and Nongraphical Constructs 3-3
References for Chart Semantics . 3-7

How Chart Constructs Interact During Execution 3-8
Overview of the Example Model . 3-8
Model of the Check-In Process for a Hotel 3-8
How the Chart Interacts with Simulink Blocks 3-12
Phases of Chart Execution . 3-13

Modeling Guidelines for Charts with Events, States,
and Transitions . 3-33

How Events Drive Chart Execution 3-36
How Stateflow Charts Respond to Events 3-36
Sources for Stateflow Events . 3-37
How Charts Process Events . 3-37

Types of Chart Execution . 3-39
Lifecycle of a Stateflow Chart . 3-39
Execution of an Inactive Chart . 3-39
Execution of an Active Chart . 3-40
Execution of a Chart with Super Step Semantics 3-40
Execution of a Chart at Initialization 3-49

Process for Grouping and Executing Transitions 3-51
Transition Flow Graph Types . 3-51
Order of Execution for a Set of Flow Graphs 3-52

Evaluation Order for Outgoing Transitions 3-55
What Does Ordering Mean for Outgoing Transitions? 3-55
Detection of Transition Shadowing 3-56

vii

Explicit Ordering of Outgoing Transitions 3-56
Implicit Ordering of Outgoing Transitions 3-60
What Happens When You Switch Between Explicit and
Implicit Ordering . 3-65

Transition Testing Order in Multilevel State Hierarchy . . 3-66

Process for Entering, Executing, and Exiting States . . 3-70
Steps for Entering a State . 3-70
Steps for Executing an Active State 3-71
Steps for Exiting an Active State . 3-72
State Execution Example . 3-72

Execution Order for Parallel States 3-75
What Does Ordering Mean for Parallel States? 3-75
Explicit Ordering of Parallel States 3-76
Implicit Ordering of Parallel States 3-77
How a Chart Maintains Order of Parallel States 3-79
How a Chart Assigns Execution Priorities to Restored
States . 3-81

What Happens When You Switch Between Explicit and
Implicit Ordering . 3-83

How a Chart Orders Parallel States in Boxes and
Subcharts . 3-83

Early Return Logic for Event Broadcasts 3-85
Guidelines for Proper Chart Behavior 3-85
How Early Return Logic Works . 3-85
Example of Early Return Logic . 3-86

Creating Stateflow Charts

4
Creating a Stateflow Chart . 4-2

Working with States in Charts . 4-5
Creating a State . 4-5
Moving and Resizing States . 4-6
Creating Substates and Superstates 4-6
Grouping States . 4-7

viii Contents

Specifying Substate Decomposition 4-9
Specifying Activation Order for Parallel States 4-10
Changing State Properties . 4-10
Labeling States . 4-13
Outputting State Activity to a Simulink Model 4-16

Working with Transitions in Charts 4-18
Creating a Transition . 4-18
Straight and Curved Transitions . 4-19
Labeling Transitions . 4-19
Moving Transitions . 4-21
Changing Transition Arrowhead Size 4-22
Creating Self-Loop Transitions . 4-23
Creating Default Transitions . 4-23
Changing Transition Properties . 4-24

Using the Stateflow Editor . 4-27
Stateflow Editor Window . 4-27
Displaying the Context Menu for Objects 4-29
Specifying Colors and Fonts in a Chart 4-30
Differentiating Syntax Elements in the Stateflow Action
Language . 4-33

Selecting and Deselecting Graphical Objects 4-35
Cutting and Pasting Graphical Objects 4-36
Copying Graphical Objects . 4-36
Formatting Chart Objects . 4-37
Editing Object Labels . 4-52
Zooming a Chart . 4-53
Zooming a Chart Object Using the Stateflow API 4-55
Undoing and Redoing Editor Operations 4-58
Note Properties Dialog Box . 4-60
Keyboard Shortcuts for Stateflow Charts 4-62
Customizing the Stateflow Editor . 4-65

Modeling Logic Patterns and Iterative Loops
Using Flow Graphs

5
What Is a Flow Graph? . 5-2

ix

Difference Between Flow Graphs and State Charts . . . 5-3

When to Use Flow Graphs . 5-4

Creating Flow Graphs with the Pattern Wizard 5-5
Why Use the Pattern Wizard? . 5-5
How to Create Reusable Flow Graphs 5-5
Saving and Reusing Flow Graph Patterns 5-7
MAAB-Compliant Patterns from the Pattern Wizard 5-9
Try It: Creating and Reusing a Custom Pattern with the
Pattern Wizard . 5-20

Drawing and Customizing Flow Graphs By Hand 5-27
How to Draw a Flow Graph . 5-27
How to Change Connective Junction Size 5-27
How to Modify Junction Properties 5-28

Best Practices for Creating Flow Graphs 5-30

Enhancing Readability of Generated Code for Flow
Graphs . 5-32
Appearance of Generated Code for Flow Graphs 5-32
Converting If-Elseif-Else Code to Switch-Case
Statements . 5-36

Example of Converting Code for If-Elseif-Else Decision
Logic to Switch-Case Statements 5-38

Building Mealy and Moore Charts

6
Overview of Mealy and Moore Machines 6-2
Semantics of Mealy and Moore Machines 6-2
Running a Demo of Mealy and Moore Machines 6-3
The Default State Machine Type . 6-3
What Is State? . 6-4
Availability of Output . 6-4
Advantages of Mealy and Moore Charts Over Classic
Stateflow Charts . 6-4

x Contents

Creating Mealy and Moore Charts 6-6

Design Considerations for Mealy Charts 6-7
Mealy Semantics . 6-7
Design Rules for Mealy Charts . 6-7
Example: Mealy Vending Machine 6-10

Design Considerations for Moore Charts 6-13
Moore Semantics . 6-13
Design Rules for Moore Charts . 6-13
Example: Moore Traffic Light . 6-20

Changing Chart Type . 6-24

Debugging Mealy and Moore Charts 6-25

Extending Stateflow Charts

7
Using History Junctions to Extend Charts and
States . 7-2
About History Junctions . 7-2
Creating a History Junction . 7-2
Changing History Junction Size . 7-3
Changing History Junction Properties 7-3

Using Subcharts to Extend Charts 7-6
What Is a Subchart? . 7-6
Creating a Subchart . 7-7
Rules of Subchart Conversion . 7-7
Example of Converting a State to a Subchart 7-7
Manipulating Subcharts as Objects 7-9
Opening a Subchart . 7-9
Editing a Subchart . 7-10
Navigating Subcharts . 7-11

Using Supertransitions to Extend Transitions 7-12
What Is a Supertransition? . 7-12

xi

Drawing a Supertransition Into a Subchart 7-14
Drawing a Supertransition Out of a Subchart 7-17
Labeling Supertransitions . 7-18

Extending Transitions with Smart Behavior 7-20
What Are Smart Transitions? . 7-20
Setting Smart Behavior in Transitions 7-20
What Smart Transitions Do . 7-20
What Nonsmart Transitions Do . 7-27

Using Graphical Functions to Extend Actions 7-30
What Is a Graphical Function? . 7-30
Why Use a Graphical Function? . 7-30
Where to Use a Graphical Function 7-30
Workflow for Defining a Graphical Function 7-31
Managing Large Graphical Functions 7-35
Calling Graphical Functions in Stateflow Action
Language . 7-38

Exporting Chart-Level Graphical Functions 7-39
Specifying Graphical Function Properties 7-47

Using Boxes to Extend Charts . 7-50
When to Use Boxes . 7-50
Semantics of Boxes . 7-50
Rules for Using Boxes . 7-51
Drawing and Editing a Box . 7-51
Examples of Using Boxes . 7-53

Using Notes to Extend Charts . 7-58
Creating Notes . 7-58
Editing Existing Notes . 7-58
Changing Note Font and Color . 7-59
Moving Notes . 7-60
Deleting Notes . 7-60

Printing Stateflow Charts . 7-61
Printing Scaled Charts . 7-61
Using Tiled Printing for Stateflow Charts 7-64
Generating a Model Report . 7-67
Printing the Current Chart . 7-69

xii Contents

Defining Data

8
Adding Data . 8-2
When to Add Data . 8-2
Where You Can Use Data . 8-2
Diagnostic for Detecting Unused Data 8-2
Adding Data Using the Stateflow Editor 8-3
Adding Data Using the Model Explorer 8-3

Setting Data Properties in the Data Dialog Box 8-5
What Is the Data Properties Dialog Box? 8-5
When to Use the Data Properties Dialog Box 8-6
Opening the Data Properties Dialog Box 8-7
Properties You Can Set in the General Pane 8-8
Properties You Can Set in the Description Pane 8-25
Entering Expressions and Parameters for Data
Properties . 8-26

Sharing Data with Simulink Models and the MATLAB
Workspace . 8-29
Sharing Input and Output Data with Simulink Models . . . 8-29
Sharing Simulink Parameters with Stateflow Charts 8-30
Initializing Data from the MATLAB Base Workspace 8-31
Saving Data to the MATLAB Workspace 8-32

Sharing Global Data with Simulink Models 8-33
About Data Stores . 8-33
How Stateflow Charts Work with Local and Global Data
Stores . 8-33

Accessing Data Store Memory from a Stateflow Chart . . . 8-34
Diagnostics for Sharing Data Between Stateflow Charts
and Simulink Blocks . 8-37

Creating a Global Data Store Across Multiple Models 8-38
Best Practices for Using Data Stores in Stateflow
Charts . 8-39

Sharing Chart Data with External Modules 8-40
Methods of Sharing Chart Data with External Modules . . 8-40
Exporting Data to External Modules 8-40
Importing Data from External Modules 8-41

xiii

Typing Stateflow Data . 8-43
What Is Data Type? . 8-43
Specifying Data Type and Mode . 8-43
Built-In Data Types . 8-47
Inheriting Data Types from Simulink Objects 8-48
Deriving Data Types from Previously Defined Data 8-48
Typing Data by Using an Alias . 8-49
Strong Data Typing with Simulink I/O 8-50

Sizing Stateflow Data . 8-52
Methods for Sizing Stateflow Data 8-52
How to Specify Data Size . 8-53
Inheriting Input or Output Size from Simulink Signals . . 8-53
Guidelines for Sizing Data with Numeric Values 8-54
Guidelines for Sizing Data with MATLAB Expressions . . . 8-55
Examples of Valid Data Size Expressions 8-56
Name Conflict Resolution for Variables in Size
Expressions . 8-56

Best Practices for Sizing Stateflow Data 8-57

Defining Temporary Data . 8-58
When to Define Temporary Data . 8-58
How to Define Temporary Data . 8-58

Using Dot Notation to Identify Data in a Chart 8-59
What Is Dot Notation? . 8-59
Resolution of Data Identifiers with Dot Notation 8-60
Best Practices for Using Dot Notation in Data
Identifiers . 8-62

Resolving Data Properties from Simulink Signal
Objects . 8-65
About Explicit Signal Resolution . 8-65
Inherited Properties . 8-65
Enabling Explicit Signal Resolution 8-66
A Simple Example . 8-66

Best Practices for Using Data in Stateflow Charts 8-71
Avoid inheriting output data properties from Simulink
blocks . 8-71

Restrict use of machine-parented data 8-71

xiv Contents

Transferring Data Across Models 8-73
Copying Data Objects . 8-73
Moving Data Objects . 8-73

Defining Events

9
How Events Work in Stateflow Charts 9-2
What Is an Event? . 9-2
When to Use Events . 9-2
Types of Events . 9-3
Where You Can Use Events . 9-3
Diagnostic for Detecting Unused Events 9-4

How to Define Events . 9-5
Adding Events Using the Stateflow Editor 9-5
Adding Events Using the Model Explorer 9-5

Setting Properties for an Event . 9-7
When to Use the Event Properties Dialog Box 9-7
Accessing the Event Properties Dialog Box 9-8
Property Fields . 9-9

Using Input Events to Activate a Stateflow Chart 9-11
What Is an Input Event? . 9-11
Using Edge Triggers to Activate a Stateflow Chart 9-11
Using Function Calls to Activate a Stateflow Chart 9-13
Association of Input Events with Control Signals 9-14

Controlling States When Function-Call Inputs Reenable
Charts . 9-16
Setting Behavior for a Reenabled Chart 9-16
Behavior When the Parent Is the Model Root 9-17
Behavior When the Chart Is Inside a Model Block 9-20

Using Output Events to Activate a Simulink Block 9-24
What Is an Output Event? . 9-24
Using Edge Triggers to Activate a Simulink Block 9-24

xv

Using Function Calls to Activate a Simulink Block 9-33
Association of Output Events with Output Ports 9-38
Accessing Simulink Subsystems Triggered By Output
Events . 9-39

Using Implicit Events . 9-40
What Are Implicit Events? . 9-40
Keywords for Implicit Events . 9-40
Example of an Implicit Event . 9-41
Execution Order of Transitions with Implicit Events 9-42

Counting Events . 9-45
When to Count Events . 9-45
How to Count Events . 9-45
Example of Collecting and Storing Input Data in a
Vector . 9-45

Best Practices for Using Events in Stateflow Charts . . 9-47

Using Actions in Stateflow Charts

10
Defining Action Types . 10-2
About Action Types . 10-2
State Action Types . 10-2
Transition Action Types . 10-7
Example of Action Type Execution 10-12

Combining State Actions to Eliminate Redundant
Code . 10-16
State Actions You Can Combine . 10-16
Why Combine State Actions . 10-16
How to Combine State Actions . 10-17
Order of Execution of Combined Actions 10-18
Rules for Combining State Actions 10-19

Using Operations in Actions . 10-20
Binary and Bitwise Operations . 10-20

xvi Contents

Unary Operations . 10-22
Unary Actions . 10-23
Assignment Operations . 10-23
Pointer and Address Operations . 10-24
Type Cast Operations . 10-25
Replacing Operators with Target Functions 10-26

Symbols in Action Language . 10-28
Boolean Symbols, true and false . 10-28
Comment Symbols, %, //, /* . 10-29
Hexadecimal Notation Symbols, 0xFF 10-29
Infinity Symbol, inf . 10-30
Line Continuation Symbol, ... 10-30
Literal Code Symbol, $. 10-30
MATLAB Display Symbol, ; . 10-30
Single-Precision Floating-Point Number Symbol, F 10-31
Time Symbol, t . 10-31

Calling C Functions in Actions . 10-32
Calling C Library Functions . 10-32
Calling the abs Function . 10-33
Calling min and max Functions . 10-33
Replacement of C Math Library Functions with
Target-Specific Implementations 10-34

Calling Custom C Code Functions . 10-36

Using MATLAB Functions and Data in Actions 10-42
MATLAB Functions and Stateflow Code Generation 10-42
ml Namespace Operator . 10-42
ml Function . 10-43
ml Expressions . 10-45
Which ml Should I Use? . 10-46
ml Data Type . 10-47
How Charts Infer the Return Size for ml Expressions 10-50

Using Data and Event Arguments in Actions 10-55

Using Arrays in Actions . 10-57
Array Notation . 10-57
Arrays and Custom Code . 10-58

xvii

Broadcasting Events in Actions . 10-59
About Events in Actions . 10-59
Directed Event Broadcasting . 10-59
Example of Directed Event Broadcasting Using send 10-60
Example of Directed Event Broadcasting Using Qualified
Event Names . 10-61

Using Temporal Logic in State Actions and
Transitions . 10-63
What Is Temporal Logic? . 10-63
Rules for Using Temporal Logic Operators 10-63
Operators for Event-Based Temporal Logic 10-64
Examples of Event-Based Temporal Logic 10-66
Notations for Event-Based Temporal Logic 10-68
Operators for Absolute-Time Temporal Logic 10-70
Defining Time Delays . 10-71
Examples of Absolute-Time Temporal Logic 10-73
Running a Model That Demonstrates Absolute-Time
Temporal Logic . 10-74

Behavior of Absolute-Time Temporal Logic in a
Conditionally Executed Subsystem 10-75

How Sample Time Affects Chart Execution 10-78
Tips for Using Absolute-Time Temporal Logic 10-79

Using Change Detection in Actions 10-83
Types of Data Value Changes That You Can Detect 10-83
Running a Model That Demonstrates Change Detection . . 10-84
How Change Detection Works . 10-87
Change Detection Operators . 10-89
Change Detection Example . 10-94

Checking State Activity . 10-97
When to Check State Activity . 10-97
How to Check State Activity . 10-97
The in Operator . 10-97
How Checking State Activity Works 10-98
State Resolution for Identically Named Substates 10-101
Best Practices for Checking State Activity 10-103

Using Bind Actions to Control Function-Call
Subsystems . 10-108
About Bind Actions . 10-108

xviii Contents

Binding a Function-Call Subsystem to a State 10-108
Example Model That Binds a Function-Call Subsystem to a
State . 10-113

Behavior of a Bound Function-Call Subsystem 10-116
Why Avoid Muxed Trigger Events with Binding 10-122

Making States Reusable with Atomic Subcharts

11
What Is an Atomic Subchart? . 11-2

When to Use Atomic Subcharts . 11-4

Benefits of Using Atomic Subcharts in a Stateflow
Chart . 11-5
Comparison of Modeling Methods . 11-5
Comparison of Simulation Methods 11-6
Comparison of Editing Methods . 11-7
Comparison of Code Generation Methods 11-8

Restrictions for Converting to Atomic Subcharts 11-12
Rationale for Restrictions . 11-12
Access to Data, Graphical Functions, and Events 11-12
Use of Event Broadcasts . 11-13
Use of Machine-Parented Data . 11-13
Use of Strong Data Typing with Simulink Inputs and
Outputs . 11-14

Use of Output State Activity . 11-14
Use of Supertransitions . 11-14

Converting to and from Atomic Subcharts 11-15
Converting a State or Subchart to an Atomic Subchart . . . 11-15
Converting an Atomic Subchart to a State or Subchart . . . 11-18
Restrictions for Converting an Atomic Subchart to a State
or Subchart . 11-19

Mapping Variables for Atomic Subcharts 11-20
Why Map Variables for Atomic Subcharts? 11-20

xix

How to Map Variables in an Atomic Subchart 11-20
Mapping Input and Output Data for an Atomic Subchart . . 11-21
Mapping Data Store Memory for an Atomic Subchart 11-25
Mapping Parameter Data for an Atomic Subchart 11-28
Mapping Input Events for an Atomic Subchart 11-32

Generating Reusable Code for Unit Testing 11-36
How to Generate Reusable Code for Linked Atomic
Subcharts . 11-36

How to Generate Reusable Code for Unlinked Atomic
Subcharts . 11-37

Reusing Utility Functions Across Multiple Models 11-39
Rationale for Using Atomic Subcharts 11-39
How to Enable Reuse of Utility Functions 11-39
Example of Reusing a Timer Function Multiple Times . . . 11-40

Rules for Using Atomic Subcharts in Stateflow
Charts . 11-47

Tutorial: Reusing a State Multiple Times in a Chart . . 11-50
Goal of the Tutorial . 11-50
Editing a Model to Use Atomic Subcharts 11-52
Running the New Model . 11-58
Propagating a Change in the Library Chart 11-58

Tutorial: Reducing the Compilation Time of a Chart . . 11-60
Goal of the Tutorial . 11-60
Editing a Model to Use Atomic Subcharts 11-61

Tutorial: Dividing a Chart into Separate Units for
Editing . 11-62
Goal of the Tutorial . 11-62
Editing a Model to Use Atomic Subcharts 11-63

Tutorial: Generating Reusable Code for Unit
Testing . 11-65
Goal of the Tutorial . 11-65
Converting a State to an Atomic Subchart 11-67
Specifying Code Generation Parameters 11-67
Generating Code for Only the Atomic Subchart 11-68

xx Contents

Saving and Restoring Simulations with
SimState

12
What Is a SimState? . 12-2

Benefits of Using a Snapshot of the Simulation State . . 12-4
Division of a Long Simulation into Segments 12-4
Test of a Chart Response to Different Settings 12-4

Tutorial: Dividing a Long Simulation into Segments . . 12-5
Goal of the Tutorial . 12-5
Defining the SimState . 12-6
Loading the SimState . 12-7
Simulating the Specific Segment . 12-9

Tutorial: Testing a Unique Chart Configuration 12-10
Goal of the Tutorial . 12-10
Defining the SimState . 12-11
Loading the SimState and Modifying Values 12-14
Testing the Modified SimState . 12-19

Tutorial: Testing a Chart with Fault Detection
Logic . 12-21
Goal of the Tutorial . 12-21
Defining the SimState . 12-24
Modifying SimState Values for One Actuator Failure 12-25
Testing the SimState for One Failure 12-31
Modifying SimState Values for Two Actuator Failures . . . 12-33
Testing the SimState for Two Failures 12-34

Methods for Interacting with the SimState of a
Chart . 12-35

Rules for Using the SimState of a Chart 12-38
Limitations on Values You Can Modify 12-38
Rules for Modifying Data Values . 12-38
Rules for Modifying State Activity . 12-39
Restriction on Continuous-Time Charts 12-39
No Partial Loading of a SimState . 12-40

xxi

Restriction on Copying SimState Values 12-40
SimState Limitations That Apply to All Blocks in a
Model . 12-40

Best Practices for Using the SimState of a Chart 12-41
Use MAT-Files to Save a SimState for Future Use 12-41
Use Scripts to Save SimState Commands for Future
Use . 12-41

Using Vectors and Matrices in Stateflow Charts

13
How Vectors and Matrices Work in Stateflow Charts . . 13-2
When to Use Vectors and Matrices 13-2
Where You Can Use Vectors and Matrices 13-2

How to Define Vectors and Matrices 13-4
Defining a Vector . 13-4
Defining a Matrix . 13-5

Scalar Expansion for Converting Scalars to
Nonscalars . 13-6
What Is Scalar Expansion? . 13-6
How Scalar Expansion Works for Functions 13-6

How to Assign and Access Values of Vectors and
Matrices . 13-8
Notation for Vectors and Matrices . 13-8
Assigning and Accessing Values of Vectors 13-9
Assigning and Accessing Values of Matrices 13-9
Using Scalar Expansion to Assign Values of a Vector or
Matrix . 13-10

Operations That Work with Vectors and Matrices in
Stateflow Action Language . 13-11
Binary Operations . 13-11
Unary Operations and Actions . 13-11
Assignment Operations . 13-12

xxii Contents

Rules for Using Vectors and Matrices in Stateflow
Charts . 13-13

Best Practices for Vectors and Matrices in Stateflow
Charts . 13-14
Using MATLAB Functions to PerformMatrix Multiplication
and Division . 13-14

Using the temporalCount Operator to Index a Vector 13-15

Examples of Vectors and Matrices in Stateflow
Charts . 13-17
Communications Example . 13-17
Physics Example . 13-19

Using Variable-Size Data in Stateflow Charts

14
What Is Variable-Size Data? . 14-2

How Charts Implement Variable-Size Data 14-3

Enabling Support for Variable-Size Data 14-4

Declaring Variable-Size Inputs and Outputs 14-5

Example: Computing Output Based on Size of Input
Signal . 14-7
About the Model . 14-7
Chart: VarSizeSignalSource . 14-8
Chart: size_based_processing . 14-11
Simulating the Model . 14-15

Rules for Using Variable-Size Data in Stateflow
Charts . 14-16

xxiii

Using Enumerated Data in Stateflow Charts

15
What Is Enumerated Data? . 15-2

Benefits of Using Enumerated Data in a Chart 15-3

Where to Use Enumerated Data . 15-4

Elements of an Enumerated Data Type Definition 15-5

How to Define Enumerated Data in a Stateflow
Chart . 15-8
Tasks for Defining Enumerated Data in a Chart 15-8
Defining an Enumerated Data Type in a File 15-8
Adding Enumerated Data to a Chart 15-9

Ensuring That Changes in Data Type Definition Take
Effect . 15-11

Notation for Referring to Enumerated Values in a
Chart . 15-12
Nonprefixed Notation for Enumerated Values 15-12
Prefixed Notation for Enumerated Values 15-13

Operations on Enumerated Data in Stateflow Action
Language . 15-14

How to View Enumerated Values in a Stateflow
Chart . 15-15
Viewing Values of Enumerated Data During Simulation . . 15-15
Viewing Values of Enumerated Data After Simulation . . . 15-15

Rules for Using Enumerated Data in a Stateflow
Chart . 15-17

Best Practices for Using Enumerated Data in a
Chart . 15-20

xxiv Contents

CD Player Model That Uses Enumerated Data 15-22
Overview of CD Player Model . 15-22
Benefits of Using Enumerated Types in This Model 15-24
Running the CD Player Model . 15-24
How the UserRequest Chart Works 15-27
How the CdPlayerModeManager Chart Works 15-27
How the CdPlayerBehaviorModel Chart Works 15-31

Tutorial: Using Enumerated Values for Assignment . . 15-34
Goal of the Tutorial . 15-34
Building the Chart . 15-34
Viewing Results for Simulation . 15-38
How the Chart Works . 15-41

Modeling Continuous-Time Systems in
Stateflow Charts

16
About Continuous-Time Modeling 16-2
What Is Continuous-Time Modeling? 16-2
When To Use Stateflow Charts for Continuous-Time
Modeling . 16-3

Running Models That Demonstrate Continuous-Time
Modeling . 16-4

Workflow for Creating Continuous-Time Charts 16-6

Configuring a Stateflow Chart to Update in
Continuous-Time . 16-7

When to Enable Zero-Crossing Detection 16-10

Defining Continuous-Time Variables 16-11
About Continuous-Time Variables . 16-11
Implicit Time Derivatives . 16-11
Rules for Using Continuous-Time Variables 16-11
How to Define Continuous-Time Variables 16-12
Exposing Continuous States to a Simulink Model 16-12

xxv

Modeling a Bouncing Ball in Continuous-Time 16-13
Try It . 16-13
Dynamics of a Bouncing Ball . 16-13
Modeling the Bouncing Ball . 16-14

Design Considerations for Continuous-Time Modeling
in Stateflow Charts . 16-26
Rationale for Design Considerations 16-26
Summary of Rules for Continuous-Time Modeling 16-26

Using Fixed-Point Data in Stateflow Charts

17
What Is Fixed-Point Data? . 17-2
Before You Begin . 17-2
Fixed-Point Numbers . 17-2
Fixed-Point Operations . 17-3

How Fixed-Point Data Works in Stateflow Charts 17-6
How Stateflow Software Defines Fixed-Point Data 17-6
Specifying Fixed-Point Data . 17-7
Rules for Specifying Fixed-Point Word Length 17-8
Fixed-Point Context-Sensitive Constants 17-9
Tips for Using Fixed-Point Data . 17-10
Detecting Overflow for Fixed-Point Types 17-11
Sharing Fixed-Point Data with Simulink Models 17-12

Tutorial: Using Fixed-Point Chart Inputs 17-14
Running the Fixed-Point "Bang-Bang Control" Model 17-14
Exploring the Fixed-Point "Bang-Bang Control" Model . . . 17-15

Tutorial: Using Fixed-Point Parameters and Local
Data . 17-19
Goal of the Tutorial . 17-19
Building the Fixed-Point Butterworth Filter 17-19
Defining the Model Callback Function 17-20
Adding Other Blocks to the Model . 17-21
Setting Configuration Parameters for the Model 17-23
Running the Model . 17-25

xxvi Contents

Operations with Fixed-Point Data 17-26
Supported Operations with Fixed-Point Operands 17-26
Promotion Rules for Fixed-Point Operations 17-28
Assignment (=, :=) Operations . 17-34
Fixed-Point Conversion Operations 17-42
Automatic Scaling of Stateflow Fixed-Point Data 17-43

Using Complex Data in Stateflow Charts

18
How Complex Data Works in Stateflow Charts 18-2
What Is Complex Data? . 18-2
When to Use Complex Data . 18-2
Where You Can Use Complex Data 18-3
How You Can Use Complex Data . 18-3

How to Define Complex Data . 18-4

Operations on Complex Data in Stateflow Action
Language . 18-7
Binary Operations . 18-7
Unary Operations and Actions . 18-7
Assignment Operations . 18-8

Using Operators to Handle Complex Numbers 18-9
Why Use Operators for Complex Numbers? 18-9
Defining a Complex Number . 18-9
Accessing Real and Imaginary Parts of a Complex
Number . 18-10

Working with Vector Arguments . 18-11

Rules for Using Complex Data in Stateflow Charts . . . 18-12

Best Practices for Using Complex Data in Stateflow
Charts . 18-15
Performing Math Function Operations with a MATLAB
Function . 18-15

Performing Complex Division with a MATLAB Function . . 18-17

xxvii

Implementing a Frame Synchronization Controller
Using a Stateflow Chart . 18-19
What Is Frame Synchronization? . 18-19
A Frame Synchronization Controller Chart 18-19
Key Features of the Chart . 18-21
Opening the Model . 18-21
How the Chart Works . 18-22

Implementing a Spectrum Analyzer Using a Stateflow
Chart . 18-25
What Is a Spectrum Analyzer? . 18-25
A Spectrum Analyzer Model . 18-25
Running the Spectrum Analyzer Model 18-27
How the Sinusoid Generator Block Works 18-28
How the Analyzer Chart Works . 18-30
How the Unwrap Chart Works . 18-32

Defining Interfaces to Simulink Models and the
MATLAB Workspace

19
Overview of Stateflow Block Interfaces 19-2
Stateflow Block Interfaces . 19-2
Typical Tasks to Define Stateflow Block Interfaces 19-3
Where to Find More Information on Events and Data 19-3

Specifying Chart Properties . 19-4
About Chart Properties . 19-4
Setting Properties for a Single Chart 19-4
Setting Properties for All Charts in the Model 19-11

Setting the Stateflow Block Update Method 19-13

Implementing Update Interfaces to Simulink
Models . 19-15
Defining a Triggered Stateflow Block 19-15
Defining a Sampled Stateflow Block 19-16
Defining an Inherited Stateflow Block 19-17

xxviii Contents

Defining a Continuous Stateflow Block 19-18
Defining Function-Call Output Events 19-18
Defining Edge-Triggered Output Events 19-19

Creating Specialized Chart Libraries for Large-Scale
Modeling . 19-20
When to Use Chart Libraries . 19-20
How to Create Chart Libraries . 19-20
Properties You Can Specialize Across Instances of Library
Blocks . 19-21

Limitations of Library Charts . 19-22

MATLAB Workspace Interfaces . 19-23
About the MATLAB Workspace . 19-23
Examining the MATLAB Workspace 19-23
Interfacing the MATLAB Workspace with Charts 19-23

Interface to External Sources . 19-25
Introduction . 19-25
Exported Data . 19-25
Imported Data . 19-26
Exported Events . 19-27
Imported Events . 19-28

Working with Structures and Bus Signals in
Stateflow Charts

20
About Stateflow Structures . 20-2
What Is a Stateflow Structure? . 20-2
What You Can Do with Structures 20-2
Example of Stateflow Structures . 20-2

Defining Stateflow Structures . 20-8
Rules for Defining Structure Data Types in Charts 20-8
Defining Structure Inputs and Outputs 20-8
Defining Local Structures . 20-12
Defining Structures of Parameter Scope 20-13
Defining Temporary Structures . 20-14

xxix

Defining Structure Types with Expressions 20-15

Structure Operations . 20-17
Indexing Sub-Structures and Fields 20-17
Guidelines for Assignment of Values 20-19
Getting Addresses . 20-20

Integrating Custom Structures in Stateflow Charts . . . 20-22

Debugging Structures . 20-26

Stateflow Design Patterns

21
Debouncing Signals . 21-2
Why Debounce Signals . 21-2
The Debouncer Model . 21-3
Key Behaviors of Debouncer Chart 21-4
Running the Debouncer . 21-6

Scheduling Execution of Simulink Subsystems 21-8
When to Implement Schedulers Using Stateflow Charts . . 21-8
Types of Scheduler Patterns . 21-8
Scheduling Multiple Subsystems in a Single Time Step
Using a Ladder Logic Scheduler 21-9

Scheduling One Subsystem in a Single Time Step Using a
Loop Scheduler . 21-13

Scheduling Subsystems to Execute at Specific Times Using
a Temporal Logic Scheduler . 21-17

Implementing Dynamic Test Vectors 21-20
When to Implement Test Vectors Using Stateflow
Charts . 21-20

A Dynamic Test Vector Chart . 21-22
Key Behaviors of the Test Vector Chart and Model 21-24
Running the Model with Stateflow Test Vectors 21-27

xxx Contents

Truth Table Functions

22
What Is a Truth Table? . 22-2

Language Options for Stateflow Truth Tables 22-4
Stateflow Classic Truth Tables . 22-4
MATLAB Truth Tables . 22-4
Selecting a Language for Stateflow Truth Tables 22-5
Migration from Stateflow Classic to MATLAB Truth
Tables . 22-5

Workflow for Using Truth Tables 22-6

Building a Model with a Stateflow Truth Table 22-7
Methods for Adding Truth Tables to Simulink Models 22-7
Adding a Stateflow Block that Calls a Truth Table
Function . 22-7

Programming a Truth Table . 22-22
Opening a Truth Table for Editing 22-22
Selecting An Action Language . 22-24
Entering Truth Table Conditions . 22-24
Entering Truth Table Decisions . 22-27
Entering Truth Table Actions . 22-29
Assigning Truth Table Actions to Decisions 22-39
Adding Initial and Final Actions . 22-45

Debugging a Truth Table . 22-48
Checking Truth Tables for Errors . 22-48
Debugging a Truth Table During Simulation 22-49

Correcting Overspecified and Underspecified Truth
Tables . 22-62
Example of an Overspecified Truth Table 22-62
Example of an Underspecified Truth Table 22-66

How Stateflow Software Implements Truth Tables . . . 22-71
Types of Generated Content . 22-71
Viewing Generated Content . 22-71

xxxi

How Stateflow Software Generates Graphical Functions for
Truth Tables . 22-72

How Stateflow Software Generates MATLAB Code for
Truth Tables . 22-76

Truth Table Editor Operations . 22-80
Adding or Modifying Stateflow Data 22-80
Appending Rows and Columns . 22-80
Compacting the Table . 22-81
Deleting Text, Rows, and Columns 22-81
Diagnosing the Truth Table . 22-81
Viewing Generated Content . 22-81
Editing Tables . 22-82
Inserting Rows and Columns . 22-82
Moving Rows and Columns . 22-82
Printing Tables . 22-83
Selecting and Deselecting Table Elements 22-83
Undoing and Redoing Edit Operations 22-83
Viewing the Stateflow Chart for the Truth Table 22-84

Using MATLAB Functions in Stateflow Charts

23
Use of MATLAB Functions in Stateflow Charts 23-2

Building a Model with a MATLAB Function in a
Chart . 23-5

Programming a MATLAB Function in a Chart 23-11

Debugging a MATLAB Function in a Chart 23-15
Checking MATLAB Functions for Syntax Errors 23-15
Run-Time Debugging for MATLAB Functions in Charts . . 23-17
Checking for Data Range Violations 23-21

Working with Structures and Bus Signals in MATLAB
Functions . 23-23
About Structures in MATLAB Functions 23-23

xxxii Contents

Defining Structures in MATLAB Functions 23-23

Working with Enumerated Data in MATLAB
Functions . 23-26

Working with Variable-Size Data in MATLAB
Functions . 23-27

Enhancing Readability of Generated Code for MATLAB
Functions . 23-28

Using Simulink Functions in Stateflow Charts

24
What Is a Simulink Function? . 24-2

When to Use a Simulink Function in a Stateflow
Chart . 24-3
Advantages of Using Simulink Functions in a Stateflow
Chart . 24-3

Benefits of Using a Simulink Function to Access Simulink
Blocks . 24-4

Benefits of Using a Simulink Function to Schedule
Execution of Multiple Controllers 24-6

How to Define a Simulink Function in a Stateflow
Chart . 24-10
Task 1: Add a Function to the Chart 24-10
Task 2: Define the Subsystem Elements of the Simulink
Function . 24-11

Task 3: Configure the Function Inputs 24-12

How a Simulink Function Binds to a State 24-13
Binding Behavior of a Simulink Function 24-13
Controlling Subsystem Variables When the Simulink
Function Is Disabled . 24-15

Example of Binding a Simulink Function to a State 24-16

xxxiii

How a Simulink Function Behaves When Called from
Multiple Sites . 24-21

Rules for Using Simulink Functions in Stateflow
Charts . 24-22

Best Practices for Using Simulink Functions 24-24

Tutorial: Defining a Function That Uses Simulink
Blocks . 24-25
Goal of the Tutorial . 24-25
Editing a Model to Use a Simulink Function 24-26
Running the New Model . 24-33

Tutorial: Scheduling Execution of Multiple
Controllers . 24-34
Goal of the Tutorial . 24-34
Editing a Model to Use Simulink Functions 24-35
Running the New Model . 24-42

Building Targets

25
Targets You Can Build . 25-3
Code Generation for Stateflow Charts and Truth Table
Blocks . 25-3

Software Requirements for Building Targets 25-4

Choosing a Procedure to Simulate a Model 25-5
Guidelines for Simulation . 25-5
Choosing the Right Procedure for Simulation 25-5

Procedures for Simulation . 25-7
Starting Simulation . 25-7
Integrating Custom C++ Code for Simulation 25-7
Integrating Custom C Code for Nonlibrary Charts for
Simulation . 25-9

xxxiv Contents

Integrating Custom C Code for Library Charts for
Simulation . 25-12

Integrating CustomCCode for All Charts for Simulation . . 25-14

Speeding Up Simulation . 25-17

Choosing a Procedure to Generate Embeddable Code
for a Model . 25-19
Guidelines for Embeddable Code Generation 25-19
Choosing the Right Procedure for Embeddable Code
Generation . 25-19

Procedures for Embeddable Code Generation 25-21
Generating Code . 25-21
Integrating Custom C++ Code for Code Generation 25-22
Integrating Custom C Code for Nonlibrary Charts for Code
Generation . 25-23

Integrating Custom C Code for Library Charts for Code
Generation . 25-25

Integrating Custom C Code for All Charts for Code
Generation . 25-26

Optimizing Generated Code . 25-29
How to Optimize Generated Code for Embeddable
Targets . 25-29

Design Tips for Optimizing Generated Code 25-29

Using the Command-Line API to Set Parameters for
Simulation and Embeddable Code Generation 25-31
How to Set Parameters at the Command Line 25-31
Simulation Parameters for Nonlibrary Models 25-32
Simulation Parameters for Library Models 25-35
Code Generation Parameters for Nonlibrary Models 25-36
Code Generation Parameters for Library Models 25-38

Specifying Relative Paths for Custom Code 25-41
Why Use Relative Paths? . 25-41
Searching Relative Paths . 25-41
Path Syntax Rules . 25-41

Choosing a Compiler . 25-43

xxxv

Examples of Integrating Custom C Code in Nonlibrary
Models . 25-44
Example of Using Custom C Code to Define Global
Constants . 25-44

Example of Using Custom C Code to Define Global
Constants, Variables, and Functions 25-47

How to Build a Stateflow Custom Target 25-53
When to Build a Custom Target . 25-53
Adding a Stateflow Custom Target to Your Model 25-53
Configuring a Custom Target . 25-55
Building a Custom Target . 25-62
Restrictions on Building a Custom Target 25-62

What Happens During the Target Building Process? . . 25-63

Parsing Stateflow Charts . 25-64
How the Stateflow Parser Works . 25-64
Calling the Stateflow Parser . 25-64
Parser Error Checking . 25-64
Parsing Chart Example . 25-65

Resolving Event, Data, and Function Symbols in
Stateflow Action Language . 25-69
Resolving Symbols . 25-69
Symbol Autocreation Wizard . 25-72

Error Messages When Parsing Charts and Generating
Code . 25-74
How Error Messages Appear . 25-74
Parser Error Messages . 25-74
Code Generation Error Messages . 25-75
Compilation Error Messages . 25-76

Generated Code Files for Targets You Build 25-77
S-Function MEX-Files . 25-77
Folder Structure of Generated Files 25-77
Code Files for a Simulation Target 25-79
Code Files for an Embeddable Target 25-80
Code Files for a Custom Target . 25-81
Makefiles . 25-81

xxxvi Contents

Traceability of Stateflow Objects in Generated Code . . 25-82
What Is Traceability? . 25-82
Traceability Requirements . 25-82
Traceable Stateflow Objects . 25-82
When to Use Traceability . 25-83
Basic Workflow for Using Traceability 25-84
Examples of Using Traceability . 25-84
Format of Traceability Comments . 25-94

Controlling Inlining of State Functions in Generated
Code . 25-98
How Stateflow Software Inlines Generated Code for State
Functions . 25-98

How to Set the State Function Inline Option 25-100
Best Practices for Controlling State Function Inlining . . . 25-101

Debugging and Testing Stateflow Charts

26
Using the Stateflow Debugger . 26-2
Opening the Stateflow Debugger . 26-2
Animating Stateflow Charts . 26-3
Setting Breakpoints to Debug Charts 26-7
How to Enable Debugging for Charts 26-12
Options for Controlling the Debugger 26-19

Example of Debugging Run-Time Errors in a Chart . . . 26-24
Creating the Model and the Stateflow Chart 26-24
Debugging the Stateflow Chart . 26-26
Correcting the Run-Time Error . 26-27
Identifying Stateflow Objects in Error Messages 26-28

Debugging State Inconsistencies in a Chart 26-29
Definition of State Inconsistency . 26-29
Causes of State Inconsistency . 26-29
Detecting State Inconsistency with the Debugger 26-30
State Inconsistency Example . 26-30

Debugging Conflicting Transitions in a Chart 26-32

xxxvii

What Are Conflicting Transitions? . 26-32
Detecting Conflicting Transitions . 26-32
Example of Conflicting Transitions 26-32

Debugging Data Range Violations in a Chart 26-35
Types of Data Range Violations . 26-35
Detecting Data Range Violations . 26-35
Data Range Violation Example . 26-35

Debugging Cyclic Behavior in a Chart 26-37
What Is Cyclic Behavior? . 26-37
Detecting Cyclic Behavior During Simulation 26-37
Cyclic Behavior Example . 26-37
Flow Cyclic Behavior Not Detected Example 26-38
Noncyclic Behavior Flagged as a Cycle Example 26-39

Guidelines for Avoiding Unwanted Recursion in a
Chart . 26-41

Watching Data Values During Simulation 26-42
Watching Data in the Stateflow Debugger 26-42
Watching Stateflow Data in the MATLAB Command
Window . 26-44

Changing Data Values During Simulation 26-47
How to Change Values of Stateflow Data 26-47
Examples of Changing Data Values 26-47
Limitations on Changing Data Values 26-50

Monitoring Test Points in Stateflow Charts 26-53
About Test Points in Stateflow Charts 26-53
Setting Test Points for Stateflow States and Local Data
with the Model Explorer . 26-53

Using a Floating Scope to Monitor Data Values and State
Activity . 26-56

Logging Data Values and State Activity 26-60
What You Can Log During Chart Simulation 26-60
Supported Formats for Logged Data 26-60
Workflow for Logging States and Local Data 26-61
Example for Illustrating Logging Workflow 26-62

xxxviii Contents

Configuring States and Local Data for Logging 26-63
Enabling Signal Logging for Charts 26-66
Specifying a Format for Logged Data 26-67
Accessing Logged Data . 26-67
Viewing Logged Data . 26-73
Logging Data in Library Charts . 26-73
Logging Multidimensional Data . 26-74

Exploring and Modifying Charts

27
Using the Model Explorer with Stateflow Objects 27-2
Viewing Stateflow Objects in the Model Explorer 27-2
Editing Chart Objects in the Model Explorer 27-4
Adding Data and Events in the Model Explorer 27-4
Adding Custom Targets in the Model Explorer 27-5
Renaming Objects in the Model Explorer 27-8
Setting Properties for Chart Objects in the Model
Explorer . 27-8

Moving and Copying Data, Events, and Targets in the
Model Explorer . 27-9

Changing the Port Order of Input and Output Data and
Events . 27-10

Deleting Data, Events, and Targets in the Model
Explorer . 27-11

Using the Stateflow Search & Replace Tool 27-12
Opening the Search & Replace Tool 27-12
Using Different Search Types . 27-15
Specifying the Search Scope . 27-17
Using the Search Button and View Area 27-19
Specifying the Replacement Text . 27-23
Using the Replace Buttons . 27-24
Search and Replace Messages . 27-25

Finding Stateflow Objects . 27-28
Types of Finder Tools . 27-28
Using the Stateflow Finder . 27-29
Finder Display Area . 27-32

xxxix

Semantic Rules Summary

A
Entering a Chart . A-2

Executing an Active Chart . A-2

Entering a State . A-2

Executing an Active State . A-3

Exiting an Active State . A-3

Executing a Set of Flow Graphs . A-4

Executing an Event Broadcast . A-5

Semantic Examples

B
Categories of Semantic Examples B-2

Transitions to and from Exclusive (OR) States
Examples . B-4
Label Format for a State-to-State Transition Example . . . B-4
Transitioning from State to State with Events Example . . B-5
Transitioning from a Substate to a Substate with Events
Example . B-9

Condition Action Examples . B-11
Condition Action Example . B-11
Condition and Transition Actions Example B-12
Condition Actions in For-Loop Construct Example B-15
Condition Actions to Broadcast Events to Parallel (AND)
States Example . B-16

xl Contents

Cyclic Behavior to Avoid with Condition Actions
Example . B-17

Default Transition Examples . B-18
Default Transition in Exclusive (OR) Decomposition
Example . B-18

Default Transition to a Junction Example B-19
Default Transition and a History Junction Example B-20
Labeled Default Transitions Example B-22

Inner Transition Examples . B-25
Processing Events with an Inner Transition in an Exclusive
(OR) State Example . B-25

Processing Events with an Inner Transition to a Connective
Junction Example . B-28

Inner Transition to a History Junction Example B-31

Connective Junction Examples . B-34
Label Format for Transition Segments Example B-34
If-Then-Else Decision Construct Example B-36
Self-Loop Transition Example . B-37
For-Loop Construct Example . B-39
Flow Graph Notation Example . B-40
Transitions from a Common Source to Multiple Destinations
Example . B-42

Transitions fromMultiple Sources to a Common Destination
Example . B-44

Transitions from a Source to a Destination Based on a
Common Event Example . B-45

Backtracking Behavior in Flow Graphs Example B-46

Event Actions in a Superstate Example B-48

Parallel (AND) State Examples . B-50
Event Broadcast State Action Example B-50
Event Broadcast Transition Action with a Nested Event
Broadcast Example . B-53

Event Broadcast Condition Action Example B-56

Directed Event Broadcasting Examples B-60
Directed Event Broadcast Using Send Example B-60

xli

Directed Event Broadcast Using Qualified Event Name
Example . B-62

Glossary

Index

xlii Contents

1

Stateflow Chart Concepts

• “Finite State Machine Concepts” on page 1-2

• “Stateflow Charts and Simulink Models” on page 1-4

• “Stateflow Chart Objects” on page 1-6

• “Stateflow Hierarchy of Objects” on page 1-8

• “Bibliography” on page 1-10

1 Stateflow® Chart Concepts

Finite State Machine Concepts

In this section...

“What Is a Finite State Machine?” on page 1-2

“Finite State Machine Representations” on page 1-2

“Stateflow Chart Representations” on page 1-2

“Notation” on page 1-3

“Semantics” on page 1-3

What Is a Finite State Machine?
A Stateflow® chart is an example of a finite state machine. A finite state
machine is a representation of an event-driven (reactive) system. In an
event-driven system, the system makes a transition from one state (mode) to
another, if the condition defining the change is true.

For example, you can use a state machine to represent the automatic
transmission of a car. The transmission has these operating states: park,
reverse, neutral, drive, and low. As the driver shifts from one position
to another, the system makes a transition from one state to another, for
example, from park to reverse.

Finite State Machine Representations
Traditionally, designers used truth tables to represent relationships among
the inputs, outputs, and states of a finite state machine. The resulting table
describes the logic necessary to control the behavior of the system under
study. Another approach to designing event-driven systems is to model
the behavior of the system by describing it in terms of transitions among
states. The occurrence of events under certain conditions determine the
state that is active. State-transition charts and bubble charts are graphical
representations based on this approach.

Stateflow Chart Representations
A Stateflow chart uses a variant of the finite state machine notation
established by Harel [1]. A chart is a graphical representation of a finite

1-2

Finite State Machine Concepts

state machine, where states and transitions form the basic building blocks of
the system. You can also represent stateless charts (flow graphs). You can
include Stateflow charts as blocks in a Simulink® model. The collection of
Stateflow blocks in a Simulink model is the Stateflow machine.

A Stateflow chart enables the representation of hierarchy, parallelism,
and history. You can organize complex systems by defining a parent and
offspring object structure [2]. For example, you can organize states within
other higher-level states. A system with parallelism can have two or more
orthogonal states active at the same time. You can specify the destination
state of a transition based on historical information. These characteristics go
beyond what state-transition charts and bubble charts provide.

Notation
Notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow chart notation provides a way to
communicate the design information in a Stateflow chart.

Stateflow chart notation consists of these elements:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

See Chapter 2, “Stateflow Chart Notation”, for detailed information on
Stateflow chart notation.

Semantics
Semantics describe how to interpret chart notation. A typical Stateflow
chart contains actions associated with transitions and states. The semantics
describe the sequence of these actions during chart execution.

For a description of default semantics, see Chapter 3, “Stateflow Chart
Semantics”.

1-3

1 Stateflow® Chart Concepts

Stateflow Charts and Simulink Models

In this section...

“The Simulink Model and the Stateflow Machine” on page 1-4

“Overview of Defining Stateflow Block Interfaces to Simulink Models” on
page 1-4

The Simulink Model and the Stateflow Machine
A Stateflow chart functions as a finite state machine within a Simulink model.
The Stateflow machine is the collection of Stateflow blocks in a Simulink
model. The Simulink model and the Stateflow machine work seamlessly
together. Running a simulation automatically executes both the Simulink
blocks and the Stateflow charts of the model.

A Simulink model can consist of combinations of Simulink blocks, toolbox
blocks, and Stateflow blocks (charts). A chart consists of graphical objects
(states, boxes, functions, notes, transitions, connective junctions, and history
junctions) and nongraphical objects (events, data, and targets).

There is a one-to-one correspondence between the Simulink model and the
Stateflow machine. Each Stateflow block in the Simulink model appears as a
single Stateflow chart. Each Stateflow machine has its own object hierarchy.
The Stateflow machine is the highest level in the Stateflow hierarchy. The
object hierarchy beneath the Stateflow machine consists of combinations of
graphical and nongraphical objects. See “Stateflow Hierarchy of Objects”
on page 1-8.

Overview of Defining Stateflow Block Interfaces to
Simulink Models
Each Stateflow block corresponds to a single Stateflow chart. The Stateflow
block interfaces to its Simulink model. The Stateflow block can interface to
code sources external to the Simulink model (data, events, custom code).

Stateflow charts are event-driven. Events can be local to the Stateflow block
or can propagate to and from the Simulink model. Data can be local to the

1-4

Stateflow® Charts and Simulink® Models

Stateflow block or can pass to and from the Simulink model and external
code sources.

Defining the interface for a Stateflow block can involve some or all these tasks:

• Defining the Stateflow block update method

• Defining Output to Simulink events

• Adding and defining nonlocal events and nonlocal data within the Stateflow
chart

• Defining relationships with any external sources

In the following example, the Simulink model consists of a Sine Wave block, a
Scope block, and a single Stateflow block, titled On_off.

For more information, see “Using Input Events to Activate a Stateflow Chart”
on page 9-11 and Chapter 19, “Defining Interfaces to Simulink Models and
the MATLAB Workspace”.

1-5

1 Stateflow® Chart Concepts

Stateflow Chart Objects
Stateflow charts consist of graphical and nongraphical objects:

1-6

Stateflow® Chart Objects

To learn how these objects interact, see “How Chart Constructs Interact
During Execution” on page 3-8.

1-7

1 Stateflow® Chart Concepts

Stateflow Hierarchy of Objects
Stateflow machines arrange Stateflow objects in a hierarchy based on
containment. That is, one Stateflow object can contain other Stateflow objects.

The highest object in Stateflow hierarchy is the Stateflow machine. This
object contains all other Stateflow objects in a Simulink model. The Stateflow
machine contains all the charts in a model. In addition, the Stateflow machine
for a model can contain its own data and target objects.

1-8

Stateflow® Hierarchy of Objects

Similarly, charts can contain state, box, function, data, event, transition,
junction, and note objects. Continuing with the Stateflow hierarchy, states
can contain all these objects as well, including other states. You can represent
state hierarchy with superstates and substates.

A transition out of a superstate implies transitions out of any of its active
substates. Transitions can cross superstate boundaries to specify a substate
destination. If a substate becomes active, its parent superstate also becomes
active.

You can organize complex charts by defining a containment structure. A
hierarchical design usually reduces the number of transitions and produces
neat, manageable charts.

• To manage graphical objects, use the Stateflow Editor.

• To manage nongraphical objects, use the Model Explorer.

1-9

1 Stateflow® Chart Concepts

Bibliography
[1] Harel, D. “Statecharts: A Visual Formalism for Complex Systems.” Science
of Computer Programming. Vol. 8, 1987, pp. 231–274.

[2] Hatley, D. J. and I. A. Pirbhai. Strategies for Real-Time System
Specification. New York, NY: Dorset House Publishing, 1988.

1-10

2

Stateflow Chart Notation

• “Overview of Stateflow Objects” on page 2-2

• “Rules for Naming Stateflow Objects” on page 2-5

• “States” on page 2-8

• “Transitions” on page 2-18

• “Transition Connections” on page 2-23

• “Default Transitions” on page 2-32

• “Connective Junctions” on page 2-37

• “History Junctions” on page 2-44

• “Graphical Functions” on page 2-46

• “Boxes” on page 2-48

2 Stateflow® Chart Notation

Overview of Stateflow Objects

In this section...

“Graphical Objects” on page 2-2

“Nongraphical Objects” on page 2-3

“For More Information on Stateflow Objects” on page 2-4

Graphical Objects
The following table lists each type of graphical object you can draw in a chart
and the toolbar icon to use for drawing the object.

Type of Graphical Object Toolbar Icon

State

Transition Not applicable

History junction

Default transition

Connective junction

Truth table function

Graphical function

MATLAB® function

2-2

Overview of Stateflow® Objects

Type of Graphical Object Toolbar Icon

Box

Simulink function

Nongraphical Objects
You can define data, event, and target objects that do not appear graphically
in the Stateflow Editor. However, you can see them in the Model Explorer.
See “Using the Model Explorer with Stateflow Objects” on page 27-2.

Data Objects
A Stateflow chart stores and retrieves data that it uses to control its execution.
Stateflow data resides in its own workspace, but you can also access data
that resides externally in the Simulink model or application that embeds the
Stateflow machine. You must define any internal or external data that you
use in the action language of a Stateflow chart. For a full description of data
objects, see Chapter 8, “Defining Data”.

Event Objects
An event is a Stateflow object that can trigger a whole Stateflow chart or
individual actions in a chart. Because Stateflow charts execute by reacting
to events, you specify and program events into your charts to control their
execution. You can broadcast events to every object in the scope of the object
sending the event, or you can send an event to a specific object. You can define
explicit events that you specify directly, or you can define implicit events to
take place when certain actions are performed, such as entering a state. For a
full description of event objects, see Chapter 9, “Defining Events”.

Target Objects
A target is a program that executes a Stateflow chart or a Simulink model
containing a Stateflow machine.

2-3

2 Stateflow® Chart Notation

This type of target... Does this...

Simulation Executes a simulation of your model

Embeddable code generation Executes the Simulink model on a
supported processor environment

Custom Pinpoints your application to a
specific environment

For more information, see Chapter 25, “Building Targets”.

For More Information on Stateflow Objects
Chapter 3, “Stateflow Chart Semantics” describes the various Stateflow
objects in more detail.

2-4

Rules for Naming Stateflow® Objects

Rules for Naming Stateflow Objects

In this section...

“Characters You Can Use” on page 2-5

“Restriction on Name Length” on page 2-5

“Reserved Keywords” on page 2-5

Characters You Can Use
You can name Stateflow objects with any combination of alphanumeric and
underscore characters. Names cannot begin with a numeric character or
contain embedded spaces.

Restriction on Name Length
Name length should comply with the maximum identifier length enforced
by Simulink® Coder™ software. You can set this parameter in the Code
Generation > Symbols pane of the Configuration Parameters dialog box.
The default is 31 characters and the maximum length you can specify is
256 characters.

Reserved Keywords
You cannot use the following keywords to name chart objects. These keywords
are part of the Stateflow action language (see Chapter 10, “Using Actions in
Stateflow Charts” for details).

Usage in Action Language Keywords Syntax References

Boolean symbols • true

• false

“Boolean Symbols, true and
false” on page 10-28

Change detection • hasChanged

• hasChangedFrom

• hasChangedTo

“Using Change Detection in
Actions” on page 10-83

2-5

2 Stateflow® Chart Notation

Usage in Action Language Keywords Syntax References

Complex data • complex

• imag

• real

“Using Operators to Handle
Complex Numbers” on page
18-9

Data types • boolean

• double

• int8

• int16

• int32

• single

• uint8

• uint16

• uint32

“Setting Data Properties in the
Data Dialog Box” on page 8-5

Data type operations • cast

• fixdt

• type

“Type Cast Operations” on
page 10-25

Explicit events • send “Broadcasting Events in
Actions” on page 10-59

Implicit events • change

• chg

• tick

• wakeup

“Using Implicit Events” on
page 9-40

Literal symbols • inf

• t

“Symbols in Action Language”
on page 10-28

MATLAB functions and data • matlab

• ml

“ml Namespace Operator” on
page 10-42

2-6

Rules for Naming Stateflow® Objects

Usage in Action Language Keywords Syntax References

State actions • bind

• du

• during

• en

• entry

• ex

• exit

• on

“Defining Action Types” on
page 10-2

State activity • in “Checking State Activity” on
page 10-97

Temporal logic • after

• at

• before

• every

• sec

• temporalCount

“Using Temporal Logic in
State Actions and Transitions”
on page 10-63

2-7

2 Stateflow® Chart Notation

States

In this section...

“What Is a State?” on page 2-8

“State Hierarchy” on page 2-8

“State Decomposition” on page 2-10

“State Labels” on page 2-13

What Is a State?
A state describes a mode of a reactive Stateflow chart. States in a chart
represent these modes.

States can be active or inactive. When a state is active, the chart takes on
that mode. When a state is inactive, the chart is not in that mode. The
activity or inactivity of a chart’s states dynamically changes based on events
and conditions. The occurrence of events drives the execution of the Stateflow
chart by making states become active or inactive. At any point in the
execution of a chart, there is a combination of active and inactive states.

State Hierarchy
States can contain all other Stateflow objects except targets. Stateflow
chart notation supports the representation of graphical object hierarchy in
Stateflow charts with containment. A state is a superstate if it contains other
states. A state is a substate if it is contained by another state. A state that is
neither a superstate nor a substate of another state is a state whose parent
is the Stateflow chart itself.

States can also contain nongraphical data and event objects. The hierarchy of
this containment appears in the Model Explorer. Data and event containment
is defined by specifying the parent object when you create it. See Chapter 8,
“Defining Data”, Chapter 9, “Defining Events”, and Chapter 19, “Defining
Interfaces to Simulink Models and the MATLAB Workspace” for information
and examples on representing data and event objects in the Model Explorer.

2-8

States

State Hierarchy Example
In the following example, drawing one state within the boundaries of another
state indicates that the inner state is a substate (or child) of the outer state
(or superstate). The outer state is the parent of the inner state:

In this example, the Stateflow chart is the parent of the state Car_done. The
state Car_done is the parent state of the Car_made and Car_shipped states.
The state Car_made is also the parent of the Parts_assembled and Painted
states. You can also say that the states Parts_assembled and Painted are
children of the Car_made state.

Stateflow hierarchy can also be represented textually, in which the chart is
represented by the slash (/) character and each level in the hierarchy of states
is separated by the period (.) character. This list is a textual representation
of the hierarchy of objects in the preceding example:

• /Car_done

2-9

2 Stateflow® Chart Notation

• /Car_done.Car_made

• /Car_done.Car_shipped

• /Car_done.Car_made.Parts_assembled

• /Car_done.Car_made.Painted

State Decomposition
Every state (and chart) has a decomposition that dictates what kind of
substates it can contain. All substates of a superstate must be of the same
type as the superstate’s decomposition. Decomposition for a state can be
exclusive (OR) or parallel (AND). These types of decomposition are described
in the following topics:

• “Exclusive (OR) State Decomposition” on page 2-10

• “Parallel (AND) State Decomposition” on page 2-11

Exclusive (OR) State Decomposition
Exclusive (OR) state decomposition for a superstate (or chart) is indicated
when its substates have solid borders. Exclusive (OR) decomposition is used
to describe system modes that are mutually exclusive. When a state has
exclusive (OR) decomposition, only one substate can be active at a time. The
children of exclusive (OR) decomposition parents are OR states.

In the following example, either state A or state B can be active. If state A is
active, either state A1 or state A2 can be active at a given time.

2-10

States

Parallel (AND) State Decomposition
The children of parallel (AND) decomposition parents are parallel (AND)
states. Parallel (AND) state decomposition for a superstate (or chart) is
indicated when its substates have dashed borders. This representation is
appropriate if all states at that same level in the hierarchy are always active
at the same time.

In the following example, when state A is active, A1 and A2 are both active
at the same time:

2-11

2 Stateflow® Chart Notation

The activity within parallel states is essentially independent, as demonstrated
in the following example.

In the following example, when state A becomes active, both states B and C
become active at the same time. When state C becomes active, either state
C1 or state C2 can be active.

2-12

States

State Labels
The label for a state appears on the top left corner of the state rectangle with
the following general format:

name/
entry:entry actions
during:during actions
exit:exit actions
on event_name:on event_name actions
bind:events, data

The following example demonstrates the components of a state label.

2-13

2 Stateflow® Chart Notation

Each action in the state label appears in the subtopics that follow. For more
information on state actions, see:

• “Process for Entering, Executing, and Exiting States” on page 3-70 —
Describes how and when entry, during, exit, and on event_name actions
occur.

• “State Action Types” on page 10-2 — Gives more detailed descriptions of
each type of state action.

State Name
A state label starts with the name of the state followed by an optional
/ character. In the preceding example, the state names are On and Off.
Valid state names consist of alphanumeric characters and can include the

2-14

States

underscore (_) character. For more information, see “Rules for Naming
Stateflow Objects” on page 2-5.

Hierarchy provides some flexibility in naming states. The name that you
enter on the state label must be unique when preceded by ancestor states.
The name in the Stateflow hierarchy is the text you enter as the label on the
state, preceded by the names of parent states separated by periods. Each
state can have the same name appear in the label, as long as their full names
within the hierarchy are unique. Otherwise, the parser indicates an error.

The following example shows how unique naming of states works.

Each of these states has a unique name because of its location in the chart.
The full names for the states in FAN1 and FAN2 are:

• PowerOn.FAN1.On

2-15

2 Stateflow® Chart Notation

• PowerOn.FAN1.Off

• PowerOn.FAN2.On

• PowerOn.FAN2.Off

State Actions
After the name, you enter optional action statements for the state with a
keyword label that identifies the type of action. You can specify none, some,
or all of them. The colon after each keyword is required. The slash following
the state name is optional as long as it is followed by a carriage return.

For each type of action, you can enter more than one action by separating
each action with a carriage return, semicolon, or a comma. You can specify
actions for more than one event by adding additional on event_name lines for
different events.

If you enter the name and slash followed directly by actions, the actions are
interpreted as entry action(s). This shorthand is useful if you are specifying
only entry actions.

Entry Action. Preceded by the prefix entry or en for short. In the preceding
example, state On has entry action on_count=0. This means that the value of
on_count is reset to 0 whenever state On becomes active (entered).

During Action. Preceded by the prefix during or du for short. In the
preceding label example, state On has two during actions, light_on() and
on_count++. These actions are executed whenever state On is already
active and any event occurs.

Exit Action. Preceded by the prefix exit or ex for short. In the preceding
label example, state Off has the exit action light_off(). If the state Off is
active, but becomes inactive (exited), this action is executed.

On Event_Name Action. Preceded by the prefix on event_name, where
event_name is a unique event. In the preceding label example, state On has
an on power_outage action. If state On is active and the event power_outage
occurs, the action handle_outage() is executed.

2-16

States

Bind Action. Preceded by the prefix bind. In the preceding label example,
the data on_count is bound to the state On. This means that only the state
On or a child of On can change the value of on_count. Other states, such as
the state Off, can use on_count in its actions, but it cannot change its value
in doing so.

2-17

2 Stateflow® Chart Notation

Transitions

In this section...

“What Is a Transition?” on page 2-18

“Transition Hierarchy” on page 2-19

“Transition Label Notation” on page 2-20

“Valid Transitions” on page 2-22

What Is a Transition?
A transition is a line with an arrowhead that links one graphical object to
another. In most cases, a transition represents the passage of the system from
one mode (state) object to another. A transition typically connects a source
and a destination object. The source object is where the transition begins and
the destination object is where the transition ends. The following chart shows
a transition from a source state, B, to a destination state, A.

Junctions divide a transition into transition segments. In this case, a full
transition consists of the segments taken from the origin to the destination

2-18

Transitions

state. Each segment is evaluated in the process of determining the validity of
a full transition.

The following example has two segmented transitions: one from state On to
state Off, and the other from state On to itself:

A default transition is a special type of transition that has no source object.
See “Default Transitions” on page 2-32 for details.

Transition Hierarchy
Transitions cannot contain other objects the way that states can. However,
transitions are contained by states. A transition’s hierarchy is described
in terms of the transition’s parent, source, and destination. The parent is
the lowest level that contains the source and destination of the transition.
Consider the parents for the transitions in the following example:

2-19

2 Stateflow® Chart Notation

The following table resolves the parentage of each transition in the preceding
example. The / character represents the chart. Each level in the hierarchy
of states is separated by the period (.) character.

Transition Label Transition Parent Transition Source
Transition
Destination

switch_off / /Power_on.Low.Heat /Power_off

switch_high /Power_on /Power_on.Low.Heat /Power_on.High

switch_cold /Power_on.Low /Power_on.Low.Heat /Power_on.Low.Cold

Transition Label Notation
A transition is characterized by its label. The label can consist of an event, a
condition, a condition action, and/or a transition action. The ? character is the
default transition label. Transition labels have the following general format:

event[condition]{condition_action}/transition_action

2-20

Transitions

You replace the names for event, condition, condition_action, and
transition_action with appropriate contents as shown in the example
“Transition Label Example” on page 2-21. Each part of the label is optional.

Transition Label Example
Use the following example to understand the parts of a transition label.

Event Trigger. Specifies an event that causes the transition to be taken,
provided the condition, if specified, is true. Specifying an event is optional.
The absence of an event indicates that the transition is taken upon the
occurrence of any event. Specify multiple events using the OR logical operator
(|).

In the preceding example, the broadcast of event E triggers the transition
from On to Off as long as the condition [off_count==0] is true.

Condition. Specifies a Boolean expression that, when true, validates a
transition to be taken for the specified event trigger. Enclose the condition
in square brackets ([]). See “Conditions” on page 10-10 for information on
the condition notation.

2-21

2 Stateflow® Chart Notation

In the preceding example, the condition [off_count==0] must evaluate as
true for the condition action to be executed and for the transition from the
source to the destination to be valid.

Condition Action. Follows the condition for a transition and is enclosed
in curly braces ({}). It is executed as soon as the condition is evaluated as
true and before the transition destination has been determined to be valid.
If no condition is specified, an implied condition evaluates to true and the
condition action is executed.

In the preceding example, if the condition [off_count==0] is true, the
condition action off_count++ is immediately executed.

Transition Action. Executes after the transition destination has been
determined to be valid provided the condition, if specified, is true. If the
transition consists of multiple segments, the transition action is only executed
when the entire transition path to the final destination is determined to be
valid. Precede the transition action with a /.

In the preceding example, if the condition [off_count==0] is true, and the
destination state Off is valid, the transition action Light_off is executed.

Valid Transitions
In most cases, a transition is valid when the source state of the transition
is active and the transition label is valid. Default transitions are different
because there is no source state. Validity of a default transition to a substate
is evaluated when there is a transition to its superstate, assuming the
superstate is active. This labeling criterion applies to both default transitions
and general case transitions. The following table lists possible combinations
of valid transition labels.

Transition Label Is Valid If...

Event only That event occurs

Event and condition That event occurs and the condition is true

Condition only Any event occurs and the condition is true

Action only Any event occurs

Not specified Any event occurs

2-22

Transition Connections

Transition Connections

In this section...

“Transitions to and from Exclusive (OR) States” on page 2-23

“Transitions to and from Junctions” on page 2-24

“Transitions to and from Exclusive (OR) Superstates” on page 2-25

“Transitions to and from Substates” on page 2-26

“Self-Loop Transitions” on page 2-27

“Inner Transitions” on page 2-27

Transitions to and from Exclusive (OR) States
This example shows simple transitions to and from exclusive (OR) states.

2-23

2 Stateflow® Chart Notation

The following transition... Is valid when...

B to A State B is active and the event E1
occurs.

A1 to A2 State A1 is active and event E2
occurs.

See “Transitions to and from Exclusive (OR) States Examples” on page B-4 for
more information on the semantics of this notation.

Transitions to and from Junctions
The following chart shows transitions to and from connective junctions.

The chart uses temporal logic to determine when the input u equals 1.

If the input equals 1... A transition occurs from...

Before t = 2 Start to Fast

Between t = 2 and t = 5 Start to Good

After t = 5 Start to Slow

For more information about temporal logic, see “Using Temporal Logic in
State Actions and Transitions” on page 10-63. For more information on

2-24

Transition Connections

the semantics of this notation, see “Transitions from a Common Source to
Multiple Destinations Example” on page B-42.

Transitions to and from Exclusive (OR) Superstates
This example shows transitions to and from an exclusive (OR) superstate
and the use of a default transition.

The chart has two states at the highest level in the hierarchy, Power_off
and Power_on. By default, Power_off is active. The event Switch toggles
the system between the Power_off and Power_on states. Power_on has
three substates: First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system
transitions from First to Second, Second to Third, Third to First, for each
occurrence of the event Switch, and then the pattern repeats.

2-25

2 Stateflow® Chart Notation

For more information on the semantics of this notation, see “Default
Transition Examples” on page B-18.

Transitions to and from Substates
The following example shows transitions to and from exclusive (OR) substates.

For details on how this chart works, see “Key Behaviors of Debouncer
Chart” on page 21-4. For information on the semantics of this notation, see
“Transitioning from a Substate to a Substate with Events Example” on page
B-9.

2-26

Transition Connections

Self-Loop Transitions
A transition that originates from and terminates on the same state is a
self-loop transition. The following chart contains four self-loop transitions:

See these sections for more information about the semantics of this notation:

• “Self-Loop Transition Example” on page B-37

• “For-Loop Construct Example” on page B-39

Inner Transitions
An inner transition is a transition that does not exit the source state. Inner
transitions are powerful when defined for superstates with exclusive (OR)
decomposition. Use of inner transitions can greatly simplify a Stateflow chart,
as shown by the following examples:

• “Before Using an Inner Transition” on page 2-28

• “After Using an Inner Transition to a Connective Junction” on page 2-29

• “Using an Inner Transition to a History Junction” on page 2-30

2-27

2 Stateflow® Chart Notation

Before Using an Inner Transition
This chart is an example of how you can simplify logic using an inner
transition.

Any event occurs and awakens the Stateflow chart. The default transition
to the connective junction is valid. The destination of the transition is
determined by [c1 > 0] and [c2 > 0]. If [c1 > 0] is true, the transition to

2-28

Transition Connections

A1 is true. If [c2 > 0] is true, the transition to A2 is valid. If neither [c1 >
0] nor [c2 > 0] is true, the transition to A3 is valid. The transitions among
A1, A2, and A3 are determined by E, [c1 > 0], and [c2 > 0].

After Using an Inner Transition to a Connective Junction
This example simplifies the preceding example using an inner transition to
a connective junction.

An event occurs and awakens the chart. The default transition to the
connective junction is valid. The destination of the transitions is determined
by [c1 > 0] and [c2 > 0].

You can simplify the chart by using an inner transition in place of the
transitions among all the states in the original example. If state A is already
active, the inner transition is used to reevaluate which of the substates of
state A is to be active. When event E occurs, the inner transition is potentially
valid. If [c1 > 0] is true, the transition to A1 is valid. If [c2 > 0] is true,

2-29

2 Stateflow® Chart Notation

the transition to A2 is valid. If neither [c1 > 0] nor [c2 > 0] is true, the
transition to A3 is valid. This chart design is simpler than the previous one.

Note When you use an inner transition to a connective junction, an active
substate can exit and reenter when the transition condition for that substate
is valid. For example, if substate A1 is active and [c1 > 0] is true, the
transition to A1 is valid. In this case:

1 Exit actions for A1 execute and complete.

2 A1 becomes inactive.

3 A1 becomes active.

4 Entry actions for A1 execute and complete.

See “Processing the First Event with an Inner Transition to a Connective
Junction” on page B-28 for more information on the semantics of this notation.

Using an Inner Transition to a History Junction
This example shows an inner transition to a history junction.

2-30

Transition Connections

State Power_on.High is initially active. When event Reset occurs, the inner
transition to the history junction is valid. Because the inner transition
is valid, the currently active state, Power_on.High, is exited. When the
inner transition to the history junction is processed, the last active state,
Power_on.High, becomes active (is reentered). If Power_on.Low was active
under the same circumstances, Power_on.Low would be exited and reentered
as a result. The inner transition in this example is equivalent to drawing an
outer self-loop transition on both Power_on.Low and Power_on.High.

See “Use of History Junctions Example” on page 2-44 for another example
using a history junction.

See “Inner Transition to a History Junction Example” on page B-31 for more
information on the semantics of this notation.

2-31

2 Stateflow® Chart Notation

Default Transitions

In this section...

“What Is a Default Transition?” on page 2-32

“Drawing Default Transitions” on page 2-32

“Labeling Default Transitions” on page 2-32

“Default Transition Examples” on page 2-33

What Is a Default Transition?
A default transition specifies which exclusive (OR) state to enter when
there is ambiguity among two or more neighboring exclusive (OR) states. A
default transition has a destination but no source object. For example, a
default transition specifies which substate of a superstate with exclusive
(OR) decomposition the system enters by default, in the absence of any other
information, such as a history junction. A default transition can also specify
that a junction should be entered by default.

Drawing Default Transitions
Click the Default transition button in the toolbar, and click a location in the
drawing area close to the state or junction you want to be the destination for
the default transition. Drag the mouse to the destination object to attach the
default transition. In some cases, it is useful to label default transitions.

A common programming mistake is to create multiple exclusive (OR) states
without a default transition. In the absence of the default transition, there is
no indication of which state becomes active by default. Note that this error
is flagged when you simulate the model using the Debugger with the State
Inconsistencies option enabled.

Labeling Default Transitions
In some circumstances, you might want to label default transitions. You
can label default transitions as you would other transitions. For example,
you might want to specify that one state or another should become active
depending upon the event that has occurred. In another situation, you

2-32

Default Transitions

might want to have specific actions take place that are dependent upon the
destination of the transition.

Tip When labeling default transitions, ensure that there is at least one valid
default transition. Otherwise, a chart can transition into an inconsistent
state.

Default Transition Examples
The following examples show the use of default transitions in Stateflow charts:

• “Default Transition to a State Example” on page 2-33

• “Default Transition to a Junction Example” on page 2-34

• “Default Transition with a Label Example” on page 2-35

Default Transition to a State Example
This example shows a default transition to a state.

2-33

2 Stateflow® Chart Notation

Without the default transition to state PowerOff, when the Stateflow chart
wakes up, none of the states becomes active. You can detect this situation
at run-time by checking for state inconsistencies. See “Animating Stateflow
Charts in Normal Mode” on page 26-4 for more information.

See “Default Transition Examples” on page B-18 for information on the
semantics of this notation.

Default Transition to a Junction Example
This example shows a default transition to a connective junction.

2-34

Default Transitions

The default transition to the connective junction defines that upon entering
the chart, the destination depends on the condition of each transition segment.

See “Default Transition to a Junction Example” on page B-19 for information
on the semantics of this notation.

Default Transition with a Label Example
This example shows a default transition with a label.

2-35

2 Stateflow® Chart Notation

When the chart wakes up, the data p and v initialize to 10 and 15, respectively.

See “Labeled Default Transitions Example” on page B-22 for more information
on the semantics of this notation.

2-36

Connective Junctions

Connective Junctions

In this section...

“What Is a Connective Junction?” on page 2-37

“Flow Graph Notation with Connective Junctions” on page 2-37

What Is a Connective Junction?
The connective junction enables representation of different possible transition
paths for a single transition. Connective junctions are used to help represent
the following:

• Variations of an if-then-else decision construct, by specifying conditions
on some or all of the outgoing transitions from the connective junction

• A self-loop transition back to the source state if none of the outgoing
transitions is valid

• Variations of a for loop construct, by having a self-loop transition from
the connective junction back to itself

• Transitions from a common source to multiple destinations

• Transitions from multiple sources to a common destination

• Transitions from a source to a destination based on common events

Note An event cannot trigger a transition from a connective junction to
a destination state.

See “Connective Junction Examples” on page B-34 for a summary of the
semantics of connective junctions.

Flow Graph Notation with Connective Junctions
Flow graph notation uses connective junctions to represent common code
structures like for loops and if-then-else constructs without the use of
states. And by reducing the number of states in your Stateflow charts,

2-37

2 Stateflow® Chart Notation

flow graph notation produces efficiently generated code that helps optimize
memory use.

Flow graph notation uses combinations of the following:

• Transitions to and from connective junctions

• Self-loops to connective junctions

• Inner transitions to connective junctions

Flow graph notation, states, and state-to-state transitions coexist in the
same Stateflow chart. The key to representing flow graph notation is in the
labeling of the transitions (specifically the use of action language) as shown
by the following examples.

2-38

Connective Junctions

Connective Junction with All Conditions Specified Example

A transition from the Front_desk state to a connective junction is labeled
by the check_in event. Transitions from the connective junction to the
destination states are labeled with conditions. If Front_desk is active when
check_in occurs, the transition from Front_desk to the connective junction
occurs first. The transition from the connective junction to a destination

2-39

2 Stateflow® Chart Notation

state depends on which of the room_type conditions is true. If none of the
conditions is true, no transition occurs and Front_desk remains active.

For more information about this chart, see “Phases of Chart Execution”
on page 3-13. For more information on the semantics of this notation, see
“If-Then-Else Decision Construct Example” on page B-36.

Connective Junction with One Unconditional Transition
Example

The chart uses temporal logic to determine when the input u equals 1.

If the input equals 1... A transition occurs from...

Before t = 2 Start to Fast

Between t = 2 and t = 5 Start to Good

After t = 5 Start to Slow

For more information about temporal logic, see “Using Temporal Logic in
State Actions and Transitions” on page 10-63. For more information on the
semantics of this notation, see “If-Then-Else Decision Construct Example”
on page B-36.

2-40

Connective Junctions

Connective Junction and For Loops Example
This example shows a combination of flow graph notation and state transition
notation. Self-loop transitions to connective junctions can represent for loop
constructs. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering of Outgoing Transitions” on page 3-60).

See “For-Loop Construct Example” on page B-39 for information on the
semantics of this notation.

Flow Graph Notation Example
This example shows the use of flow graph notation. The chart uses implicit
ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-60).

2-41

2 Stateflow® Chart Notation

See “Flow Graph Notation Example” on page B-40 for information on the
semantics of this notation.

Connective Junction from a Common Source to Multiple
Destinations Example
This example shows transition segments from a common source to multiple
conditional destinations using a connective junction. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-60).

2-42

Connective Junctions

See “Transitions from a Common Source to Multiple Destinations Example”
on page B-42 for information on the semantics of this notation.

Connective Junction Common Events Example
This example shows transition segments from multiple sources to a single
destination based on the same event using a connective junction.

See “Transitions from a Source to a Destination Based on a Common Event
Example” on page B-45 for information on the semantics of this notation.

2-43

2 Stateflow® Chart Notation

History Junctions

In this section...

“What Is a History Junction?” on page 2-44

“History Junctions and Inner Transitions” on page 2-45

What Is a History Junction?
A history junction represents historical decision points in the Stateflow chart.
The decision points are based on historical data relative to state activity.
Placing a history junction in a superstate indicates that historical state
activity information is used to determine the next state to become active. The
history junction applies only to the level of the hierarchy in which it appears.

Use of History Junctions Example
The following example uses a history junction:

2-44

History Junctions

Superstate Power_on has a history junction and contains two substates.
If state Power_off is active and event switch_on occurs, the system can
enter Power_on.Low or Power_on.High. The first time superstate Power_on
is entered, substate Power_on.Low is entered because it has a default
transition. At some point afterward, if state Power_on.High is active and
event switch_off occurs, superstate Power_on is exited and state Power_off
becomes active. Then event switch_on occurs. Because Power_on.High
was the last active substate, it becomes active again. After the first time
Power_on becomes active, the history junction determines whether to enter
Power_on.Low or Power_on.High.

See “Default Transition and a History Junction Example” on page B-20 for
more information on the semantics of this notation.

History Junctions and Inner Transitions
By specifying an inner transition to a history junction, you can specify that,
based on a specified event or condition, the active state is to be exited and
then immediately reentered.

See “Using an Inner Transition to a History Junction” on page 2-30 for an
example of this notation.

See “Inner Transition to a History Junction Example” on page B-31 for more
information on the semantics of this notation.

2-45

2 Stateflow® Chart Notation

Graphical Functions

In this section...

“What Is a Graphical Function?” on page 2-46

“Example of Using Graphical Functions” on page 2-46

“Advantages of Using Graphical Functions” on page 2-47

What Is a Graphical Function?
A graphical function is a function you define graphically with a flow graph
that includes Stateflow action language.

Example of Using Graphical Functions
This example shows graphical functions in a Stateflow chart with the state
entry actions that call them:

2-46

Graphical Functions

Advantages of Using Graphical Functions
Graphical functions are similar to textual functions such as C and MATLAB
functions in these ways:

• Graphical functions can accept arguments and return results.

• You can invoke graphical functions in transition and state actions.

Unlike C and MATLAB functions, however, graphical functions are native
Stateflow graphical objects. You use the Stateflow Editor to create them,
and they reside in your Stateflow chart. This property makes graphical
functions easier to create, access, and manage than textual custom code
functions, whose creation requires external tools, and whose definition resides
separately from the chart.

For more information, see “Using Graphical Functions to Extend Actions”
on page 7-30.

2-47

2 Stateflow® Chart Notation

Boxes

In this section...

“What Is a Box?” on page 2-48

“Example of Using a Box” on page 2-48

What Is a Box?
A box is a graphical object that organizes other objects in your chart, such as
functions and states.

Example of Using a Box
In this example, the box Heater groups together related states Off and On.

For rules of using boxes and other examples, see “Using Boxes to Extend
Charts” on page 7-50.

2-48

3

Stateflow Chart Semantics

• “What Do Semantics Mean for Stateflow Charts?” on page 3-2

• “How Chart Constructs Interact During Execution” on page 3-8

• “Modeling Guidelines for Charts with Events, States, and Transitions”
on page 3-33

• “How Events Drive Chart Execution” on page 3-36

• “Types of Chart Execution” on page 3-39

• “Process for Grouping and Executing Transitions” on page 3-51

• “Evaluation Order for Outgoing Transitions” on page 3-55

• “Process for Entering, Executing, and Exiting States” on page 3-70

• “Execution Order for Parallel States” on page 3-75

• “Early Return Logic for Event Broadcasts” on page 3-85

3 Stateflow® Chart Semantics

What Do Semantics Mean for Stateflow Charts?

In this section...

“What Are Chart Semantics?” on page 3-2

“Common Graphical and Nongraphical Constructs” on page 3-3

“References for Chart Semantics” on page 3-7

What Are Chart Semantics?
Chart semantics describe execution behavior according to the interaction of
graphical and nongraphical constructs.

Graphical Constructs
Graphical constructs consist of objects that appear graphically in a chart. You
use the object palette in the Stateflow Editor to build graphical constructs
(see “Using the Stateflow Editor” on page 4-27).

Graphical Constructs Types References

Flow graphs • Decision logic patterns

• Loop logic patterns

Chapter 5, “Modeling Logic
Patterns and Iterative Loops
Using Flow Graphs”

Functions • Graphical functions

• MATLAB functions

• Truth table functions

• Simulink functions

• “What Is a Graphical
Function?” on page 7-30

• “Use of MATLAB Functions in
Stateflow Charts” on page 23-2

• “What Is a Truth Table?” on
page 22-2

• “What Is a Simulink Function?”
on page 24-2

Junctions • Connective junctions

• History junctions

• “Connective Junctions” on page
2-37

• “History Junctions” on page
2-44

3-2

What Do Semantics Mean for Stateflow® Charts?

Graphical Constructs Types References

States • States with exclusive (OR)
decomposition

• States with parallel (AND)
decomposition

• Substates and superstates

• “Exclusive (OR) State
Decomposition” on page
2-10

• “Parallel (AND) State
Decomposition” on page
2-11

• “Creating Substates and
Superstates” on page 4-6

Transitions • Default transitions

• Object-to-object transitions

• Inner transitions

• Self-loop transitions

• “Default Transitions” on page
2-32

• “Transition Connections” on
page 2-23

Nongraphical Constructs
Nongraphical constructs appear textually in a chart and often refer to data
and events (see Chapter 8, “Defining Data” and Chapter 9, “Defining Events”).
You follow syntax rules of the Stateflow action language to build nongraphical
constructs (see Chapter 10, “Using Actions in Stateflow Charts”).

Examples of nongraphical constructs include:

• Conditions and condition actions

• Function calls

• State actions

• Temporal logic statements

Common Graphical and Nongraphical Constructs
The following chart shows commonly used graphical and nongraphical
constructs.

3-3

3 Stateflow® Chart Semantics

3-4

What Do Semantics Mean for Stateflow® Charts?

Chart Construct Graphical or
Nongraphical?

Description Reference

Condition Nongraphical Boolean expression
that specifies that
a transition path is
valid if the expression
is true; part of a
transition label

“Transition Label
Notation” on page
2-20 and “Conditions”
on page 10-10

Condition action Nongraphical Action that executes
as soon as the
condition evaluates
to true; part of a
transition label

“Transition Label
Notation” on page
2-20 and “Condition
Actions” on page 10-11

Connective junction Graphical Object that enables
representation of
different possible
transition paths in a
flow graph

“Connective
Junctions” on page
2-37

Default transition Graphical Object that specifies
which state to enter
when two or more
exclusive (OR) states
exist at the same level
of hierarchy

“Default Transitions”
on page 2-32

Flow graph Graphical Construct that models
logic patterns by using
connective junctions
and transitions

Chapter 5, “Modeling
Logic Patterns and
Iterative Loops Using
Flow Graphs”

History junction Graphical Object that
remembers the
previously active
state at the level of
hierarchy in which it
appears

“History Junctions” on
page 2-44

3-5

3 Stateflow® Chart Semantics

Chart Construct Graphical or
Nongraphical?

Description Reference

MATLAB function Graphical Method of performing
computations using a
subset of theMATLAB
language

Chapter 23, “Using
MATLAB Functions
in Stateflow Charts”

State actions Nongraphical Expressions that
specify actions to take
when a state is active,
such as initializing or
updating data; part of
a state label

“State Labels” on page
2-13 and “State Action
Types” on page 10-2

State with exclusive
(OR) decomposition

Graphical State where no more
than one substate can
be active at a time

“Exclusive (OR) State
Decomposition” on
page 2-10

State with parallel
(AND) decomposition

Graphical State where all
substates can be
active at the same
time

“Parallel (AND) State
Decomposition” on
page 2-11

Substate Graphical State that resides
inside another state

“Creating Substates
and Superstates” on
page 4-6

Superstate Graphical State that contains
one or more states

“Creating Substates
and Superstates” on
page 4-6

Transition guarded by
input event

Graphical Decision path that
occurs if the chart
receives a specific
event broadcast from
another block in the
model

“Transition Action
Types” on page 10-7

For details on how these graphical and nongraphical constructs interact
during chart execution, see “How Chart Constructs Interact During
Execution” on page 3-8.

3-6

What Do Semantics Mean for Stateflow® Charts?

References for Chart Semantics
For detailed information on types of chart semantics, see these references.

Topic Reference

How do events affect chart execution? “How Events Drive Chart Execution” on page
3-36

How does a chart switch between being active
and inactive?

“Types of Chart Execution” on page 3-39

In what order do flow graphs execute? “Process for Grouping and Executing
Transitions” on page 3-51

In what order do outgoing transitions from a
single source execute?

“Evaluation Order for Outgoing Transitions”
on page 3-55

What happens when you enter, execute, or exit
a state?

“Process for Entering, Executing, and Exiting
States” on page 3-70

How do parallel (AND) states work? “Execution Order for Parallel States” on page
3-75

How does early return logic affect chart
execution?

“Early Return Logic for Event Broadcasts” on
page 3-85

For detailed examples of chart semantics, see Appendix B, “Semantic
Examples”.

3-7

3 Stateflow® Chart Semantics

How Chart Constructs Interact During Execution

In this section...

“Overview of the Example Model” on page 3-8

“Model of the Check-In Process for a Hotel” on page 3-8

“How the Chart Interacts with Simulink Blocks” on page 3-12

“Phases of Chart Execution” on page 3-13

Overview of the Example Model
The example model shows how common graphical and nongraphical constructs
in a chart interact during execution. These constructs include:

• Conditions and condition actions

• Exclusive (OR) states

• Flow graphs

• Function calls

• History junctions

• Parallel (AND) states

• State actions

• Transitions guarded by input events

For details of the chart semantics, see “Phases of Chart Execution” on page
3-13.

Model of the Check-In Process for a Hotel
This example uses the hotel check-in process to explain Stateflow chart
semantics. To open the model, type sf_semantics_hotel_checkin at the
MATLAB command prompt.

3-8

How Chart Constructs Interact During Execution

The model consists of four Manual Switch blocks, one Mux block, one
Multiport Switch block, a Hotel chart, and a Display block.

3-9

3 Stateflow® Chart Semantics

The model uses
this block...

To... Because...

Manual Switch Enable toggling between two settings
during simulation without having to
pause or restart.

During simulation, you can
interactively trigger the chart by
sending one of these input events:

• Checking in to a hotel

• Calling room service

• Triggering a fire alarm

• Sending an all-clear signal after
a fire alarm

Mux Combine multiple input signals into
a vector.

A chart can support multiple input
events only if they connect to the
trigger port of a chart as a vector of
inputs.

Multiport Switch Enable selection among more than
two inputs.

This block provides a value for the
chart input data room_type, where
each room type corresponds to a
number (1, 2, or 3).

A Manual Switch block cannot
support more than two inputs, but a
Multiport Switch block can.

Display Show up-to-date numerical value for
input signal.

During simulation, any change to
the chart output data fee appears in
the display.

3-10

How Chart Constructs Interact During Execution

The Hotel chart contains graphical constructs, such as states and history
junctions, and nongraphical constructs, such as conditions and condition
actions.

For a mapping of constructs to their locations in the chart, see “Common
Graphical and Nongraphical Constructs” on page 3-3.

3-11

3 Stateflow® Chart Semantics

How the Chart Interacts with Simulink Blocks

Chart Initialization
When simulation starts, the chart wakes up and executes its default
transitions because the Execute (enter) Chart At Initialization option is
on (see “Execution of a Chart at Initialization” on page 3-49). Then the chart
goes to sleep.

Note If this option is off, the chart does not wake up until you toggle one of
the Manual Switch blocks. You can verify the setting for this option in the
Chart properties dialog box. Right-click inside the top level of the chart and
select Properties from the context menu.

Chart Interaction with Other Blocks
The chart wakes up again only when an edge-triggered input event occurs:
check_in, room_service, fire_alarm, or all_clear. When you toggle a
Manual Switch block for an input event during simulation, the chart detects a
rising or falling edge and wakes up. While the chart is awake:

• The Multiport Switch block provides a value for the chart input data
room_type.

• The Display block shows any change in value for the chart output data fee.

Chart Inactivity
After completing all possible phases of execution, the chart goes back to sleep.

3-12

How Chart Constructs Interact During Execution

Phases of Chart Execution
The following sections explain chart execution for each shaded region of the
Hotel chart.

3-13

3 Stateflow® Chart Semantics

Phase: Chart Initialization
This section describes what happens in the Front_desk state just after the
chart wakes up.

3-14

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 Your first stop is at the front desk of the
hotel.

At the chart level, the default transition
to Check_in occurs, making that state
active. Then, the default transition to
Front_desk occurs, making that state
active.

For reference, see “Steps for Entering a
State” on page 3-70.

2 You leave the front desk after checking
in to the hotel.

The check_in event guards the outgoing
transition from Front_desk. When the
chart receives an event broadcast for
check_in, the transition becomes valid.

For reference, see “How Charts Process
Events” on page 3-37.

3 Just before you leave the front desk, you
pick up your bags to move to your room.

Just before the transition occurs, the
exit action of Front_desk sets the
move_bags local data to 1. Then,
Front_desk becomes inactive.

For reference, see “Steps for Exiting an
Active State” on page 3-72.

Modeling Guidelines for Chart Initialization. The following guidelines
apply to chart initialization.

Modeling Guideline Why This Guideline Applies Reference

Use exclusive (OR)
decomposition when no
two states at a level of the
hierarchy can be active at the
same time.

This guideline ensures proper
chart execution. For example,
Check_in and Waiting_area
are exclusive (OR) states,
because you cannot be inside
and outside the hotel at the
same time.

• “State Decomposition” on
page 2-10

• “Specifying Substate
Decomposition” on page
4-9

Use a default transition to
mark the first state to become

This guideline prevents state
inconsistency errors during

• “Default Transitions” on
page 2-32

3-15

3 Stateflow® Chart Semantics

Modeling Guideline Why This Guideline Applies Reference

active among exclusive (OR)
states.

chart execution. • “Debugging State
Inconsistencies in a Chart”
on page 26-29

Use events, instead
of conditions, to guard
transitions that depend on
occurrences without inherent
numerical value.

Since you cannot easily
quantify the numerical value
of checking into a hotel, model
such an occurrence as an
event.

• “Using Input Events to
Activate a Stateflow Chart”
on page 9-11

Use an exit action to execute
a statement once, just before a
state becomes inactive.

Other types of state actions
execute differently and do not
apply:

• Entry actions execute once,
just after a state becomes
active.

• During actions execute at
every time step (except
the first time step after
a state becomes active).
Execution continues as long
as the chart remains in that
state and no valid outgoing
transitions exist.

• On event_name actions
execute only after receiving
an event broadcast.

• “State Action Types” on
page 10-2

3-16

How Chart Constructs Interact During Execution

Phase: Evaluation of Outgoing Transitions from a Single
Junction
This section describes what happens after exiting the Front_desk state: the
evaluation of a group of outgoing transitions from a single junction.

3-17

3 Stateflow® Chart Semantics

Stage Hotel Scenario Chart Behavior

1 You can move to one of three types of
rooms.

After the check_in event triggers a
transition out of Front_desk, three
transition paths are available based
on the type of room you select with
the Multiport Switch block. Transition
testing occurs based on the priority you
assign to each path.

For reference, see “Order of Execution
for a Set of Flow Graphs” on page 3-52.

2 If you choose an executive suite, the base
fee is 1500.

If the room_type input data equals 1, the
top transition is valid. If this condition
is true, the condition action executes by
setting the fee output data to 1500.

Note If the top transition is not valid,
control flow backtracks to the central
junction so that testing of the next
transition can occur. This type of
backtracking is intentional.

To learn about unintentional
backtracking and how to avoid it,
see “Backtracking Behavior in Flow
Graphs Example” on page B-46 and “Best
Practices for Creating Flow Graphs” on
page 5-30.

3 If you choose a family suite, the base fee
is 1000.

If room_type equals 2, the middle
transition is valid. If this condition is
true, the condition action executes by
setting fee to 1000.

4 If you choose a single room, the base fee
is 500.

If room_type equals 3, the bottom
transition is valid. If this condition is
true, the condition action executes by
setting fee to 500.

3-18

How Chart Constructs Interact During Execution

What happens if room_type has a value other than 1, 2, or 3?

Because the Multiport Switch block outputs only 1, 2, or 3, room_type cannot
have any other values. However, if room_type has a value other than 1, 2, or
3, the chart stays in the Front_desk state. This behavior applies because no
transition path out of that state is valid.

Modeling Guidelines for Evaluation of Outgoing Transitions. The
following guidelines apply to transition syntax.

Modeling Guideline Why This Guideline Applies Reference

Use conditions, instead of
events, to guard transitions
that depend on occurrences
with numerical value.

Because you can quantify a
type of hotel room numerically,
express the choice of room type
as a condition.

Chapter 5, “Modeling Logic
Patterns and Iterative Loops
Using Flow Graphs”

Use condition actions instead
of transition actions whenever
possible.

Condition actions execute as
soon as the condition evaluates
to true. Transition actions
do not execute until after the
transition path is complete,
to a terminating junction or a
state.

Unless an execution delay
is necessary, use condition
actions instead of transition
actions.

“Defining Action Types” on
page 10-2

Use explicit ordering to control
the testing order of a group of
outgoing transitions.

You can specify explicit
or implicit ordering of
transitions. By default, a
chart uses explicit ordering. If
you switch to implicit ordering,
the transition testing order
can change when graphical
objects move.

“Evaluation Order for
Outgoing Transitions” on
page 3-55

3-19

3 Stateflow® Chart Semantics

Phase: Execution of State Actions for a Superstate
This section describes what happens after you enter the Checked_in state,
regardless of which substate becomes active.

3-20

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 After reaching your desired room, you
finish moving your bags.

The entry action executes by setting the
move_bags local data to 0.

2 If you order room service, your hotel bill
increases by a constant amount.

If the chart receives an event broadcast
for room_service, these actions occur:

1 The counter for the service local data
increments by 1.

2 A function call to expenses occurs,
which returns the value of the hotel
bill stored by the fee output data.

For reference, see “How Charts Process
Events” on page 3-37.

Modeling Guidelines for Execution of State Actions. The following
guidelines apply to state actions.

Modeling Guideline Why This Guideline Applies Reference

Use an entry action to execute
a statement once, right after a
state becomes active.

Use an On event_name action
to execute a statement only
after receiving an event
broadcast.

Other types of state actions
execute differently and do not
apply:

• During actions execute at
every time step until there
is a valid transition out of
the state.

• Exit actions execute once,
just before a state becomes
inactive.

“State Action Types” on page
10-2

Use a superstate to enclose
multiple substates that share
the same state actions.

This guideline enables reuse
of state actions that apply
to multiple substates. You
write the state actions only
once, instead of writing them
separately in each substate.

“Creating Substates and
Superstates” on page 4-6

3-21

3 Stateflow® Chart Semantics

Phase: Function Call from a State Action
This part of the chart describes how you can perform function calls while
a state is active.

3-22

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 Based on your room type and the total
number of room service requests, you
can track your hotel bill.

expenses is a MATLAB function that
takes the total number of room service
requests as an input and returns the
current hotel bill as an output.

If you double-click the function box, you
see this script in the function editor:

function y = expenses(x)

if (room_type == 1)
y = 1500 + (x*50);

else
if (room_type == 2)

y = 1000 + (x*25);
else

y = 500 + (x*5);
end

end

Modeling Guidelines for Function Calls. The following guidelines apply
to function calls.

Modeling Guideline Why This Guideline Applies Reference

Use MATLAB functions
for performing numerical
computations in a chart.

MATLAB functions are
better at handling numerical
computations than graphical
functions, truth tables, or
Simulink functions.

Use descriptive names in
function signatures.

Descriptive function names
enhance readability of chart
objects.

Chapter 23, “Using MATLAB
Functions in Stateflow Charts”

3-23

3 Stateflow® Chart Semantics

Phase: Execution of State with Exclusive Substates
This part of the chart shows how a state with exclusive (OR) decomposition
executes.

3-24

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 When you reach the executive suite, you
enter the bedroom first.

Note The executive suite has separate
bedroom and dining areas. Therefore,
you can be in only one area of the suite
at any time.

When the condition room_type == 1 is
true, the condition action fee = 1500
executes. Completion of that transition
path triggers these state initialization
actions:

1 Checked_in becomes active and
executes its entry action.

2 Executive_suite becomes active.

3 The default transition to Bedroom
occurs, making that state active.

For reference, see “Steps for Entering a
State” on page 3-70.

2 When you order room service, you enter
the dining area to eat.

When the room_service event occurs,
the transition from Bedroom to
Dining_area occurs.

3 When you want the food removed from
the dining area, you order room service
again and then return to the bedroom.

When the room_service event occurs,
the transition from Dining_area to
Bedroom occurs.

4 If you leave the executive suite because
of a fire alarm, you return to your
previous room after the all-clear signal.

If a transition out of Executive_suite
occurs, the history junction records
the last active substate, Bedroom or
Dining_area. For details on how this
transition can occur, see “Phase: Events
Guard Transitions Between States” on
page 3-30.

Modeling Guidelines for Execution of Exclusive (OR) States. The
following guidelines apply to exclusive (OR) states.

3-25

3 Stateflow® Chart Semantics

Modeling Guideline Why This Guideline Applies Reference

Use exclusive (OR)
decomposition when no
two states at that level of the
hierarchy can be active at the
same time.

This guideline ensures proper
chart execution. For example,
Bedroom and Dining_area are
exclusive (OR) states, because
you cannot be in both places at
the same time.

• “State Decomposition” on
page 2-10

• “Specifying Substate
Decomposition” on page
4-9

If reentry to a state with
exclusive (OR) decomposition
depends on the previously
active substate, use a history
junction. This type of junction
records the active substate
when the chart exits the state.

If you do not record the
previously active substate, the
default transition occurs and
the wrong substate can become
active upon state reentry.

For example, if you were
eating when a fire alarm
sounded, you would return
to the bedroom instead of the
dining room.

• “History Junctions” on page
2-44

3-26

How Chart Constructs Interact During Execution

Phase: Execution of State with Parallel Substates
This part of the chart shows how a state with parallel (AND) decomposition
executes.

3-27

3 Stateflow® Chart Semantics

Stage Hotel Scenario Chart Behavior

1 When your family reaches the suite,
family members can be in both bedrooms
(for example, parents in the master
bedroom and children in the second
bedroom). A default room choice does not
apply.

When the condition room_type == 2 is
true, the condition action fee = 1000
executes. Completion of that transition
path triggers these state initialization
actions:

1 Checked_in becomes active and
executes its entry action.

2 Family_suite becomes active.

3 The parallel states wake up in
the order given by the number
in the upper right corner of each
state: Master_bedroom, then
Second_bedroom.

How do I specify the order?

To specify the order:

a Verify that the chart uses explicit
ordering.

In the Chart properties dialog
box, select the User specified
state/transition execution order
check box.

b Right-click in a parallel state
and select a number from the
Execution Order menu.

For reference, see “Steps for Entering a
State” on page 3-70.

2 You can occupy both rooms at the same
time.

Master_bedroom and Second_bedroom
remain active at the same time.

3-28

How Chart Constructs Interact During Execution

Modeling Guidelines for Execution of Parallel (AND) States. The
following guidelines apply to parallel (AND) states.

Modeling Guideline Why This Guideline Applies Reference

Use parallel (AND)
decomposition when all
states at that level of the
hierarchy can be active at the
same time.

This guideline ensures
proper chart execution. For
example, Master_bedroom and
Second_bedroom are parallel
states, because you can occupy
both rooms at the same time.

• “State Decomposition” on
page 2-10

• “Specifying Substate
Decomposition” on page
4-9

Use no history junctions in
states with parallel (AND)
decomposition.

This guideline prevents
parsing errors. Since all
parallel states at a level of
hierarchy are active at the
same time, history junctions
have no meaning.

• “History Junctions” on page
2-44

Use explicit ordering to control
the execution order of parallel
(AND) states.

You can specify explicit or
implicit ordering of parallel
states. By default, a chart
uses explicit ordering. If you
switch to implicit ordering, the
execution order can change
when parallel states move.

• “Execution Order for
Parallel States” on page
3-75

3-29

3 Stateflow® Chart Semantics

Phase: Events Guard Transitions Between States
This part of the chart describes how events can guard transitions between
exclusive (OR) states.

3-30

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 If a fire alarm sounds,
you leave the hotel and
move to a waiting area
outside.

When the chart receives an event broadcast for fire_alarm,
a transition occurs from a substate of Check_in to
Waiting_area.

How does this transition occur?

Suppose that Check_in, Checked_in, Executive_suite, and
Dining_area are active when the chart receives fire_alarm.

1 States become inactive in ascending order of hierarchy:

a Dining_area

b Executive_suite

c Checked_in

d Check_in

2 Waiting_area becomes active.

2 If an all-clear signal
occurs, you can leave
the waiting area and
return to your previous
location inside the
hotel.

When the chart receives an event broadcast for all_clear,
a transition from Waiting_area to the previously active
substate of Check_in occurs.

The history junction at each level of hierarchy in Check_in
enables the chart to remember which substate was previously
active before the transition to Waiting_area occurred.

How does this transition occur?

Suppose that Check_in, Checked_in, Executive_suite, and
Dining_area were active when the chart received fire_alarm.

1 Waiting_area becomes inactive.

2 States become active in descending order of hierarchy:

a Check_in

b Checked_in (The default transition does not apply.)

c Executive_suite

d Dining_area (The default transition does not apply.)

3-31

3 Stateflow® Chart Semantics

Modeling Guidelines for Guarding Transitions. The following guideline
discusses the use of events versus conditions.

Modeling Guideline Why This Guideline Applies Reference

Use events, instead
of conditions, to guard
transitions that depend on
occurrences without numerical
value.

Because you cannot easily
quantify the numerical
value of a fire alarm or an
all-clear signal, model such an
occurrence as an event.

“Using Input Events to
Activate a Stateflow Chart” on
page 9-11

3-32

Modeling Guidelines for Charts with Events, States, and Transitions

Modeling Guidelines for Charts with Events, States, and
Transitions

These guidelines promote efficient modeling of charts with events, states,
and transitions.

Use signals of the same data type for input events

When you use multiple input events to trigger a chart, verify that all input
signals use the same data type. Otherwise, simulation stops and an error
message appears. For more information, see “Data Types Allowed for Input
Events” on page 9-14.

Use a default transition to mark the first state to become active
among exclusive (OR) states

This guideline prevents state inconsistency errors during chart execution.

Use condition actions instead of transition actions whenever possible

Condition actions execute as soon as the condition evaluates to true.
Transition actions do not execute until after the transition path is complete,
to a terminating junction or a state.

Unless an execution delay is necessary, use condition actions instead of
transition actions.

Use explicit ordering to control the testing order of a group of
outgoing transitions

You can specify explicit or implicit ordering of transitions. By default, a chart
uses explicit ordering. If you switch to implicit ordering, the transition testing
order can change when graphical objects move.

Verify intended backtracking behavior in flow graphs

If your chart contains unintended backtracking behavior, a warning
message appears with instructions on how to avoid that problem. For more
information, see “Best Practices for Creating Flow Graphs” on page 5-30.

3-33

3 Stateflow® Chart Semantics

Use a superstate to enclose substates that share the same state
actions

When you have multiple exclusive (OR) states that perform the same state
actions, group these states in a superstate and define state actions at that
level.

This guideline enables reuse of state actions that apply to multiple substates.
You write the state actions only once, instead of writing them separately
in each substate.

Note You cannot use boxes for this purpose because boxes do not support
state actions.

Use MATLAB functions for performing numerical computations in
a chart

MATLAB functions are better at handling numerical computations than
graphical functions, truth tables, or Simulink functions.

Use descriptive names in function signatures

Descriptive function names enhance readability of chart objects.

Use history junctions to record state history

If reentry to a state with exclusive (OR) decomposition depends on the
previously active substate, use a history junction. This type of junction
records the active substate when the chart exits the state. If you do not record
the previously active substate, the default transition occurs and the wrong
substate can become active upon state reentry.

Do not use history junctions in states with parallel (AND)
decomposition

This guideline prevents parsing errors. Since all parallel states at a level of
hierarchy are active at the same time, history junctions have no meaning.

3-34

Modeling Guidelines for Charts with Events, States, and Transitions

Use explicit ordering to control the execution order of parallel (AND)
states

You can specify explicit or implicit ordering of parallel states. By default, a
chart uses explicit ordering. If you switch to implicit ordering, the execution
order can change when parallel states move.

3-35

3 Stateflow® Chart Semantics

How Events Drive Chart Execution

In this section...

“How Stateflow Charts Respond to Events” on page 3-36

“Sources for Stateflow Events” on page 3-37

“How Charts Process Events” on page 3-37

How Stateflow Charts Respond to Events
Stateflow charts execute only in response to an event in a cyclical manner.

Because a chart runs on a single thread, actions that take place based on an
event are atomic to that event. All activity caused by the event in the chart
finishes before execution returns to the activity that was taking place before
receiving the event. Once an event initiates an action, the action completes
unless interrupted by an early return.

3-36

How Events Drive Chart Execution

Sources for Stateflow Events
Simulink events awaken Stateflow charts. You can use events to control the
processing of your charts by broadcasting events in the action language, as
described in “Broadcasting Events in Actions” on page 10-59. For examples
using event broadcasting and directed event broadcasting, see:

• “Condition Actions to Broadcast Events to Parallel (AND) States Example”
on page B-16

• “Cyclic Behavior to Avoid with Condition Actions Example” on page B-17

• “Event Broadcast State Action Example” on page B-50

• “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page B-53

• “Event Broadcast Condition Action Example” on page B-56

• Directed Event Broadcasting

Events have hierarchy (a parent) and scope. The parent and scope together
define a range of access to events. The parent of an event usually determines
who can trigger on the event (has receive rights). See the Name and Parent
fields for an event in “Setting Properties for an Event” on page 9-7 for more
information.

How Charts Process Events
Stateflow charts process events from the top down through the chart
hierarchy:

1 Executes during and on event_name actions for the active state

2 Checks for valid transitions in substates

All events, except for the output edge trigger to a Simulink block (see the
following note), have the following execution in a chart:

1 If the receiver of the event is active, then it executes (see “Execution of an
Active Chart” on page 3-40 and “Steps for Executing an Active State” on
page 3-71). (The event receiver is the parent of the event unless a directed
event broadcast occurs using the send() function.)

3-37

3 Stateflow® Chart Semantics

2 If the receiver of the event is not active, nothing happens.

3 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

To learn about early return logic, see “Early Return Logic for Event
Broadcasts” on page 3-85.

Note Output edge-trigger event execution in a Simulink model is
equivalent to toggling the value of an output data value between 1 and 0. It
is not treated as a Stateflow event. See “Defining Edge-Triggered Output
Events” on page 19-19.

3-38

Types of Chart Execution

Types of Chart Execution

In this section...

“Lifecycle of a Stateflow Chart” on page 3-39

“Execution of an Inactive Chart” on page 3-39

“Execution of an Active Chart” on page 3-40

“Execution of a Chart with Super Step Semantics” on page 3-40

“Execution of a Chart at Initialization” on page 3-49

Lifecycle of a Stateflow Chart
Stateflow charts go through several stages of execution:

Stage Description

Inactive Chart has no active states

Active Chart has active states

Sleeping Chart has active states, but no
events to process

When a Simulink model first triggers a Stateflow chart, the chart is inactive
and has no active states. After the chart executes and completely processes
its initial trigger event from the Simulink model, it transfers control back to
the model and goes to sleep. At the next Simulink trigger event, the chart
changes from the sleeping to active stage.

See “How Events Drive Chart Execution” on page 3-36.

Execution of an Inactive Chart
When a chart is inactive and first triggered by an event from a Simulink
model, it first executes its set of default flow graphs (see “Order of Execution
for a Set of Flow Graphs” on page 3-52). If this action does not cause an entry
into a state and the chart has parallel decomposition, then each parallel state
becomes active (see “Steps for Entering a State” on page 3-70).

3-39

3 Stateflow® Chart Semantics

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Execution of an Active Chart
After a chart has been triggered the first time by the Simulink model, it is
an active chart. When the chart receives another event from the model, it
executes again as an active chart. If the chart has no states, each execution
is equivalent to initializing a chart. Otherwise, the active children execute.
Parallel states execute in the same order that they become active.

Execution of a Chart with Super Step Semantics

• “What Is Super Step Semantics?” on page 3-40

• “Enabling Super Step Semantics” on page 3-41

• “Super Step Example” on page 3-43

• “How Super Step Semantics Works with Multiple Input Events” on page
3-46

• “Detection of Infinite Loops in Transition Cycles” on page 3-48

What Is Super Step Semantics?
By default, Stateflow charts execute once for each active input event. If
no input events exist, the charts execute once every time step. If you are
modeling a system that must react quickly to inputs, you can enable super
step semantics, a Stateflow chart property (see “Enabling Super Step
Semantics” on page 3-41).

When you enable super step semantics, a Stateflow chart executes multiple
times for every active input event or for every time step when the chart
has no input events. The chart takes valid transitions until either of these
conditions occurs:

• No more valid transitions exist, that is, the chart is in a stable active
state configuration.

• The number of transitions taken exceeds a user-specified maximum
number of iterations.

3-40

Types of Chart Execution

In a super step, your chart responds faster to inputs but performs more
computations in each time step. Therefore, when generating code for an
embedded target, make sure that the chart can finish the computation in a
single time step. To achieve this behavior, fine-tune super step parameters
by setting an upper limit on the number of transitions that the chart takes
per time step. For simulation targets, specify whether the chart goes to the
next time step or generates an error if it reaches the maximum number of
transitions prematurely. However, in generated code for embedded targets,
the chart always goes to the next time step after taking the maximum number
of transitions.

Enabling Super Step Semantics
To enable super step semantics:

1 Right-click inside the top level of a chart and select Properties from the
context menu.

2 In the Chart properties dialog box, select the Enable Super Step
Semantics check box.

Two additional fields appear below that check box.

3-41

3 Stateflow® Chart Semantics

3-42

Types of Chart Execution

3 Enter a value in the fieldMaximum Iterations in each Super Step.

This value is the maximum number of transitions a chart can take in one
super step. Try to choose a number that allows the chart to reach a stable
state within the time step, based on the mode logic of your chart.

4 Select an action from the drop-down menu in the field Behavior after
too many iterations.

Your selection determines how the chart behaves during simulation if
it exceeds the maximum number of iterations in the super step before
reaching a stable state.

Behavior Description

Proceed The chart goes back to sleep with the last active
state configuration, that is, after updating local
data at the last valid transition in the super step.

Throw Error Simulation stops and the chart generates an error,
indicating that too many iterations occurred while
trying to reach a stable state.

Note Selecting Throw Error can help detect
infinite loops in transition cycles (see “Detection of
Infinite Loops in Transition Cycles” on page 3-48.

Note This option is relevant only for simulation targets. For embedded
targets, code generation goes to the next time step rather than generating
an error.

Super Step Example
The following model shows how super step semantics differs from Classic
Stateflow chart semantics:

3-43

3 Stateflow® Chart Semantics

In this model, a Constant block outputs a constant value of 20 to input u
in a Stateflow chart. Because the value of u is always 20, each transition
in the chart is valid:

In Classic Stateflow semantics, the chart takes only one transition in each
simulation step, incrementing y each time.

3-44

Types of Chart Execution

When you enable super step semantics, the chart takes all valid transitions
in each time step, stopping at state C with y = 3.

3-45

3 Stateflow® Chart Semantics

How Super Step Semantics Works with Multiple Input Events
When you enable super step semantics for a chart with multiple active input
events, the chart takes all valid transitions for the first active event before it
begins processing the next active event. For example, consider the following
model:

3-46

Types of Chart Execution

In this model, the Sum block produces a 2-by-1 vector signal that goes from
[0,0] to [1,1] at time t = 1. As a result, when the model wakes up the chart,
events E1 and E2 are both active:

If you enable super step semantics, the chart takes all valid transitions for
event E1. The chart takes transitions from state A to B and then from state
B to C in a single super step. The scope shows that y = 3 at the end of the
super step:

3-47

3 Stateflow® Chart Semantics

In a super step, this chart never transitions to state D because there is no
path from state C to state D.

Detection of Infinite Loops in Transition Cycles
If your chart contains transition cycles, taking multiple transitions in a single
time step can cause infinite loops. Consider the following example:

3-48

Types of Chart Execution

In this example, the transitions between states A and B cycle and produce an
infinite loop because the value of x remains constant at 1. One way to detect
infinite loops is to configure your chart to generate an error if it reaches a
maximum number of iterations in a super step. See “Enabling Super Step
Semantics” on page 3-41.

Execution of a Chart at Initialization

By default, the first time a chart wakes up, it executes the default transition
paths. At this time, the chart can access inputs, write to outputs, and
broadcast events. If you want your chart to begin executing from a known
configuration, you can enable the option to execute at initialization. When
you turn on this option, the state configuration of a chart initializes at time
0 instead of the first occurrence of an input event. The default transition
paths of the chart execute during the model initialization phase at time 0,
corresponding to the mdlInitializeConditions() phase for S-functions.

You select the Execute (enter) Chart At Initialization check box in the
Chart properties dialog box, as described in “Setting Properties for a Single
Chart” on page 19-4.

3-49

3 Stateflow® Chart Semantics

Note If an output of this chart connects to a SimEvents® block, do not select
this check box. To learn more about using Stateflow charts and SimEvents
blocks together in a model, see the SimEvents documentation.

Due to the transient nature of the initialization phase, do not perform certain
actions in the default transition paths of the chart — and associated state
entry actions — which execute at initialization. Follow these guidelines:

• Do not access chart input data, because blocks connected to chart input
ports might not have initialized their outputs yet.

• Do not call exported graphical functions from other charts, because those
charts might not have initialized yet.

• Do not broadcast function-call output events, because the triggered
subsystems might not have initialized yet.

You can control the level of diagnostic action for invalid access to chart input
data in the Diagnostics > Stateflow pane of the Configuration Parameters
dialog box. For more information, see the documentation for the “Invalid
input data access in chart initialization” diagnostic.

Execute at initialization is ignored in Stateflow charts that do not contain
states.

3-50

Process for Grouping and Executing Transitions

Process for Grouping and Executing Transitions

In this section...

“Transition Flow Graph Types” on page 3-51

“Order of Execution for a Set of Flow Graphs” on page 3-52

Transition Flow Graph Types
Before executing transitions for an active state or chart, Stateflow software
groups transitions by the following types:

• Default flow graphs are all default transition segments that start with
the same parent.

• Inner flow graphs are all transition segments that originate on a state
and reside entirely within that state.

• Outer flow graphs are all transition segments that originate on the
respective state but reside at least partially outside that state.

Each set of flow graphs includes other transition segments connected to a
qualifying transition segment through junctions and transitions. Consider
the following example:

3-51

3 Stateflow® Chart Semantics

In this example, state A has both an inner and a default transition that
connect to a junction with outgoing transitions to states A.A1 and A.A2. If
state A is active, its set of inner flow graphs includes:

• The inner transition

• The outgoing transitions from the junction to state A.A1 and A.A2

In addition, the set of default flow graphs for state A includes:

• The default transition to the junction

• The two outgoing transitions from the junction to state A.A1 and A.A2

In this case, the two outgoing transition segments from the junction are
members of more than one flow graph type.

Order of Execution for a Set of Flow Graphs
Each flow graph group executes in the order of group priority until a valid
transition appears. The default transition group executes first, followed by
the outer transitions group and then the inner transitions group. Each flow
graph group executes as follows:

3-52

Process for Grouping and Executing Transitions

1 Order the group’s transition segments for the active state.

An active state can have several possible outgoing transitions. The chart
orders these transitions before checking them for validity. See “Evaluation
Order for Outgoing Transitions” on page 3-55.

2 Select the next transition segment in the set of ordered transitions.

3 Test the transition segment for validity.

4 If the segment is invalid, go to step 2.

5 If the destination of the transition segment is a state, do the following:

a Testing of transition segments stops and a transition path forms by
backing up and including the transition segment from each preceding
junction back to the starting transition.

b The states that are the immediate children of the parent of the transition
path exit (see “Steps for Exiting an Active State” on page 3-72).

c The transition action from the final transition segment of the full
transition path executes.

d The destination state becomes active (see “Steps for Entering a State” on
page 3-70).

6 If the destination is a junction with no outgoing transition segments, do
the following:

a Testing stops without any state exits or entries.

7 If the destination is a junction with outgoing transition segments, repeat
step 1 for the set of outgoing segments.

8 After testing all outgoing transition segments at a junction, take the
following actions:

a Backtrack the incoming transition segment that brought you to the
junction.

b Continue at step 2, starting with the next transition segment after the
backup segment.

3-53

3 Stateflow® Chart Semantics

The set of flow graphs completes execution when all starting transitions
have been tested.

3-54

Evaluation Order for Outgoing Transitions

Evaluation Order for Outgoing Transitions

In this section...

“What Does Ordering Mean for Outgoing Transitions?” on page 3-55

“Detection of Transition Shadowing” on page 3-56

“Explicit Ordering of Outgoing Transitions” on page 3-56

“Implicit Ordering of Outgoing Transitions” on page 3-60

“What Happens When You Switch Between Explicit and Implicit Ordering”
on page 3-65

“Transition Testing Order in Multilevel State Hierarchy” on page 3-66

What Does Ordering Mean for Outgoing Transitions?
When multiple transitions originate from a single source (such as a state or
junction), a Stateflow chart must determine in which order to evaluate those
transitions. Order of evaluation depends on:

• Explicit ordering

Specify explicitly the evaluation order of outgoing transitions on an
individual basis (see “Explicit Ordering of Outgoing Transitions” on page
3-56).

• Implicit ordering

Override explicit ordering by letting a Stateflow chart use internal rules
to order transitions (see “Implicit Ordering of Outgoing Transitions” on
page 3-60).

Note You can order transitions only within their type (inner, outer, or
default). For more information, see “Transition Flow Graph Types” on page
3-51.

Outgoing transitions are assigned priority numbers based on order of
evaluation. The lower the number, the higher the priority. The priority
number appears on each outgoing transition.

3-55

3 Stateflow® Chart Semantics

Because evaluation order is a chart property, all outgoing transitions in
the chart inherit the property setting. You cannot mix explicit and implicit
ordering in the same Stateflow chart. However, you can mix charts with
different ordering in the same Simulink model.

Detection of Transition Shadowing
Transition shadowing occurs when a chart contains multiple unconditional
transitions that originate from the same state or the same junction. To avoid
transition shadowing, ensure that no more than one unconditional transition
exists for each group of outgoing transitions from a state or junction.

You can control the behavior of the Stateflow diagnostic that detects transition
shadowing. On the Diagnostics > Stateflow pane of the Configuration
Parameters dialog box, set Transition shadowing to none, warning, or
error. For information about other diagnostics, see “Diagnostics Pane:
Stateflow” in the Simulink Graphical User Interface documentation.

Explicit Ordering of Outgoing Transitions
By default, a Stateflow chart orders outgoing transitions explicitly based on
evaluation priorities you set.

How Explicit Ordering Works
When you open a new Stateflow chart, all outgoing transitions from a source
are automatically numbered in the order you create them, starting with the
next available number for the source.

You can change the order of outgoing transitions by explicitly renumbering
them. When you change a transition number, the Stateflow chart
automatically renumbers the other outgoing transitions for the source
by preserving their relative order. This behavior is consistent with the
renumbering rules for Simulink ports.

For example, if you have a source with five outgoing transitions, changing
transition 4 to 2 results in the automatic renumbering shown.

3-56

Evaluation Order for Outgoing Transitions

Automatic Renumbering of Transitions During Explicit Reordering

Using Explicit Ordering for Transitions
To use explicit ordering for transitions, perform these tasks:

1 “Enabling Explicit Ordering at the Chart Level” on page 3-57

2 “Setting Evaluation Order for Transitions Individually” on page 3-59

Enabling Explicit Ordering at the Chart Level. To enable explicit ordering
for transitions:

1 Right-click inside the top level of a chart and select Properties from the
context menu.

The Chart properties dialog box appears.

2 Select the User specified state/transition execution order check box.

3-57

3 Stateflow® Chart Semantics

3-58

Evaluation Order for Outgoing Transitions

3 Click OK.

Setting Evaluation Order for Transitions Individually.

1 Right-click a transition and select Execution Order.

Note If you select Execution Order while in implicit ordering mode, the
only option available is Enable user-specified execution order for this
chart. This option opens the Chart properties dialog box where you can
switch to explicit ordering mode, as described in “Using Explicit Ordering
for Transitions” on page 3-57.

A context menu of available transition numbers appears, with a check
mark next to the current number for this transition.

2 Select the new transition number.

The chart automatically renumbers the other transitions for the source by
preserving the relative transition order.

3 Repeat this procedure to renumber other transitions as needed.

Another way to access the transition order number is through the properties
dialog box.

1 Right-click a transition and select Properties.

The properties dialog box for the transition appears.

2 Click in the Execution order box.

A drop-down list of valid transition numbers appears.

3 Select the new transition number and click Apply.

3-59

3 Stateflow® Chart Semantics

Note If explicit ordering mode is enabled, the chart assigns the new
number to the current transition and automatically renumbers the other
transitions. If the chart is in implicit ordering mode, an error dialog box
appears and the old number is retained.

Implicit Ordering of Outgoing Transitions

How Implicit Ordering Works
In implicit ordering mode, a Stateflow chart evaluates a group of outgoing
transitions from a single source based on these factors (in descending order
of priority):

1 Hierarchy (see “Ordering by Hierarchy” on page 3-60)

2 Label (see “Ordering by Label” on page 3-61)

3 Angular surface position of transition source (see “Ordering by Angular
Position of Source” on page 3-62)

Note Implicit ordering creates a dependency between design layout and
evaluation priority. When you rearrange transitions in your chart, you can
accidentally change order of evaluation and affect simulation results. For
more control over your designs, use the default explicit ordering mode to set
evaluation priorities.

Ordering by Hierarchy
A chart evaluates a group of outgoing transitions in an order based on the
hierarchical level of the parent of each transition. The parent of a transition
is the lowest level or innermost object in the Stateflow hierarchy that contains
all parts of the transition, including any source state or junction and the
endpoint object. For a group of outgoing transitions from a single source, the
transition whose parent is at a higher hierarchical level than the parents of
all other outgoing transitions is first in testing order, and so on.

3-60

Evaluation Order for Outgoing Transitions

Example of Ordering by Hierarchy.

• The parent of the transition from state A1 to state B is the chart.

• The parent of the transition from state A1 to state A2 is the state A.

• An event occurs while state A1 is active.

Because the chart is at a higher level in the hierarchy than state A, the
transition from state A1 to state B takes precedence over the transition from
state A1 to state A2.

Ordering by Label
A chart evaluates a group of outgoing transitions with equal hierarchical
priority based on the labels, in the following order of precedence:

3-61

3 Stateflow® Chart Semantics

1 Labels with events and conditions

2 Labels with events

3 Labels with conditions

4 No label

Ordering by Angular Position of Source
A chart evaluates a group of outgoing transitions with equal hierarchical and
label priority based on angular position on the surface of the source object.
The transition with the smallest clock position has the highest priority. For
example, a transition with a 2 o’clock source position has a higher priority
than a transition with a 4 o’clock source position. A transition with a 12
o’clock source position has the lowest priority.

Note These evaluations proceed in a clockwise direction around the source
object.

3-62

Evaluation Order for Outgoing Transitions

Example of Angular Ordering for a Source State.

• For each outgoing transition from state A, the parent is the chart and the
label contains a condition. Therefore, the outgoing transitions have equal
hierarchical and label priority.

• The conditions [C_one == 1] and [C_two == 2] are false, and the condition
[C_three == 3] is true.

The chart evaluates the outgoing transitions from state A in this order.

Phase Chart evaluates
transition to...

Condition is... Transition occurs?

1 State B False No

2 State C False No

3 State D True Yes

3-63

3 Stateflow® Chart Semantics

Example of Angular Ordering for a Source Junction.

• For each outgoing transition from the junction, the parent is the chart and
the label contains a condition. Therefore, the outgoing transitions have
equal hierarchical and label priority.

• The conditions [C_one == 1] and [C_two == 2] are false, and the conditions
[C_three == 3] and [C_four == 4] are true.

• The junction source point for the transition to state E is exactly 12 o’clock.

3-64

Evaluation Order for Outgoing Transitions

The chart evaluates the outgoing transitions from the junction in this order.

Phase Chart evaluates
transition to...

Condition is... Transition occurs?

1 State B False No

2 State C False No

3 State D True Yes

Since the transition to state D occurs, the chart does not evaluate the
transition to state E.

Using Implicit Ordering for Transitions
To use implicit ordering for transitions, follow these steps:

1 Right-click inside the top level of the chart and select Properties from
the context menu.

2 In the Chart properties dialog box, clear the User specified
state/transition execution order check box.

3 Click OK.

What Happens When You Switch Between Explicit
and Implicit Ordering
If you switch to implicit ordering mode after explicitly ordering transitions,
the transition order resets to follow the implicit rules. Similarly, if you switch
back to explicit ordering mode, without changing the chart, you can restore
the previous explicit transition order. All existing transitions in a chart retain
their current order numbers until you explicitly change them.

Whenever you switch from one transition ordering mode to another, the
Simulation Diagnostics Viewer displays warnings about the changes in
transition evaluation order.

3-65

3 Stateflow® Chart Semantics

Note If you change back to explicit ordering after modifying the chart, you
might not be able to restore the previous explicit transition order. Review
warnings in the diagnostic viewer and change the transition order, as needed.

Transition Testing Order in Multilevel State Hierarchy

How Multilevel Transition Testing Order Works
By default, charts use explicit ordering for transitions. In this mode, you have
explicit control over the testing priority, as described in “Explicit Ordering of
Outgoing Transitions” on page 3-56.

If you use implicit ordering for transitions, the following testing order applies.
For each group of transitions that originate from the same state, tiebreaking
criteria apply in this order: hierarchy, label, and angular position.

Testing
Order

Chart Action Order by Hierarchy Order by Label Order by
Angular Position

1 Tests
transitions
that originate
from the
highest-level
active state
(superstate).

1 Outer transitions

2 Inner transitions

2 Tests
transitions
that originate
from the next
lower-level
active state.

1 Outer transitions that
cross the border of the
highest-level active
state (superstate)

2 Outer transitions that
stay within the parent
of the state

3 Inner transitions

1 Events and
conditions

2 Events

3 Conditions

4 No label

The transition with
the smallest clock
position has the
highest priority.

A transition with
a 12 o’clock source
position has the
lowest priority.

3 Repeats step 2 until transition testing is complete.

3-66

Evaluation Order for Outgoing Transitions

The following chart shows the behavior of multilevel transition testing.
Assume that the Super1.Sub1.Subsub1 state is active.

Because the chart uses implicit ordering, the following transition testing
order applies:

This
priority...

Applies to the
label...

For this transition...

1 [a < 0] Super1 to Super2.B

2 [i > 0] Super1 to Super1.Sub1

3 [b > 0] Super1.Sub1 to Super2.A

4 [i < 0] Super1.Sub1 to Super1

5 [c > 0] Super1.Sub1.Subsub1 to Super2.A

6 [d > 5] Super1.Sub1.Subsub1 to Super1.Sub2

7 [c < 0] Super1.Sub1.Subsub1 to Super1.Sub1.Subsub2

3-67

3 Stateflow® Chart Semantics

Example Model with Multilevel Transition Testing
Suppose that you open the sf_debouncer model and reach the following point
in the simulation.

Because the chart uses implicit ordering, the following transition testing
order applies:

This priority... Applies to the label... For this transition...

1 after(0.3, sec) Debounce to Off.Fault

2 after(0.1, sec) Debounce.On to On

3 [sw < 0] Debounce.On to Debounce.Off

3-68

Evaluation Order for Outgoing Transitions

Now suppose that the transition from Debounce.On to Debounce.Off occurs.

Because the chart uses implicit ordering, the following transition testing
order applies:

This priority... Applies to the label... For this transition...

1 after(0.3, sec) Debounce to Off.Fault

2 after(0.1, sec) Debounce.Off to Off

3 [sw > 0] Debounce.Off to Debounce.On

For more information on how this model works, see “Key Behaviors of
Debouncer Chart” on page 21-4.

3-69

3 Stateflow® Chart Semantics

Process for Entering, Executing, and Exiting States

In this section...

“Steps for Entering a State” on page 3-70

“Steps for Executing an Active State” on page 3-71

“Steps for Exiting an Active State” on page 3-72

“State Execution Example” on page 3-72

Steps for Entering a State
A state becomes active in one of these ways:

• An incoming transition crosses state boundaries.

• An incoming transition ends at the state boundary.

• It is the parallel state child of an active state.

A state performs its entry action (if specified) when it becomes active. The
state becomes active before its entry action executes and completes.

The execution steps for entering a state are as follows:

1 If the parent of the state is not active, perform steps 1 through 4 for the
parent first.

2 If the state is a parallel state, check if a sibling parallel state previous in
entry order is active. If so, start at step 1 for this parallel state.

Parallel (AND) states are ordered for entry based on whether you use
explicit ordering (default) or implicit ordering. For details, see “Explicit
Ordering of Parallel States” on page 3-76 and “Implicit Ordering of Parallel
States” on page 3-77.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

3-70

Process for Entering, Executing, and Exiting States

a If the state contains a history junction and there is an active child of this
state at some point after the most recent chart initialization, perform
the entry actions for that child. Otherwise, execute the default flow
paths for the state.

b If this state has children that are parallel states (parallel decomposition),
perform entry steps 1 through 5 for each state according to its entry
order.

c If this state has only one child substate, the substate becomes active
when the parent becomes active, regardless of whether a default
transition is present. Entering the parent state automatically makes the
substate active. The presence of any inner transition has no effect on
determining the active substate.

6 If the state is a parallel state, perform all entry steps for the sibling state
next in entry order.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

8 The chart goes to sleep.

Steps for Executing an Active State
When states become active, they perform the following execution steps:

1 Execute the set of outer flow graphs (see “Order of Execution for a Set of
Flow Graphs” on page 3-52).

If this action causes a state transition, execution stops.

Note This step never occurs for parallel states.

2 Perform during actions and valid on event name actions.

Note Stateflow charts process these actions based on their order of
appearance in state labels.

3-71

3 Stateflow® Chart Semantics

3 Execute the set of inner flow graphs.

If this action does not cause a state transition, the active children execute,
starting at step 1. Parallel states execute in the same order that they
become active.

Steps for Exiting an Active State
A state becomes inactive in one of these ways:

• An outgoing transition originates at the state boundary.

• An outgoing transition crosses the state boundary.

• It is a parallel state child of an activated state.

A state performs its exit actions before becoming inactive.

The execution steps for exiting a state are as follows:

1 Sibling parallel states exit starting with the last-entered and progress
in reverse order to the first-entered. See step 2 of “Steps for Entering a
State” on page 3-70.

2 If a state has active children, performs the exit actions of the child states in
the reverse order from when they became active.

3 Perform any exit actions.

4 Mark the state as inactive.

State Execution Example
The following example shows how active and inactive states respond to events.

3-72

Process for Entering, Executing, and Exiting States

Inactive Chart Event Reaction
Inactive charts respond to events as follows:

1 An event occurs and the chart wakes up.

2 The chart checks to see if there is a valid transition as a result of the event.

A valid default transition to state A exists.

3 State A becomes active.

4 State A entry actions (entA()) execute and complete.

5 The chart goes back to sleep.

Sleeping Chart Event Reaction
Sleeping charts respond to events as follows:

3-73

3 Stateflow® Chart Semantics

1 Event E_one occurs and the chart wakes up.

State A is active from the preceding steps 1 through 5.

2 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition from state A to state B exists.

3 State A exit actions (exitA()) execute and complete.

4 State A becomes inactive.

5 State B becomes active.

6 State B entry actions (entB()) execute and complete.

The chart goes back to sleep.

3-74

Execution Order for Parallel States

Execution Order for Parallel States

In this section...

“What Does Ordering Mean for Parallel States?” on page 3-75

“Explicit Ordering of Parallel States” on page 3-76

“Implicit Ordering of Parallel States” on page 3-77

“How a Chart Maintains Order of Parallel States” on page 3-79

“How a Chart Assigns Execution Priorities to Restored States” on page 3-81

“What Happens When You Switch Between Explicit and Implicit Ordering”
on page 3-83

“How a Chart Orders Parallel States in Boxes and Subcharts” on page 3-83

What Does Ordering Mean for Parallel States?
Although multiple parallel (AND) states in the same chart execute
concurrently, the Stateflow chart must determine when to activate each
one during simulation. This ordering determines when each parallel state
performs the actions that take it through all stages of execution, as described
in “Process for Entering, Executing, and Exiting States” on page 3-70.

Unlike exclusive (OR) states, parallel states do not typically use transitions.
Instead, order of execution depends on:

• Explicit ordering

Specify explicitly the execution order of parallel states on a state-by-state
basis (see “Explicit Ordering of Parallel States” on page 3-76).

• Implicit ordering

Override explicit ordering by letting a Stateflow chart use internal rules
to order parallel states (see “Implicit Ordering of Parallel States” on page
3-77).

Parallel states are assigned priority numbers based on order of execution. The
lower the number, the higher the priority. The priority number of each state
appears in the upper right corner.

3-75

3 Stateflow® Chart Semantics

Because execution order is a chart property, all parallel states in the chart
inherit the property setting. You cannot mix explicit and implicit ordering
in the same Stateflow chart. However, you can mix charts with different
ordering modes in the same Simulink model.

Explicit Ordering of Parallel States
By default, a Stateflow chart orders parallel states explicitly based on
execution priorities you set.

How Explicit Ordering Works
When you open a new Stateflow chart— or one that does not yet contain any
parallel states— the chart automatically assigns priority numbers to parallel
states in the order you create them. Numbering starts with the next available
number within the parent container.

When you enable explicit ordering in a chart that contains implicitly ordered
parallel states, the implicit priorities are preserved for the existing parallel
states. When you add new parallel states, execution order is assigned in the
same way as for new Stateflow charts — in order of creation.

You can reset execution order assignments at any time on a state-by-state
basis, as described in “Setting Execution Order for Parallel States
Individually” on page 3-77. When you change execution order for a parallel
state, the Stateflow chart automatically renumbers the other parallel states
to preserve their relative execution order. For details, see “How a Chart
Maintains Order of Parallel States” on page 3-79.

Using Explicit Ordering for Parallel States
To use explicit ordering for parallel states, perform these tasks:

1 “Enabling Explicit Ordering at the Chart Level” on page 3-76

2 “Setting Execution Order for Parallel States Individually” on page 3-77

Enabling Explicit Ordering at the Chart Level. To enable explicit ordering
for parallel states, follow these steps:

3-76

Execution Order for Parallel States

1 Right-click inside the top level of the chart and select Properties from
the context menu.

The Chart properties dialog box appears.

2 Select the User specified state/transition execution order check box.

3 Click OK.

If your chart already contains parallel states that have been ordered
implicitly, the existing priorities are preserved until you explicitly change
them. When you add new parallel states in explicit mode, your chart
automatically assigns priorities based on order of creation (see “How
Explicit Ordering Works” on page 3-76). However you can now explicitly
change execution order on a state-by-state basis, as described in “Setting
Execution Order for Parallel States Individually” on page 3-77.

Setting Execution Order for Parallel States Individually. In explicit
ordering mode, you can change the execution order of individual parallel
states. Right-click the parallel state of interest and select a new priority
from the Execution Order menu.

Implicit Ordering of Parallel States

Rules of Implicit Ordering for Parallel States
In implicit ordering mode, a Stateflow chart orders parallel states implicitly
based on location. Priority goes from top to bottom and then left to right,
based on these rules:

• The higher the vertical position of a parallel state in the chart, the higher
the execution priority for that state.

• Among parallel states with the same vertical position, the leftmost state
receives highest priority.

The following example shows how these rules apply to top-level parallel states
and parallel substates.

3-77

3 Stateflow® Chart Semantics

Note Implicit ordering creates a dependency between design layout and
execution priority. When you rearrange parallel states in your chart, you can
accidentally change order of execution and affect simulation results. For
more control over your designs, use the default explicit ordering mode to
set execution priorities.

Using Implicit Ordering for Parallel States
To use implicit ordering for parallel states, follow these steps:

1 Right-click inside the top level of the chart and select Properties from
the context menu.

2 In the Chart properties dialog box, clear the User specified
state/transition execution order check box.

3-78

Execution Order for Parallel States

3 Click OK.

How a Chart Maintains Order of Parallel States
Whether you use explicit or implicit ordering, a chart tries to reconcile
execution priorities when you remove, renumber, or add parallel states. In
these cases, a chart reprioritizes the parallel states to:

• Fill in gaps in the sequence so that ordering is contiguous

• Ensure that no two states have the same priority

• Preserve the intended relative priority of execution

How a Chart Preserves Relative Priorities in Explicit Mode
For explicit ordering, a chart preserves the user-specified priorities. Consider
this example of explicit ordering:

3-79

3 Stateflow® Chart Semantics

Because of explicit ordering, the priority of each state and substate matches
the order of creation in the chart. The chart reprioritizes the parallel states
and substates when you perform these actions:

1 Change the priority of top-level state b to 3.

2 Add a top-level state g.

3 Remove substate e.

The chart preserves the priority set explicitly for top-level state b, but
renumbers all other parallel states to preserve their prior relative order.

How a Chart Preserves Relative Priorities in Implicit Mode
For implicit ordering, a chart preserves the intended relative priority based
on geometry. Consider this example of implicit ordering:

3-80

Execution Order for Parallel States

If you remove top-level state b and substate e, the chart automatically
reprioritizes the remaining parallel states and substates to preserve implicit
geometric order:

How a Chart Assigns Execution Priorities to Restored
States
There are situations in which you need to restore a parallel state after you
remove it from a Stateflow chart. In implicit ordering mode, a chart reassigns
the execution priority based on where you restore the state. If you return the
state to its original location in the chart, you restore its original priority.

However, in explicit ordering mode, a chart cannot always reinstate the
original execution priority to a restored state. It depends on how you restore
the state.

3-81

3 Stateflow® Chart Semantics

If you remove a state
by...

And restore the state
by...

What is the priority?

Deleting, cutting,
dragging outside
the boundaries of
the parent state,
or dragging so its
boundaries overlap the
parent state

Using the undo
command

The original priority is
restored.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap
the parent state and
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
lost. The Stateflow
chart treats the
restored state as the
last created and assigns
it the lowest execution
priority.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap the
parent state without
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
restored.

Dragging so its
boundaries overlap
one or more sibling
states

Dragging it to a location
with no overlapping
boundaries inside the
same parent state

The original priority is
restored.

Cutting Pasting The original priority is
lost. The Stateflow
chart treats the
restored state as the
last created and assigns
it the lowest execution
priority.

3-82

Execution Order for Parallel States

What Happens When You Switch Between Explicit
and Implicit Ordering
If you switch to implicit mode after explicitly ordering parallel states, the
Stateflow chart resets execution order to follow implicit rules of geometry.
However, if you switch from implicit to explicit mode, the chart does not
restore the original explicit execution order.

Whenever you switch from one ordering mode to another, the diagnostic
viewer alerts you to changes in execution priorities. The following example
shows the types of warnings issued after switching from explicit to implicit
ordering for parallel states.

How a Chart Orders Parallel States in Boxes and
Subcharts
When you group parallel states inside a box, the states retain their relative
execution order. In addition, the Stateflow chart assigns the box its own

3-83

3 Stateflow® Chart Semantics

priority based on the explicit or implicit ordering rules that apply. This
priority determines when the chart activates the parallel states inside the box.

When you convert a state with parallel decomposition into a subchart, its
substates retain their relative execution order based on the prevailing explicit
or implicit rules.

3-84

Early Return Logic for Event Broadcasts

Early Return Logic for Event Broadcasts

In this section...

“Guidelines for Proper Chart Behavior” on page 3-85

“How Early Return Logic Works” on page 3-85

“Example of Early Return Logic” on page 3-86

Guidelines for Proper Chart Behavior
These guidelines ensure proper chart behavior in event-driven systems:

1 When a state is active, its parent should also be active.

2 A state (or chart) with exclusive (OR) decomposition must never have more
than one active child.

3 If a parallel state is active, siblings with higher priority must also be active.

How Early Return Logic Works
Stateflow charts run on a single thread. Therefore, charts must interrupt
current activity to process events. Activity based on an event broadcast from a
state or transition action can conflict with the current activity. Charts resolve
these conflicts by using early return logic for event broadcasts as follows:

Action
Type Early Return Logic

Entry If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining steps for
entering a state.

Exit If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining exit actions
or transitions from state to state.

During If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining steps for
executing an active state.

3-85

3 Stateflow® Chart Semantics

Action
Type Early Return Logic

Condition If the origin state of the inner or outer flow graph — or
parent state of the default flow graph — are no longer active
at the end of the event broadcast, the chart does not perform
remaining steps for executing the flow graph.

Transition If the parent of the transition path is not active — or if that
parent has an active child — the chart does not perform
remaining transition actions and state entry actions.

Example of Early Return Logic

In this example, assume that state A is initially active. Event E occurs,
causing the following behavior:

1 The chart root checks to see if there is a valid transition out of the active
state A as a result of event E.

2 A valid transition to state B exists.

3-86

Early Return Logic for Event Broadcasts

3 The condition action of the valid transition executes and broadcasts event F.

Event F interrupts the transition from A to B.

4 The chart root checks to see if there is a valid transition out of the active
state A as a result of event F.

5 A valid transition to state C exists.

6 State A executes its exit action.

7 State A becomes inactive.

8 State C becomes active.

9 State C executes and completes its entry action.

State C is now the only active child of its chart. The Stateflow chart cannot
return to the transition from state A to state B and continue after the condition
action that broadcast event F (step 3). First, its source, state A, is no longer
active. Second, if the chart allowed the transition, state B would become the
second active child of the chart. This behavior violates the guideline that
a state (or chart) with exclusive (OR) decomposition can never have more
than one active child. Therefore, the chart uses early return logic and halts
the transition from state A to state B.

3-87

3 Stateflow® Chart Semantics

3-88

4

Creating Stateflow Charts

• “Creating a Stateflow Chart” on page 4-2

• “Working with States in Charts” on page 4-5

• “Working with Transitions in Charts” on page 4-18

• “Using the Stateflow Editor” on page 4-27

4 Creating Stateflow® Charts

Creating a Stateflow Chart
You build a chart with Stateflow objects. You create charts by adding them
to a Simulink model. Create a Stateflow chart in a Simulink model with the
following steps:

1 Enter sfnew or stateflow at the MATLAB command prompt to create
a new empty model with a chart.

The stateflow command also displays the Stateflow block library.

You can drag and drop additional charts in your Simulink system from this
library if you want to create multiple charts in your model. You can also

4-2

Creating a Stateflow® Chart

drag and drop new charts into existing systems from the Stateflow library
in the Simulink Library Browser. For information on creating your own
chart libraries, see “Creating Specialized Chart Libraries for Large-Scale
Modeling” on page 19-20.

2 Open the chart by double-clicking the Chart block.

The empty chart appears in the editor.

3 Open the Chart properties dialog box.

See “Setting Properties for a Single Chart” on page 19-4.

4-3

4 Creating Stateflow® Charts

4 In the Chart properties dialog box, select a chart type from the drop-down
menu in the State Machine Type field:

Type Description

Classic The default machine type. Provides the full set of
Stateflow chart semantics (see Chapter 3, “Stateflow
Chart Semantics”).

Mealy Machine type in which output is a function of inputs and
state.

Moore Machine type in which output is a function only of state.

Mealy and Moore charts use a subset of Stateflow chart semantics. For
more information, see Chapter 6, “Building Mealy and Moore Charts”.

5 In the Chart properties dialog box, select an update method for the chart in
the Update method field.

This value determines when and how often the chart is called during the
execution of the Simulink model.

6 Use the Stateflow Editor to draw a Stateflow chart.

See “Using the Stateflow Editor” on page 4-27 and the rest of this chapter
for more information on how to draw Stateflow charts.

7 Interface the chart to other blocks in your Simulink model, using events
and data.

See Chapter 9, “Defining Events”, Chapter 8, “Defining Data”, and Chapter
19, “Defining Interfaces to Simulink Models and the MATLAB Workspace”
for more information.

8 Rename and save the model by selecting Save Model As from the
Stateflow Editor menu or Save As from the Simulink menu.

Note Trying to save a model with more than 25 characters produces an
error. Loading a model with more than 25 characters produces a warning.

4-4

Working with States in Charts

Working with States in Charts

In this section...

“Creating a State” on page 4-5

“Moving and Resizing States” on page 4-6

“Creating Substates and Superstates” on page 4-6

“Grouping States” on page 4-7

“Specifying Substate Decomposition” on page 4-9

“Specifying Activation Order for Parallel States” on page 4-10

“Changing State Properties” on page 4-10

“Labeling States” on page 4-13

“Outputting State Activity to a Simulink Model” on page 4-16

Creating a State
You create states by drawing them in the editor for a particular chart (block).
Follow these steps:

1 Select the State tool:

2 Move your pointer into the drawing area.

In the drawing area, the pointer becomes state-shaped (rectangular with
oval corners).

3 Click in a particular location to create a state.

The created state appears with a question mark (?) label in its upper
left-hand corner.

4 Click the question mark.

A text cursor appears in place of the question mark.

4-5

4 Creating Stateflow® Charts

5 Enter a name for the state and click outside of the state when finished.

The label for a state specifies its required name and optional actions. See
“Labeling States” on page 4-13 for more detail.

To delete a state, click it to select it and choose Cut from the Edit or any
shortcut menu or press the Delete key.

Moving and Resizing States
To move a state, do the following:

1 Click and drag the state.

2 Release it in a new position.

To resize a state, do the following:

1 Place your pointer over a corner of the state.

When your pointer is over a corner, it appears as a double-ended arrow (PC
only; pointer appearance varies with other platforms).

2 Click and drag the state’s corner to resize the state and release the left
mouse button.

Creating Substates and Superstates
A substate is a state that can be active only when another state, called its
parent, is active. States that have substates are known as superstates. To
create a substate, click the State tool and drag a new state into the state
you want to be the superstate. A Stateflow chart creates the substate in the
specified parent state. You can nest states in this way to any depth. To
change a substate’s parentage, drag it from its current parent in the chart
and drop it in its new parent.

4-6

Working with States in Charts

Note A parent state must be graphically large enough to accommodate all
its substates. You might need to resize a parent state before dragging a new
substate into it. You can bypass the need for a state of large graphical size
by declaring a superstate to be a subchart. See “Using Subcharts to Extend
Charts” on page 7-6 for details.

Grouping States

When to Group a State
Group a state to move all graphical objects inside a state together. When you
group a state, the chart treats the state and its contents as a single graphical
unit. This behavior simplifies editing a chart. For example, moving a grouped
state moves all substates and functions inside that state.

How to Group a State
To group a state, double-click the state or its border. The border of the state
thickens and the background of the state appears gray to indicate that the
state is grouped.

4-7

4 Creating Stateflow® Charts

You can also group a state by right-clicking it and then selecting Make
Contents > Grouped in the context menu.

When to Ungroup a State
You must ungroup a state before performing these actions:

• Selecting objects inside the state

• Moving other graphical objects into the state

If you try to move objects such as states and graphical functions into a
grouped state, you see an invalid intersection error message. Also, the
objects with an invalid intersection have a red border.

4-8

Working with States in Charts

How to Ungroup a State
To ungroup a state, double-click the state or its border. The border of the state
thins and the background of the state no longer appears gray.

You can also ungroup a state by right-clicking it and then clearing Make
Contents > Grouped in the context menu.

Specifying Substate Decomposition
You specify whether a superstate contains parallel (AND) states or exclusive
(OR) states by setting its decomposition. A state whose substates are all
active when it is active has parallel (AND) decomposition. A state in which
only one substate is active when it is active has exclusive (OR) decomposition.
An empty state’s decomposition is exclusive.

4-9

4 Creating Stateflow® Charts

To alter a state’s decomposition, select the state, right-click to display the
state’s shortcut menu, and choose either Parallel (AND) or Exclusive (OR)
from the menu.

You can also specify the state decomposition of a chart. In this case, the
Stateflow chart treats its top-level states as substates. The chart creates
states with exclusive decomposition. To specify a chart’s decomposition,
deselect any selected objects, right-click to display the chart’s shortcut menu,
and choose either Parallel (AND) or Exclusive (OR) from the menu.

The appearance of a superstate’s substates indicates the superstate’s
decomposition. Exclusive substates have solid borders, parallel substates,
dashed borders. A parallel substate also contains a number in its upper right
corner. The number indicates the activation order of the substate relative to
its sibling substates.

Specifying Activation Order for Parallel States
You can specify activation order by using one of two methods: explicit or
implicit ordering.

• By default, when you create a new Stateflow chart, explicit ordering applies.
In this case, you specify the activation order on a state-by-state basis.

• You can also override explicit ordering by letting the chart order parallel
states based on location. This mode is known as implicit ordering.

For more information, see “Explicit Ordering of Parallel States” on page 3-76
and “Implicit Ordering of Parallel States” on page 3-77.

Note The activation order of a parallel state appears in its upper right corner.

Changing State Properties
Use the State dialog box to view and change the properties for a state. To
access the State dialog box for a particular state:

1 Right-click the state and select Properties.

4-10

Working with States in Charts

The State properties dialog box appears.

4-11

4 Creating Stateflow® Charts

The State dialog box contains the following properties for a state:

Field Description

Name Stateflow chart name; read-only; click this hypertext
link to bring the state to the foreground.

Breakpoints Select the check boxes to set debugging breakpoints
on the execution of state entry, during, or exit
actions during simulation. See Chapter 26,
“Debugging and Testing Stateflow Charts”.

Execution order Set the execution order of a parallel (AND) state.
This property does not appear for exclusive (OR)
states. See “Execution Order for Parallel States” on
page 3-75.

Function Inline
Option

Select one of these options to control the inlining of
state functions in generated code:

• Auto

Inlines state functions based on an internal
heuristic.

• Inline

Always inlines state functions in the parent
function, as long as the function is not part of a
recursion. See “What Happens When You Force
Inlining” on page 25-98.

• Function

Creates separate static functions for each state.
See “What Happens When You Prevent Inlining”
on page 25-98.

See “Controlling Inlining of State Functions in
Generated Code” on page 25-98.

4-12

Working with States in Charts

Field Description

Test point Select this check box to set the state as a test point
that can be monitored with a floating scope during
model simulation. You can also log test point values
into MATLAB workspace objects. See “Monitoring
Test Points in Stateflow Charts” on page 26-53.

Output State
Activity

Select this check box to output the activity status
of this state to a Simulink model via a data output
port on the parent chart. See “Outputting State
Activity to a Simulink Model” on page 4-16 for more
information.

Label The label for the state, which includes the name of
the state and its associated actions. See “Labeling
States” on page 4-13.

Description Textual description or comment.

Document link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com,
mailto:email_address, and edit
/spec/data/speed.txt.

1 After making changes, click one of these buttons:

• Apply to save the changes and keep the State dialog box open

• Cancel to return to the previous settings

• OK to save the changes and close the dialog box

• Help to display the documentation in an HTML browser window

Labeling States
The label for a state specifies its required name for the state and the optional
actions executed when the state is entered, exited, or receives an event while
it is active.

State labels have the following general format.

name/
entry:entry actions

4-13

4 Creating Stateflow® Charts

during:during actions
exit:exit actions
bind:data and events
on event_name:on event_name actions

The italicized entries in this format have the following meanings:

Keyword Entry Description

Not
applicable

name A unique reference to the state with optional
slash

entry or en entry actions Actions executed when a particular state is
entered as the result of a transition taken
to that state

during or
du

during actions Actions that are executed when a state
receives an event while it is active with no
valid transition away from the state

exit or ex exit actions Actions executed when a state is exited as
the result of a transition taken away from
the state

bind data or events Binds the specified data or events to this
state. Bound data can be changed only by
this state or its children, but can be read by
other states. Bound events can be broadcast
only by this state or its children.

on event_name

and

on event_name
actions

A specified event

and

Actions executed when a state is active and
the specified event event_name occurs

See “How Events Work in Stateflow Charts”
on page 9-2 for information on defining and
using events.

4-14

Working with States in Charts

Entering the Name
Initially, a state’s label is empty. The Stateflow chart indicates this by
displaying a ? in the state’s label position (upper left corner). Begin labeling
the state by entering a name for the state with the following steps:

1 Click the state.

The state turns to its highlight color and a question mark character
appears in the upper left-hand corner of the state.

2 Click the ? to edit the label.

An editing cursor appears. You are now free to type a label.

Enter the state’s name in the first line of the state’s label. Names are
case sensitive. To avoid naming conflicts, do not assign the same name to
sibling states. However, you can assign the same name to states that do
not share the same parent.

If you are finished labeling the state, click outside of the state. Otherwise,
continue entering actions. To reedit the label, simply click the label text
near the character position you want to edit.

Entering Actions
After entering the name of the state in the label, you can enter actions for any
of the following action types:

• Entry Actions — begin on a new line with the keyword entry or en,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, use a comma
or a semicolon.

You can begin entry actions on the same line as the state’s name. In this
case, begin the entry action with a forward slash (/) instead of the entry
keyword.

• Exit Actions— begin on a new line with the keyword exit or ex, followed
by a colon, followed by one or more action statements on one or more lines.
To separate multiple actions on the same line, use a comma or a semicolon.

4-15

4 Creating Stateflow® Charts

• During Actions — begin on a new line with the keyword during or du,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, use a comma
or a semicolon.

• Bind Actions — begin on a new line with the keyword bind followed by
a colon, followed by one or more data or events on one or more lines. To
separate multiple actions on the same line, use a comma or a semicolon.

• On <event_name> Actions— begin with the keyword on, followed by a
space and the name of an event, followed by a colon, followed by one or
more action statements on one or more lines, for example

on ev1: exit();

To separate multiple actions on the same line, use a comma or a semicolon.
If you want different events to trigger different actions, enter multiple on
event_name blocks in the state label. Each block specifies the action for a
specific event or set of events, for example:

on ev1: action1(); on ev2: action2();

The execution of the actions you enter for a state is dependent only on their
action type, and not the order in which you enter actions in the label. If you
do not specify the action type explicitly for a statement, the chart treats that
statement as an entry action.

Tip You can also edit the label in the properties dialog box for the state. See
“Changing State Properties” on page 4-10.

Outputting State Activity to a Simulink Model
You can output the activity of a chart’s states to a Simulink model via a
data port on the state’s Chart block. To enable output of a particular state’s
activity, first name the state (see “Entering the Name” on page 4-15), if
unnamed, and then select the Output State Activity check box on the state’s
property dialog box (see “Changing State Properties” on page 4-10). A data
output port appears on the Chart block containing the state. The port has
the same name as the state. During simulation of a model, the port outputs
1 at each time step in which the state is active; 0, otherwise. Attaching a

4-16

Working with States in Charts

scope to the port allows you to monitor a state’s activity visually during the
simulation. See “Sharing Input and Output Data with Simulink Models”
on page 8-29 for more information.

Note If a chart has multiple states with the same name, only one of those
states can output activity data. If you check the Output State Activity
property for more than one state with the same name, the chart outputs data
only from the first state whose Output State Activity property you specified.

4-17

4 Creating Stateflow® Charts

Working with Transitions in Charts

In this section...

“Creating a Transition” on page 4-18

“Straight and Curved Transitions” on page 4-19

“Labeling Transitions” on page 4-19

“Moving Transitions” on page 4-21

“Changing Transition Arrowhead Size” on page 4-22

“Creating Self-Loop Transitions” on page 4-23

“Creating Default Transitions” on page 4-23

“Changing Transition Properties” on page 4-24

Creating a Transition
Follow these steps to create transitions between states and junctions:

1 Place your pointer on or close to the border of a source state or junction.

The pointer changes to crosshairs.

2 Click and drag a transition to a destination state or junction.

3 Release on the border of the destination state or junction.

Attached transitions obey the following rules:

• Transitions do not attach to the corners of states. Corners are used
exclusively for resizing.

• Transitions exit a source and enter a destination at angles perpendicular to
the source or destination surface.

• Newly created transitions have smart behavior. See “Setting Smart
Behavior in Transitions” on page 7-20.

To delete a transition, click it and select Edit > Cut, or press the Delete key.

4-18

Working with Transitions in Charts

See the following sections for help with creating self-loop and default
transitions:

• “Creating Self-Loop Transitions” on page 4-23

• “Creating Default Transitions” on page 4-23

Straight and Curved Transitions
By default, a transition maintains a straight line whenever possible. To create
a curved transition, while clicking and dragging from one state or junction
to another, do one of the following:

• Press the S key.

• Right-click the mouse.

For curved transitions, the source point remains stationary regardless of
where you move the end point.

Labeling Transitions
Transition labels contain Stateflow action language that accompanies the
execution of a transition. Creating and editing transition labels is described
in the following topics:

• “Editing Transition Labels” on page 4-19

• “Transition Label Format” on page 4-20

For more information on transition concepts, see “Transition Label Notation”
on page 2-20.

For more information on transition label contents, see Chapter 10, “Using
Actions in Stateflow Charts”.

Editing Transition Labels
Label unlabeled transitions as follows:

1 Select (left-click) the transition.

4-19

4 Creating Stateflow® Charts

The transition turns to its highlight color and a question mark (?) appears
on the transition. The ? character is the default empty label for transitions.

2 Left-click the ? to edit the label.

You can now type a label.

To apply and exit the edit, deselect the object. To reedit the label, simply
left-click the label text near the character position you want to edit.

Transition Label Format
Transition labels have the following general format:

event [condition]{condition_action}/transition_action

Specify, as appropriate, relevant names for event, condition,
condition_action, and transition_action.

Label Field Description

event Event that causes the transition to be evaluated.

condition Defines what, if anything, has to be true for the
condition action and transition to take place.

condition_action If the condition is true, the action specified executes
and completes.

transition_action This action executes after the source state for the
transition is exited but before the destination state
is entered.

Transitions do not have to have labels. You can specify some, all, or none of
the parts of the label. Valid transition labels are defined by the following:

• Can have any alphanumeric and special character combination, with the
exception of embedded spaces

• Cannot begin with a numeric character

• Can have any length

• Can have carriage returns in most cases

4-20

Working with Transitions in Charts

• Must have an ellipsis (...) to continue on the next line

Moving Transitions
You can move transition lines with a combination of several individual
movements. These movements are described in the following topics:

• “Bowing the Transition Line” on page 4-21

• “Moving Transition Attach Points” on page 4-21

• “Moving Transition Labels” on page 4-22

In addition, transitions move along with the movements of states and
junctions. See “Setting Smart Behavior in Transitions” on page 7-20 for a
description of smart and nonsmart transition behavior.

Bowing the Transition Line
You can move or "bow" transition lines with the following procedure:

1 Place your pointer on the transition at any point along the transition except
the arrow or attach points.

2 Click and drag your pointer to move the transition point to another location.

Only the transition line moves. The arrow and attachment points do not
move.

3 Release the mouse button to specify the transition point location.

The result is a bowed transition line. Repeat the preceding steps to move the
transition back into its original shape or into another shape.

Moving Transition Attach Points
You can move the source or end points of a transition to place them in exact
locations as follows:

1 Place your pointer over an attach point until it changes to a small circle.

2 Click and drag your pointer to move the attach point to another location.

4-21

4 Creating Stateflow® Charts

3 Release the mouse button to specify the new attach point.

The appearance of the transition changes from a solid to a dashed line when
you detach and release a destination attach point. Once you attach the
transition to a destination, the dashed line changes to a solid line.

The appearance of the transition changes to a default transition when you
detach and release a source attach point. Once you attach the transition to a
source, the appearance returns to normal.

Moving Transition Labels
You can move transition labels to make the Stateflow chart more readable. To
move a transition label, do the following:

1 Click and drag the label to a new location.

2 Release the left mouse button.

If you mistakenly click and then immediately release the left mouse button on
the label, you will be in edit mode for the label. Press the Esc key to deselect
the label and try again. You can also click the mouse on an empty location in
the Stateflow Editor to deselect the label.

Changing Transition Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of
the incoming arrowheads of an object causes all incoming arrowheads to that
object to be adjusted to the same size. The arrowhead size of any selected
transitions, and any other transitions ending at the same object, is adjusted.

To adjust arrowhead size from the Transition shortcut menu:

1 Select the transitions whose arrowhead size you want to change.

2 Place your pointer over a selected transition and right-click to display the
shortcut menu.

A menu of arrowhead sizes appears.

3 Select an arrowhead size from the menu.

4-22

Working with Transitions in Charts

To adjust arrowhead size from the Junction shortcut menu:

1 Select the junctions whose incoming arrowhead size you want to change.

2 Place your pointer over a selected junction and right-click.

3 In the resulting submenu, place your pointer over Arrowhead Size.

A menu of arrowhead sizes appears.

4 Select a size from the menu.

Creating Self-Loop Transitions
A self-loop transition is a transition whose source and destination are the
same state or junction. To create a self-loop transition:

1 Create the transition by clicking and dragging from the source state or
junction.

2 Press the S key or right-click your mouse to enable a curved transition.

3 Continue dragging the transition tip back to a location on the source state
or junction.

For the semantics of self-loops, see “Self-Loop Transitions” on page 2-27.

Creating Default Transitions
A default transition is a transition with a destination (a state or a junction),
but no apparent source object.

Click the Default Transition button in the toolbar and click a
location in the drawing area close to the state or junction you want to be the
destination for the default transition. Drag your pointer to the destination
object to attach the default transition.

The size of the endpoint of the default transition is proportional to the
arrowhead size. See “Changing Transition Arrowhead Size” on page 4-22.

4-23

4 Creating Stateflow® Charts

Default transitions can be labeled just like other transitions. See “Labeling
Default Transitions” on page 2-32 for an example.

Changing Transition Properties
Use the Transition properties dialog box to view and change the properties for
a transition. To access the dialog box for a particular transition:

1 Right-click the transition and select Properties.

4-24

Working with Transitions in Charts

The Transition properties dialog box appears.

4-25

4 Creating Stateflow® Charts

The following transition properties appear in the dialog box:

Field Description

Source Source of the transition; read-only; click the
hypertext link to bring the transition source
to the foreground.

Destination Destination of the transition; read-only; click
the hypertext link to bring the transition
destination to the foreground.

Parent Parent of this state; read-only; click the
hypertext link to bring the parent to the
foreground.

Debugger
breakpoints

Select the check boxes to set debugging
breakpoints either when the transition is
tested for validity or when it is valid.

Execution order The order in which the chart executes the
transition.

Label The transition’s label. See “Transition Label
Notation” on page 2-20 for more information
on valid label formats.

Description Textual description or comment.

Document link Enter a Web URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

2 After making changes, click one of these buttons:

• Apply to save the changes and keep the Transition dialog box open.

• Cancel to return to the previous settings for the dialog box.

• OK to save the changes and close the dialog box.

• Help to display Stateflow online help in an HTML browser window.

4-26

Using the Stateflow® Editor

Using the Stateflow Editor

In this section...

“Stateflow Editor Window” on page 4-27

“Displaying the Context Menu for Objects” on page 4-29

“Specifying Colors and Fonts in a Chart” on page 4-30

“Differentiating Syntax Elements in the Stateflow Action Language” on
page 4-33

“Selecting and Deselecting Graphical Objects” on page 4-35

“Cutting and Pasting Graphical Objects” on page 4-36

“Copying Graphical Objects” on page 4-36

“Formatting Chart Objects” on page 4-37

“Editing Object Labels” on page 4-52

“Zooming a Chart” on page 4-53

“Zooming a Chart Object Using the Stateflow API” on page 4-55

“Undoing and Redoing Editor Operations” on page 4-58

“Note Properties Dialog Box” on page 4-60

“Keyboard Shortcuts for Stateflow Charts” on page 4-62

“Customizing the Stateflow Editor” on page 4-65

Stateflow Editor Window
You use the Stateflow Editor to draw, zoom, modify, print, and save a chart
shown in the window. It has the following appearance:

4-27

4 Creating Stateflow® Charts

The Stateflow Editor window includes the following elements:

• Title bar

The full chart name appears here in model name/chart name* format. The
* character appears on the end of the chart name for a newly created chart
or for an existing chart that has been edited but not saved yet.

• Menu bar

Most editor commands are available from the menu bar.

4-28

Using the Stateflow® Editor

• Toolbar

Contains buttons for cut, copy, paste, and other commonly used editor
commands. You can identify each tool of the toolbar by placing your pointer
over it until an identifying tool tip appears.

The toolbar also contains buttons for navigating a chart’s subchart
hierarchy (see “Navigating Subcharts” on page 7-11).

• Object palette

Displays a set of tools for drawing states, transitions, and other state chart
objects.

• Drawing area

Displays an editable copy of a chart.

• Zoom control

• Shortcut menus

These menus pop up from the drawing area when you right-click an object.
They display commands that apply only to that object. If you right-click
an empty area of the chart, the shortcut menu applies to the chart object.
See “Displaying the Context Menu for Objects” on page 4-29 for more
information.

• Status bar

Displays tool tips and status information.

Displaying the Context Menu for Objects
Every object that you create in a chart has a shortcut menu associated with it.
To display the shortcut (context) menu:

1 Move your pointer over the object.

2 Right-click the object.

A menu of operations that apply to the object appears.

To display the context menu for the chart object:

1 Move your pointer to an unoccupied location in the chart.

4-29

4 Creating Stateflow® Charts

2 Right-click the location.

A menu of operations that apply to the chart appears.

Specifying Colors and Fonts in a Chart
You can specify the color and font for items in a chart, for a single item or
all items in the chart.

Changing Fonts for a Single Item
You can change the font for a single item as follows:

1 Right-click the item.

2 In the context menu, select Font Size > size of font.

Using the Colors & Fonts Dialog Box
The Colors & Fonts dialog box helps you specify a color scheme for the chart
as a whole, or colors and label fonts for different types of objects in a chart.

To display the Colors & Fonts dialog box, select Edit > Style in the Stateflow
Editor.

4-30

Using the Stateflow® Editor

The drawing area of the dialog box displays examples of the types of objects
whose colors and font labels you can specify. The examples use the colors and
label fonts specified by the current color scheme for the chart. To choose
another color scheme, select the scheme from the dialog box’s Schemes
menu. The dialog box displays the selected color scheme. Click Apply to
apply the selected scheme to the chart or OK to apply the scheme and dismiss
the dialog box.

To make the selected scheme the default scheme for all charts, select Make
this the "Default" scheme from the dialog box’s Options menu.

To modify the current scheme, position your pointer over the example of the
type of object whose color or label font you want to change. Then left-click
to change the object’s color or right-click to change the object’s font. If you
left-click, a color chooser dialog box appears.

4-31

4 Creating Stateflow® Charts

Use the dialog box to select a new color for the selected object type.

If the selected object is a label and you right-click, a font selection dialog
box appears.

4-32

Using the Stateflow® Editor

Use the font selector to choose a new font for the selected label.

To save changes to the default color scheme, select Save defaults to disk
from the Colors & Fonts dialog box’s Options menu.

Note Choosing Save defaults to disk has no effect if the modified scheme
is not the default scheme.

Differentiating Syntax Elements in the Stateflow
Action Language
You can use color highlighting to differentiate the following syntax elements
in the Stateflow action language:

• Keyword

4-33

4 Creating Stateflow® Charts

• Comment

• Event

• Function

• String

• Number

Note Syntax highlighting is a user preference, not a model preference.

Default Syntax Highlighting
The following chart illustrates the default highlighting for each language
element:

If the parser cannot resolve a syntax element, the chart displays the element
in the default text color.

4-34

Using the Stateflow® Editor

To modify color assignments, see “Editing Syntax Highlighting” on page
4-35. To disable syntax highlighting, see “Enabling and Disabling Syntax
Highlighting” on page 4-35.

Editing Syntax Highlighting
To edit syntax highlighting:

1 In the Stateflow Editor, select Edit > Highlighting Preferences.

The Syntax Highlight Preferences dialog box appears.

2 Click the color you want to change, choose an alternative from the color
palette, and click Apply.

3 Click OK to close the Syntax Highlight Preferences dialog box.

Enabling and Disabling Syntax Highlighting
You can toggle syntax highlighting from the Tools and Edit menus in the
Stateflow Editor.

• From the Tools menu, select or clear Syntax Coloring.

• From the Edit menu, follow these steps:

1 Select Highlighting Preferences to open the Syntax Highlight
Preferences dialog box.

2 Select or clear Enable syntax highlighting and click OK.

Selecting and Deselecting Graphical Objects
Once an object is in the drawing area, you need to select it to make any
changes or additions to that object.

Select objects in a chart as follows:

• To select an object, click anywhere inside of the object.

• To select multiple adjacent objects, click and drag a selection box so that
the box encompasses or touches the objects you want to select, and then
release the mouse button.

4-35

4 Creating Stateflow® Charts

All objects or portions of objects within the box are selected.

• To select multiple separate objects, simultaneously press the Shift key and
click an object or box a group of objects.

This step adds objects to the list of already selected objects unless an object
was already selected, in which case, the object is deselected. This type
of multiple object selection is useful for selecting objects within a state
without selecting the state itself when you select a state and all of its
objects and then Shift-click inside the containing state to deselect it.

• To deselect all selected objects, press the Esc key.

Pressing the Esc key again displays the parent of the current chart.

When an object is selected, it appears highlighted in the color set as the
selection color (blue by default; see “Specifying Colors and Fonts in a Chart”
on page 4-30 for more information).

Cutting and Pasting Graphical Objects
You can cut objects from the drawing area or cut and then paste them as many
times as you like. You can cut and paste objects from one chart to another.
The chart retains a selection list of the most recently cut objects. The objects
are pasted in the drawing area location closest to the current pointer location.

• To cut an object, right-click the object and select Cut from the context
menu.

• To paste the most recently cut selection of objects, right-click in the chart
and select Paste from the context menu.

Copying Graphical Objects
To copy and paste an object in the drawing area, select the objects and
right-click and drag them to the desired location in the drawing area. This
operation also updates the chart’s clipboard.

4-36

Using the Stateflow® Editor

Note If you copy and paste a state in the chart, these rules apply.

• If the original state uses the default ? label, the new state retains that label.

• If the original state does not use the default ? label, a unique name is
generated for the new state.

Alternatively, to copy from one chart to another, select Copy and then Paste
from the right-click context menu.

Formatting Chart Objects
To enhance readability of objects in a chart, you can use commands in the
Format menu of the Stateflow Editor. These commands include options for:

• Alignment

• Distribution

• Resizing

You can align, distribute, or resize these chart objects:

• States

• Functions

• Boxes

• Junctions

Basic Steps for Aligning, Distributing, or Resizing Chart Objects
The basic steps to align, distribute, or resize chart objects are:

1 If the chart includes parallel states or outgoing transitions from a single
source, make sure that the chart uses explicit ordering.

To set explicit ordering, select User specified state/transition
execution order in the Chart properties dialog box.

4-37

4 Creating Stateflow® Charts

Note If a chart uses implicit ordering to determine execution order of
parallel states or evaluation order of outgoing transitions, the order can
change after you align, distribute, or resize chart objects. Using explicit
ordering prevents this change from occurring. For more information, see
“Execution Order for Parallel States” on page 3-75 and “Evaluation Order
for Outgoing Transitions” on page 3-55.

2 Select the chart objects you want to align, distribute, or resize.

You can select objects in any order, one-by-one or by drawing a box around
them.

3 Decide which object to use as the anchor for aligning, distributing, or
resizing other chart objects. This object is the reference object.

To set an object as the reference, right-click the object. Brackets appear
around the reference object, similar to this:

Note If you select objects one-by-one, the last object that you select acts
as the reference.

4 Select an option from the Format menu to align, distribute, or resize your
chosen objects.

Options for Aligning Chart Objects
The following options are available in the Format > Align Items menu.

4-38

Using the Stateflow® Editor

This option... Aligns selected objects...

Align Top Edges Along the top edges

Align Centers Horizontally So that the centers fall on the same
horizontal line

Align Bottom Edges Along the bottom edges

Align Left Edges Along the left edges

Align Centers Vertically So that the centers fall on the same
vertical line

Align Right Edges Along the right edges

Options for Distributing Chart Objects
The following options are available in the Format > Distribute Items menu.

This option... Distributes selected objects so that...

Distribute Items
Horizontally

The center-to-center horizontal distance
between any two objects is the same.

Note The horizontal space for
distribution is the distance between the
left edge of the leftmost object and the
right edge of the rightmost object. If
the total width of the objects you select
exceeds the horizontal space available,
objects can overlap after distribution.

4-39

4 Creating Stateflow® Charts

This option... Distributes selected objects so that...

Distribute Items Vertically The center-to-center vertical distance
between any two objects is the same.

Note The vertical space for distribution
is the distance between the top edge of
the highest object and the bottom edge of
the lowest object. If the total height of
the objects you select exceeds the vertical
space available, objects can overlap after
distribution.

Make Horizontal Gaps Even The horizontal white space between any
two objects is the same.

Note The space restriction for
Distribute Items Horizontally
applies.

Make Vertical Gaps Even The vertical white space between any
two objects is the same.

Note The space restriction for
Distribute Items Vertically applies.

Options for Resizing Chart Objects
The following options are available in the Format > Resize Items menu.

4-40

Using the Stateflow® Editor

This option... Makes selected objects have...

Make Items Same Height The same height

Make Items Same Width The same width

Make Items Same Size The same height and width

4-41

4 Creating Stateflow® Charts

Example of Aligning Chart Objects
Suppose that you open the sf_pool demo model and see a chart with multiple
MATLAB functions.

To align the three MATLAB functions on the right:

4-42

Using the Stateflow® Editor

1 Type sf_pool at the MATLAB command prompt to open the model.

Tip Expand the Stateflow Editor to see the entire chart.

2 Click the function isAnyBallGoingToStop.

3 Shift-click the function isAnyBallNewlyPocketed.

4 Shift-click the function getBallInteraction.

This object is the reference (or anchor) for aligning the three functions.
Brackets appear around the function.

5 Select Format > Align Items > Align Right Edges.

Note You can also right-click the reference object and select the option
from the Format menu.

4-43

4 Creating Stateflow® Charts

This step aligns the right edges of the three functions based on the right
edge of getBallInteraction.

4-44

Using the Stateflow® Editor

Example of Distributing Chart Objects
Suppose that you open the sf_frame_sync_controller demo model and
see a chart with three states.

To distribute the three states vertically:

1 Type sf_frame_sync_controller at the MATLAB command prompt to
open the model.

4-45

4 Creating Stateflow® Charts

Tip Double-click the Frame Sync Controller block to open the chart.

2 Select the three states in any order.

Shift-click to select more than one state.

3 Select Format > Distribute Items > Make Vertical Gaps Even.

4-46

Using the Stateflow® Editor

This step ensures that the vertical white space between any two states
is the same.

Note When you select the three states in any order, your reference object
might differ from the one shown. This difference does not affect distribution
of vertical white space.

4-47

4 Creating Stateflow® Charts

Example of Resizing Chart Objects
Suppose that you open the sf_clutch demo model and see a chart with
graphical functions of different sizes.

To resize the graphical functions so that they all match the size of detectSlip:

1 Type sf_clutch at the MATLAB command prompt to open the model.

2 In the Friction Mode chart, select the three graphical functions by drawing
a box around them.

3 Set detectSlip as the reference object to use for resizing.

4-48

Using the Stateflow® Editor

Right-click the function to mark it with brackets.

4 Select Format > Resize Items > Make Items Same Size.

4-49

4 Creating Stateflow® Charts

This step ensures that the three functions are the same size.

5 Adjust the function boxes to correct the format:

a To align the functions, select Format > Align Items > Align Left
Edges.

4-50

Using the Stateflow® Editor

b To distribute the functions, select Format > Distribute Items > Make
Vertical Gaps Even.

4-51

4 Creating Stateflow® Charts

Editing Object Labels
Some Stateflow objects (for example, states and transitions) have labels. To
change these labels, place your pointer anywhere in the label and click. Your
pointer changes to an I-beam. You can then edit the text.

You can use the shortcut (context) menu to change a label’s font size:

1 Select the states whose label font size you want to change.

2 Right-click and select Font Size.

3 Select the desired font size.

The chart changes the font size of all labels on all selected states to the
selected size.

4-52

Using the Stateflow® Editor

Zooming a Chart
You can magnify or shrink a chart, using the following zoom controls:

• Zoom Factor Selector. Selects a zoom factor (see “Using the Zoom Factor
Selector” on page 4-53).

• Zoom In button. Zooms in by the current zoom factor.

You can also press the R key to increase the zoom factor.

• Zoom Out button. Zooms out by the current zoom factor.

You can also press the V key to decrease the zoom factor.

Using the Zoom Factor Selector
The Zoom Factor Selector lets you to specify the zoom factor by:

• Choosing a value from a menu

Click the selector to display the menu.

• Double-clicking the Zoom Factor Selector selects the zoom factor that
will fit the view to all selected objects or all objects if none are selected.

You can achieve the same effect by choosing Fit to View from the
right-click context menu or by pressing the F key to apply the maximum
zoom that includes all selected objects. Press the space bar to fit all objects
to the view.

• Clicking the Zoom Factor Selector and dragging up or down.

Dragging the mouse upward increases the zoom factor. Dragging the
mouse downward decreases the zoom factor. Alternatively, right-clicking
and dragging on the percentage value resizes while you are dragging.

Zooming with Shortcut Keys
This table is a summary of the shortcut keys you can use to perform some of
the zooming operations described above:

4-53

4 Creating Stateflow® Charts

Key Zoom Operation

F Highlight (select) an object and press the F key to
fit it to view.

space bar Set to full view of chart.

R or + Increase zoom factor.

V or - Decrease zoom factor.

Moving in Zoomed Charts with Shortcut Keys
You can also use number keys to move in zoomed charts according to their
layout in the number keypad:

You can enter numbers for moving from the number keys above the alphabetic
keys at any time or from the number keypad if NumLock is engaged for the
keyboard. The 5 key fits the currently selected object to full view. If no object
is selected, the entire chart is fit to view.

4-54

Using the Stateflow® Editor

Zooming a Chart Object Using the Stateflow API

How to Zoom a Chart Object
Use the Stateflow API method fitToView to zoom in on a graphical object
in the chart. (See “Using the API” in the Stateflow API documentation for
information about obtaining object handles.)

Objects You Can Zoom
You can zoom the following chart objects:

• Charts

• Subcharts

• States

• Transitions

• Graphical functions

• Truth table functions

• MATLAB functions

• Simulink functions

• Connective junctions

• History junctions

• Boxes

• Notes

Example of Zooming States in a Chart
Follow these steps to zoom in on different states:

1 At the MATLAB command prompt, type:

old_sf_car;

The chart shift_logic appears.

2 To define an object handle for the chart shift_logic, type:

4-55

4 Creating Stateflow® Charts

myChart = find(sfroot,'-isa','Stateflow.Chart','Name', ...
'shift_logic');

3 To define an object handle for the state upshifting, type:

myState = find(sfroot,'-isa','Stateflow.State','Name', ...
'upshifting');

4 To zoom in on the state upshifting, type:

myState.fitToView;

The chart zooms in on the state and highlights it:

5 To define an object handle for the state downshifting, type:

myState = find(sfroot,'-isa','Stateflow.State','Name', ...
'downshifting');

6 To zoom in on the state downshifting, type:

myState.fitToView;

4-56

Using the Stateflow® Editor

The chart zooms in on the state and highlights it:

7 To zoom out to the chart-level view, type:

myChart.fitToView;

4-57

4 Creating Stateflow® Charts

The chart shift_logic reappears:

8 You can also zoom in on a state using the sfgco function. Follow these
steps:

a Click any state in the chart.

b At the MATLAB command prompt, type:

myState = sfgco;

This command assigns the selected state to the object handle myState.

c To zoom in on the selected state, type:

myState.fitToView;

The chart zooms in on the state and highlights it.

Undoing and Redoing Editor Operations
You can undo and redo operations you perform in the Stateflow Editor. When
you undo an operation in the Stateflow Editor, you reverse the last edit
operation you performed. After you undo operations in the Stateflow Editor,
you can also redo them one at a time.

4-58

Using the Stateflow® Editor

To undo an operation in the chart, do one of the following:

• Click the Undo icon in the toolbar: .

When you place your pointer over the Undo button, the tool tip that
appears indicates the nature of the operation to undo.

• From the Edit menu, select Undo.

To redo an operation in the chart, do one of the following:

• Click the Redo icon in the toolbar: .

When you place your pointer over the Redo button, the tool tip that
appears indicates the nature of the operation to redo.

• From the Edit menu, select Redo.

Exceptions for Undo
You can undo or redo all editor operations, with the following exceptions:

• You cannot undo the operation of turning subcharting off for a state
previously subcharted.

To understand subcharting, see “Using Subcharts to Extend Charts” on
page 7-6.

• You cannot undo the drawing of a supertransition or the splitting of an
existing transition.

Splitting of an existing transition refers to the redirection of the source or
destination of a transition segment that is part of a supertransition. For
a description of supertransitions, see “Drawing a Supertransition Into a
Subchart” on page 7-14 and “Drawing a Supertransition Out of a Subchart”
on page 7-17.

• You cannot undo any changes made to the chart through the Stateflow API.

For a description of the Stateflow API (Application Programming Interface),
see “Using the API” in the Stateflow API Guide.

4-59

4 Creating Stateflow® Charts

Note When you perform one of the preceding operations, the undo and
redo buttons are disabled from undoing and redoing any prior operations.

Note Properties Dialog Box
You can use the Note properties dialog box to edit note properties.

4-60

Using the Stateflow® Editor

4-61

4 Creating Stateflow® Charts

The Note properties dialog box contains the following properties:

Field Description

Label The label for the note. This includes the name of the
note and its associated actions.

Description Textual description/comment.

Use display text as
click callback

Checking this option causes a Simulink model
to treat the text in the Text field as the note’s
click function. The specified text must be a valid
MATLAB expression comprising symbols that are
defined in the MATLAB workspace when the user
clicks this annotation. Selecting this option disables
the ClickFcn edit field.

ClickFcn Specifies MATLAB code to be executed when a user
single-clicks this annotation. The model stores the
code entered in this field.

Document link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com,
mailto:email_address, and edit
/spec/data/speed.txt.

See “Annotation Callback Functions” in the Simulink documentation for a
description of the ClickFcn edit field.

Keyboard Shortcuts for Stateflow Charts
You can use the following keyboard shortcuts in the Stateflow Editor.

Task
Windows®

platform
UNIX®

platform

Display the parent of the currently
displayed chart or subchart. There is no
limit on the time between the entry of each
period.

.. (two
periods)

.. (two
periods)

Zoom in by an incremental amount. + or r or R + or r or R

4-62

Using the Stateflow® Editor

Task
Windows®

platform
UNIX®

platform

Zoom out by an incremental amount. - or v or V - or v or V

Fit chart to screen. 0 or Space
Bar

0 or Space
Bar

Zoom to normal view. 1 1

Move the current view down within the full
chart.

2 2

Move the current view down and right
within the full chart.

3 3

Move the current view left within the full
chart.

4 4

Fit the currently selected object to full view.
If no object is selected, the chart is fit to full
view.

5 5

Move the current view right within the full
chart.

6 6

Move the current view up and left within
the full chart.

7 7

Move the current view up within the full
chart.

8 8

Move the current view up and right within
the full chart.

9 9

Delete the selected objects. Delete Delete

Access the contents of the currently
highlighted subchart or truth table.

Enter Enter

4-63

4 Creating Stateflow® Charts

Task
Windows®

platform
UNIX®

platform

Perform any of the following actions:

• If you are editing the label of an object,
the Esc key disables label editing but
leaves the object selected.

• If objects are selected, the Esc key
deselects all objects in the current view.

• If the current chart view is the contents
of a subchart and no object is selected, the
Esc key changes the view to the parent
of the subchart.

• If the current chart view is at the chart
level and no object is selected, the Esc
key displays the model window for that
chart’s block.

Esc Esc

Fit the currently selected object to screen.
If no object is selected, the chart is fit to
screen.

f or F f or F

Pan left d or D or
Ctrl+Left
Arrow

d or D or
Ctrl+Left
Arrow

Pan right g or G or
Ctrl+Right
Arrow

g or G or
Ctrl+Right
Arrow

Pan up e or E or
Ctrl+Up
Arrow

e or E or
Ctrl+Up
Arrow

Pan down c or C or
Ctrl+Down
Arrow

c or C or
Ctrl+Down
Arrow

Go back in pan/zoom history b or B b or B

Go forward in pan/zoom history t or T t or T

4-64

Using the Stateflow® Editor

Task
Windows®

platform
UNIX®

platform

Select the first state, function, truth table,
or box parented (contained) by the currently
selected object in the same chart. Selection
order of contained objects is top-down,
left-right. See also u key.

j (jump) or J j (jump) or J

Select the next state, function, truth table,
or box at the same containment level.
Selection order of objects is top-down,
left-right.

n (next) or N n (next) or N

Select the previous state, function, truth
table, or box at the same containment
level. Selection order of objects is top-down,
left-right.

p (previous)
or P

p (previous)
or P

Disable (or enable) smart transitions.

To create self-loop transitions, disable smart
mode. For details, see “Creating Self-Loop
Transitions” on page 4-23.

To maintain straight lines from transition
sources, enable smart mode (the default).
For details, see “What Smart Transitions
Do” on page 7-20.

s (smart) or S s (smart) or
S

Select the parent object of the currently
highlighted object in the same chart. See
also j key.

u (up) or U u (up) or U

Customizing the Stateflow Editor

You can write MATLAB code to customize the Stateflow Editor by:

• Adding items and submenus to the end of Stateflow Editor menus (see
“Adding Items to Stateflow Editor Menus” on page 4-66)

• Disabling and hiding items on menus in the Stateflow Editor (see
“Disabling and Hiding Stateflow Editor Menu Items” on page 4-68)

4-65

4 Creating Stateflow® Charts

Adding Items to Stateflow Editor Menus
You use the Simulink customization manager to add items, including
submenus, to the end of menus in the Stateflow Editor. For example, you can
add menu items that invoke your own MATLAB functions.

To add an item to the end of a Stateflow Editor menu, you must create the
following functions in an sl_customization.m file on the MATLAB path:

• For each item, create a schema function, which defines a custom item on a
menu owned by the Stateflow Editor.

• Create a custom menu function, which registers schema functions that
define custom items that you want to add to a menu.

• Define the sl_customization function to register the custom menu
function with the Simulink customization manager.

• Create callback functions for the items that you add to the Stateflow Editor
menus.

For detailed descriptions of these procedures, see “Adding Items to Model
Editor Menus” in the Simulink User’s Guide.

Code Example: Adding a Custom Submenu to the Stateflow Editor.
The following sl_customization.m file adds a submenu called Set Font
Style to the Stateflow Editor’s Edit menu. The submenu contains three menu
options for font style: Arial, Courier New, and Times New Roman. The
sl_customization function accepts one argument, a customization manager
object. For example, you can set cm = sl_customization_manager at the
MATLAB command line.

function sl_customization(cm)

%% Register custom menu function.
cm.addCustomMenuFcn('Stateflow:EditMenu', @getMyMenuItems);

end

%% Define the custom submenu function.

function schemaFcns = getMyMenuItems(callbackInfo)
schemaFcns = {@getItem4};

4-66

Using the Stateflow® Editor

end

%% Define the schema function for first submenu item
function schema = getItem1(callbackInfo)

schema = sl_action_schema;
schema.label = 'Arial';
schema.userdata = 'font style Arial';
schema.callback = @myCallback1;

end

%% Define the schema function for second submenu item.
function schema = getItem2(callbackInfo)

schema = sl_action_schema;
schema.label = 'Courier New';
schema.userdata = 'font style Courier New';
schema.callback = @myCallback1;

%% Define the schema function for third submenu item.
function schema = getItem3(callbackInfo)

schema = sl_action_schema;
schema.label = "Times New Roman';
schema.userdata = 'font style Times New Roman';
schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)
disp(['Callback for 'callbackInfo.userdata' was called']);

end

function schema = getItem4(callbackInfo)
% Make a submenu label 'Set Font Style'
% with the font styles defined in menu items above.
schema = sl_container_schema;
schema.label = 'Set Font Style';
schema.childrenFcns = {@getItem1, @getItem2, @getItem3};

end

4-67

4 Creating Stateflow® Charts

Note The addCustomMenuFcn function requires that you pass a string
argument that identifies the menu or menu item you wish to customize. To
determine the appropriate tag, see “Displaying Menu Tags” on page 4-70.

Custom Menu Example: Set Font Style. When you run
sl_customization(cm) described in “Code Example: Adding a Custom
Submenu to the Stateflow Editor” on page 4-66, the following new submenu
appears in the Stateflow Editor.

Disabling and Hiding Stateflow Editor Menu Items
You can disable or hide items that appear on Stateflow Editor menus by

• Creating a filter function that disables or hides the menu item (see
“Creating a Filter Function” in the Simulink User’s Guide)

4-68

Using the Stateflow® Editor

• Registering the filter function with the Simulink customization manager
(see “Registering a Filter Function” in the Simulink User’s Guide)

For detailed descriptions of these procedures, see “Disabling and Hiding
Model Editor Menu Items” in the Simulink User’s Guide.

Code Example: Disabling the Print Command in the Stateflow Editor.
The following sl_customization.m file disables the Print command in
the File menu of the Stateflow Editor. The example assumes you set cm =
sl_customization_manager.

function sl_customization(cm)

%%Register custom filter function.
cm.addCustomFilterFcn('Stateflow:PrintMenuItem', @myFilter);

end

function state = myFilter(callbackInfo)
state = 'Disabled';

end

Note The addCustomFilterFcn function requires that you pass a string
argument that identifies the menu or menu item you wish to disable or hide.
To determine the appropriate tag, see “Displaying Menu Tags” on page 4-70.

The myFilter function sets the state of the menu item. Valid states are:

• ’Hidden’

• ’Disabled’

• ’Enabled’

Custom Menu Example: Disable Print Menu Item. After you run
sl_customization(cm) described in “Code Example: Disabling the Print
Command in the Stateflow Editor” on page 4-69, the Stateflow Editor’s File
menu looks like this:

4-69

4 Creating Stateflow® Charts

Displaying Menu Tags
To determine the tags that identify the menus or menu items you wish to
customize on the Stateflow Editor, set the Simulink customization manager’s
showWidgetIdAsToolTip property to true by entering the following commands
at the MATLAB command line:

cm = sl_customization_manager;
cm.showWidgetIdAsToolTip = true;

After enabling this property, the tag of each menu or menu item appears next
to its label in the Stateflow Editor:

4-70

Using the Stateflow® Editor

To turn off tag display, enter the following command at the MATLAB
command line:

cm.showWidgetIdAsToolTip = false;

Note Some Stateflow Editor menu items might not work while menu tags
are visible. You should turn off menu tag display before attempting to use
the menus.

4-71

4 Creating Stateflow® Charts

4-72

5

Modeling Logic Patterns
and Iterative Loops Using
Flow Graphs

• “What Is a Flow Graph?” on page 5-2

• “Difference Between Flow Graphs and State Charts” on page 5-3

• “When to Use Flow Graphs” on page 5-4

• “Creating Flow Graphs with the Pattern Wizard” on page 5-5

• “Drawing and Customizing Flow Graphs By Hand” on page 5-27

• “Best Practices for Creating Flow Graphs” on page 5-30

• “Enhancing Readability of Generated Code for Flow Graphs” on page 5-32

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

What Is a Flow Graph?
A flow graph is a graphical construct that models logic patterns by using
connective junctions and transitions. The junctions provide decision branches
between alternate transition paths. You can use flow graphs to represent
decision and iterative loop logic.

Here is an example of a flow graph that models simple if-else logic:

This flow graph models the following code:

if (u > 0)
{

y = 1;
}
else
{

y = 0;
}

5-2

Difference Between Flow Graphs and State Charts

Difference Between Flow Graphs and State Charts
A flow graph is a stateless flow chart because it cannot maintain its active
state between updates. As a result, a flow graph always begins executing
from a default transition and ends at a terminating junction (a junction that
has no valid outgoing transitions).

By contrast, a state chart stores its current state in memory to preserve
local data and activity between updates. As a result, state charts can begin
executing where they left off in the previous time step, making them suitable
for modeling reactive or supervisory systems that depend on history. In these
kinds of systems, the current result depends on a previous result. For more
information, see “What Is State?” on page 6-4 and Chapter 1, “Stateflow
Chart Concepts”.

5-3

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

When to Use Flow Graphs
Use flow graphs to represent flow logic in graphical functions or between
states in a chart. A best practice is to encapsulate flow graphs in graphical
functions to create modular, reusable decision and loop logic that you can call
anywhere in a chart. For more information about graphical functions, see
“Using Graphical Functions to Extend Actions” on page 7-30.

5-4

Creating Flow Graphs with the Pattern Wizard

Creating Flow Graphs with the Pattern Wizard

In this section...

“Why Use the Pattern Wizard?” on page 5-5

“How to Create Reusable Flow Graphs” on page 5-5

“Saving and Reusing Flow Graph Patterns” on page 5-7

“MAAB-Compliant Patterns from the Pattern Wizard” on page 5-9

“Try It: Creating and Reusing a Custom Pattern with the Pattern Wizard”
on page 5-20

Why Use the Pattern Wizard?
The Pattern Wizard is a utility that generates common flow graph patterns
for use in graphical functions and charts. Although you can also create flow
graphs by hand, the Pattern Wizard offers several advantages:

• Generates common logic and iterative loop patterns automatically

• Generates patterns that comply with guidelines from the MathWorks
Automotive Advisory Board (MAAB)

• Promotes consistency in geometry and layout across patterns

• Facilitates storing and reusing patterns from a central location

How to Create Reusable Flow Graphs
When you create flow graphs with the Pattern Wizard, you can save them to a
central location where you can retrieve them for reuse. To create reusable
flow graphs that comply with MAAB guidelines:

1 Open a chart.

How do I create and open a new Stateflow chart?

a Type sfnew or stateflow at the MATLAB command prompt.

A model opens, containing an empty chart.

b Double-click the chart to open it.

5-5

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

2 Select a flow graph pattern:

To Create: Select: Reference

if decision patterns Patterns > Add
Decision

“Decision Logic
Patterns in Flow
Graphs” on page 5-9

for, while, and do
while loop patterns

Patterns > Add
Loop

“Iterative Loop
Patterns in Flow
Graphs” on page 5-14

switch patterns Patterns > Add
Switch

“Switch Patterns in
Flow Graphs” on page
5-16

The Stateflow Patterns dialog box appears.

3 Enter a description of your pattern (optional).

If you leave this field blank, the Pattern Wizard adds a default description
to your chart.

4 Specify conditions and actions (optional).

You can also add or change conditions and actions directly in the chart.

5 Click OK.

The pattern appears in your chart. The geometry and layout comply with
MAAB guidelines.

6 Customize the pattern as desired.

For example, you may want to add or change flow graphs, conditions, or
actions. See “Try It: Creating and Reusing a Custom Pattern with the
Pattern Wizard” on page 5-20.

7 Save the pattern to a central location as described in “Saving and Reusing
Flow Graph Patterns” on page 5-7.

You can now retrieve your pattern directly from the editor to reuse in
graphical functions and charts. See “How to Add Flow Graph Patterns in

5-6

Creating Flow Graphs with the Pattern Wizard

Graphical Functions” on page 5-8 and “How to Add Flow Graph Patterns in
Charts” on page 5-9.

Saving and Reusing Flow Graph Patterns
Using the Pattern Wizard, you can save flow graph patterns in a central
location, then easily retrieve and reuse them in Stateflow graphical functions
and charts. The Pattern Wizard lets you access all saved patterns from the
editor.

Guidelines for Creating a Pattern Folder
The Pattern Wizard uses a single, flat folder for saving and retrieving flow
graph patterns. Follow these guidelines when creating your pattern folder:

• Store all flow graphs at the top level of the pattern folder; do not create
subfolders.

• Make sure all flow graph files have a .mdl extension.

How to Save Flow Graph Patterns for Easy Retrieval

1 Create a folder for storing your patterns according to “Guidelines for
Creating a Pattern Folder” on page 5-7.

2 In your chart, select flow graphs with the patterns you want to save.

3 Select Patterns > Save Pattern.

The Pattern Wizard displays a message that prompts you to choose a folder
for storing custom patterns.

The Pattern Wizard stores your flow graphs in the pattern folder as an
.mdl file. The patterns that you save in this folder appear in a drop-down
list when you select Patterns > Add Custom, as described in “How to Add
Flow Graph Patterns in Graphical Functions” on page 5-8 and “How to Add
Flow Graph Patterns in Charts” on page 5-9.

4 Click OK to dismiss the message.

The Browse For Folder dialog box appears.

5-7

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

5 Select the designated folder (or create a new folder) and click OK.

The Save Pattern As dialog box appears.

6 Enter a name for your pattern and click Save.

The Pattern Wizard saves your pattern as an .mdl file in the designated
folder.

How to Change Your Pattern Folder

1 Rename your existing pattern folder.

2 Add a pattern as described in “How to Add Flow Graph Patterns in
Graphical Functions” on page 5-8 or “How to Add Flow Graph Patterns in
Charts” on page 5-9.

The Pattern Wizard prompts you to choose a folder.

3 Follow the instructions in “How to Save Flow Graph Patterns for Easy
Retrieval” on page 5-7.

How to Add Flow Graph Patterns in Graphical Functions

1 Add a graphical function to your chart.

See “Creating a Graphical Function” on page 7-31.

2 Make the graphical function into a subchart by right-clicking in the
function box and selecting Make Contents > Subcharted.

The function box turns gray.

3 Double-click the subcharted graphical function to open it.

4 In the menu bar, select Patterns > Add Custom.

The Select a Custom Pattern dialog box appears, displaying all of your
saved patterns.

5-8

Creating Flow Graphs with the Pattern Wizard

Why does my dialog box not display any patterns?

You have not saved any patterns for the Pattern Wizard to retrieve. See
“Saving and Reusing Flow Graph Patterns” on page 5-7.

5 Select a pattern from the list in the dialog box and click OK.

The pattern appears in the graphical function, which expands to fit the
flow graph.

6 Define all necessary inputs, outputs, and local data in the graphical
function and the chart that calls it.

How to Add Flow Graph Patterns in Charts

1 In the menu bar, select Patterns > Add Custom.

The Select a Custom Pattern dialog box appears, displaying all of your
saved patterns.

2 Select a pattern from the list in the dialog box and click OK.

The pattern appears in the chart.

3 Adjust the chart by hand to:

• Connect the flow graphs to the appropriate transitions.

• Ensure that there is only one default transition for exclusive (OR) states
at each level of hierarchy.

• Define all necessary inputs, outputs, and local data.

MAAB-Compliant Patterns from the Pattern Wizard
The Pattern Wizard generates MAAB-compliant flow graphs.

Decision Logic Patterns in Flow Graphs
The Pattern Wizard generates the following MAAB-compliant decision logic
patterns:

5-9

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

if

if-else

5-10

Creating Flow Graphs with the Pattern Wizard

if-elseif

5-11

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

if-elseif-else

5-12

Creating Flow Graphs with the Pattern Wizard

if-elseif-elseif-else

5-13

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Nested if

Iterative Loop Patterns in Flow Graphs
The Pattern Wizard generates the following MAAB-compliant iterative loop
patterns:

5-14

Creating Flow Graphs with the Pattern Wizard

for

while

5-15

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

do-while

Switch Patterns in Flow Graphs
The Pattern Wizard generates the following MAAB-compliant switch patterns:

5-16

Creating Flow Graphs with the Pattern Wizard

switch with two cases and default

5-17

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

switch with three cases and default

5-18

Creating Flow Graphs with the Pattern Wizard

switch with four cases and default

5-19

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Try It: Creating and Reusing a Custom Pattern with
the Pattern Wizard
This exercise shows how to create, modify, and save a custom flow graph
pattern for iterating over the upper triangle of a two-dimensional matrix. In
the upper triangle, the row index i is always less than or equal to column
index j. This flow graph pattern uses nested for-loops to ensure that i never
exceeds j.

Creating the Upper Triangle Iterator Pattern

1 Open a new (empty) chart.

2 Select Patterns > Add Loop > For.

The Stateflow Patterns dialog box appears.

3 Enter the initializer, loop test, and counting expressions for iterating
through the first dimension of the matrix, as follows:

Do not specify an action yet. You will add another loop for iterating the
second dimension of the matrix.

4 Click OK.

The Pattern Wizard generates the first iterative loop in your chart:

5-20

Creating Flow Graphs with the Pattern Wizard

This pattern from the Pattern Wizard:

• Conforms to all best practices for creating flow graphs, as described in
“Best Practices for Creating Flow Graphs” on page 5-30.

• Provides the correct syntax for conditions and condition actions.

5 Add the second loop by following these steps:

a Expand the editor window so the chart can accommodate a second
pattern.

b Deselect all objects in the chart.

c Repeat steps 2, 3, and 4, this time specifying parameters for the second
iterator j, and a placeholder for an action to retrieve each element in
the upper triangle.

5-21

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

The Pattern Wizard generates the second loop pattern and leaves it
selected so you can reposition it.

6 Nest the loop patterns as follows:

How can I nest the loop patterns?

Here is one way to nest the patterns:

a In the second pattern, delete the default transition.

b Delete the starting and terminating junctions.

5-22

Creating Flow Graphs with the Pattern Wizard

c In the first pattern, delete the transition between [i < numrow] and
{i++;}

d Move the second pattern into the first one by reconnecting transitions
to junctions as necessary.

7 Inspect the flow graph to ensure that:

• There is only one default transition, attached to the first for-loop.

• You order the transitions as shown above.

What if the ordering is not correct?

To change the execution order of a transition:

e Right-click the transition and select Execution Order.

f Select the correct number.

The execution order of other transitions from the same junction adjust
accordingly.

8 Save your chart.

Now you are ready to save your pattern to a central location for reuse (see
“Saving the Upper Triangle Iterator Pattern for Reuse” on page 5-23).

Saving the Upper Triangle Iterator Pattern for Reuse

1 Create a folder for storing flow graph patterns, as described in “Guidelines
for Creating a Pattern Folder” on page 5-7.

2 Open the chart that contains the custom pattern.

3 In the chart, select the flow graph with the pattern that you want to save.

4 In the editor, select Patterns > Save Pattern and take one of these
actions:

5-23

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

If you have... Then Pattern
Wizard...

Action

Not yet designated the
pattern folder

Prompts you to create
or select a pattern
folder

Select the folder you
just created. See “How
to Save Flow Graph
Patterns for Easy
Retrieval” on page 5-7.

Already designated
the pattern folder

Prompts you to save
your pattern to the
designated folder

Name your pattern
and click Save.

The Pattern Wizard automatically saves your pattern as an .mdl file under
the name you specify.

Adding the Upper Triangle Iterator Pattern to a Graphical
Function

1 Open a new chart.

2 Drag a graphical function into the chart from the object palette and enter
the following function signature:

function y = ut_iterator(u, numrow, numcol)

The function takes three inputs:

Input Description

u 2-D matrix

numrow Number of rows in the matrix

numcol Number of columns in the matrix

3 Right-click inside the function and selectMake Contents > Subcharted.

The function should look like this:

5-24

Creating Flow Graphs with the Pattern Wizard

4 Double-click to open the subcharted function and select Patterns > Add
Custom.

The Select a Custom Pattern dialog box appears, listing all the patterns
you saved in your pattern folder.

5-25

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

5 Select your upper triangle iterator pattern and click OK.

The Pattern Wizard adds your custom pattern to the graphical function.

Before calling this function from a chart, be sure to modify data names, types,
and sizes as necessary and substitute an appropriate action.

5-26

Drawing and Customizing Flow Graphs By Hand

Drawing and Customizing Flow Graphs By Hand

In this section...

“How to Draw a Flow Graph” on page 5-27

“How to Change Connective Junction Size” on page 5-27

“How to Modify Junction Properties” on page 5-28

How to Draw a Flow Graph
You can draw and customize flow graphs manually by using connective
junctions as branch points between alternate transition paths:

1 Open a chart.

2 From the editor toolbar, drag one or more connective junctions into the
chart using the Connective Junction tool:

3 Add transition paths between junctions.

4 Label the transitions.

5 Add a default transition to the junction where the flow graph should start.

How to Change Connective Junction Size
To change the size of connective junctions:

1 Select one or more connective junctions.

2 Right-click one of the selected junctions and select Junction Size from
the drop-down menu.

A menu of junction sizes appears.

3 Select a junction size.

5-27

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

How to Modify Junction Properties
To modify the properties of a connective junction:

1 Right-click a connective junction and select Properties from the drop-down
menu.

The Connective Junction dialog box appears.

2 Edit the fields in the dialog as desired.

5-28

Drawing and Customizing Flow Graphs By Hand

Field Description

Parent Parent of the connective junction (read-only).
Click the hypertext link to bring the parent to
the foreground.

Description Textual description or comment.

Document link Link to other information. Enter a URL address
or a general MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

3 Click Apply to save changes.

5-29

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Best Practices for Creating Flow Graphs
Follow these best practices to create efficient, accurate flow graphs:

Use only one default transition

Flows graphs should have a single entry point.

Provide only one terminating junction

Multiple terminating junctions reduce readability of a flow graph.

Converge all transition paths to the terminating junction

This guideline ensures that execution of a flow graph always reaches the
termination point.

Provide an unconditional transition from every junction except the
terminating junction

This guideline ensures that unintended backtracking behavior does not occur
in a flow graph. If unintended backtracking occurs during simulation, a
warning message appears.

You can control the level of diagnostic action for unintended backtracking in
the Diagnostics > Stateflow pane of the Configuration Parameters dialog
box. For more information, see the documentation for the “Unexpected
backtracking” diagnostic.

Unintended backtracking can occur at a junction under these conditions:

• The junction does not have an unconditional transition path to a state or
terminating junction.

• Multiple transition paths lead to that junction.

Use condition actions to process updates, not transition actions

Flow graphs test transitions, but do not execute them (and, therefore, never
execute transition actions).

5-30

Best Practices for Creating Flow Graphs

The following example illustrates these best practices:

5-31

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Enhancing Readability of Generated Code for Flow Graphs

In this section...

“Appearance of Generated Code for Flow Graphs” on page 5-32

“Converting If-Elseif-Else Code to Switch-Case Statements” on page 5-36

“Example of Converting Code for If-Elseif-Else Decision Logic to
Switch-Case Statements” on page 5-38

Appearance of Generated Code for Flow Graphs
When you use Embedded Coder™ software to generate code for embedded
real-time (ert) targets, the code from a flow graph resembles the samples
that follow.

The following characteristics apply:

• By default, the generated code uses if-elseif-else statements to
represent switch patterns. To convert the code to use switch-case
statements, see “Converting If-Elseif-Else Code to Switch-Case Statements”
on page 5-36.

• By default, variables that appear in the flow graph do not retain their
names in the generated code. Modified identifiers guarantee that no
naming conflicts occur.

• Traceability comments for the transitions appear between each set of /*
and */ markers. To learn more about traceability, see “Traceability of
Stateflow Objects in Generated Code” on page 25-82.

5-32

Enhancing Readability of Generated Code for Flow Graphs

if (modelname_U.In1 == 1.0) {
/* Transition: '<S1>:11' */
/* Transition: '<S1>:12' */
modelname_Y.Out1 = 10.0;

/* Transition: '<S1>:15' */
/* Transition: '<S1>:16' */

} else {
/* Transition: '<S1>:10' */
if (modelname_U.In1 == 2.0) {

/* Transition: '<S1>:13' */
/* Transition: '<S1>:14' */
modelname_Y.Out1 = 20.0;

/* Transition: '<S1>:16' */
} else {

/* Transition: '<S1>:17' */
modelname_Y.Out1 = 30.0;

}
}

Sample Code for a Decision Logic Pattern

5-33

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

for (sf_i = 0; sf_i < 10; sf_i++) {
/* Transition: '<S1>:40' */
/* Transition: '<S1>:41' */
modelname_B.y = modelname_B.y +

modelname_U.In1;

/* Transition: '<S1>:39' */
}

Sample Code for an Iterative Loop Pattern

5-34

Enhancing Readability of Generated Code for Flow Graphs

if (modelname_U.In1 == 1.0) {
/* Transition: '<S1>:149' */
/* Transition: '<S1>:150' */
modelname_Y.Out1 = 1.0;

/* Transition: '<S1>:151' */
/* Transition: '<S1>:152' */
/* Transition: '<S1>:158' */
/* Transition: '<S1>:159' */

} else {
/* Transition: '<S1>:156' */
if (modelname_U.In1 == 2.0) {

/* Transition: '<S1>:153' */
/* Transition: '<S1>:154' */
modelname_Y.Out1 = 2.0;

/* Transition: '<S1>:155' */
/* Transition: '<S1>:158' */
/* Transition: '<S1>:159' */

} else {
/* Transition: '<S1>:161' */
modelname_Y.Out1 = 3.0;

}
}

Sample Code for a Switch Pattern

5-35

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Converting If-Elseif-Else Code to Switch-Case
Statements
When you generate code for embedded real-time targets, you can choose to
convert if-elseif-else code to switch-case statements. This conversion
can enhance readability of the code. For example, when a flow graph contains
a long list of conditions, the switch-case structure:

• Reduces the use of parentheses and braces

• Minimizes repetition in the generated code

How to Convert If-Elseif-Else Code to Switch-Case Statements
The following procedure describes how to convert generated code for the flow
graph from if-elseif-else to switch-case statements.

Step Task Reference

1 Verify that your flow graph
follows the rules for conversion.

“Verifying the Contents of the
Flow Graph” on page 5-41

2 Enable the conversion. “Enabling the Conversion” on
page 5-42

3 Generate code for your model. “Generating Code for Your
Model” on page 5-43

4 Troubleshoot the generated code.

• If you see switch-case
statements for your flow
graph, you can stop.

• If you see if-elseif-else
statements for your flow
graph, update the chart and
repeat the previous step.

“Troubleshooting the Generated
Code” on page 5-43

Rules of Conversion
For the conversion to occur, the following rules must hold. LHS and RHS
refer to the left-hand side and right-hand side of a condition, respectively.

5-36

Enhancing Readability of Generated Code for Flow Graphs

Construct Rules to Follow

Flow graph Must have two or more unique conditions, in addition to a
default.

For more information, see “How the Conversion Handles
Duplicate Conditions” on page 5-37.

Must test equality only.Each
condition Must use the same variable or expression for the LHS.

Note You can reverse the LHS and RHS.

Must be a single variable or expression.

Cannot be a constant.

Must have an integer or enumerated data type.

Each LHS

Cannot have any side effects on simulation.

For example, the LHS can read from but not write to global
variables.

Must be a constant.Each RHS

Must have an integer or enumerated data type.

How the Conversion Handles Duplicate Conditions
If a flow graph has duplicate conditions, the conversion preserves only the
first condition. The code discards all other instances of duplicate conditions.

After removal of duplicates, two or more unique conditions must exist. If not,
no conversion occurs and the code contains all duplicate conditions.

5-37

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Example of Generated Code Code After Conversion

if (x == 1) {
block1

} else if (x == 2) {
block2

} else if (x == 1) { // duplicate
block3

} else if (x == 3) {
block4

} else if (x == 1) { // duplicate
block5

} else {
block6

}

switch (x) {
case 1:
block1; break;

case 2:
block2; break;

case 3:
block4; break;

default:
block6; break;

}

if (x == 1) {
block1

} else if (x == 1) { // duplicate
block2

} else {
block3

}

No change, because only one
unique condition exists

Example of Converting Code for If-Elseif-Else Decision
Logic to Switch-Case Statements
Suppose that you have the following model with a single chart.

5-38

Enhancing Readability of Generated Code for Flow Graphs

The chart contains a flow graph and four MATLAB functions:

5-39

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

The MATLAB functions in the chart contain the code in the following table. In
each case, the Function Inline Option is Auto. For more information about
function inlining, see “Specifying Graphical Function Properties” on page 7-47.

MATLAB Function Code

stop
function stop
%#codegen
coder.extrinsic('disp');
disp('Not moving.')

traffic_speed = 0;

slowdown
function slowdown
%#codegen
coder.extrinsic('disp')
disp('Slowing down.')

traffic_speed = 1;

accelerate
function accelerate
%#codegen
coder.extrinsic('disp');
disp('Moving along.')

traffic_speed = 2;

light
function color = light(x)
%#codegen
if (x < 20)

color = TrafficLights.GREEN;
elseif (x >= 20 && x < 25)

color = TrafficLights.YELLOW;
else

color = TrafficLights.RED;
end

5-40

Enhancing Readability of Generated Code for Flow Graphs

The output color of the function light uses the enumerated type
TrafficLights. The enumerated type definition in TrafficLights.m is:

classdef(Enumeration) TrafficLights < Simulink.IntEnumType
enumeration

RED(0)
YELLOW(5)
GREEN(10)

end
end

For more information, see “How to Define Enumerated Data in a Stateflow
Chart” on page 15-8.

Verifying the Contents of the Flow Graph
Check that the flow graph in your chart follows all the rules in “Rules of
Conversion” on page 5-36.

Construct How the Construct Follows the Rules

Flow graph Two unique conditions exist, in addition to the default:

• [light(intersection) == RED]

• [light(intersection) == YELLOW]

Each condition Each condition:

• Tests equality

• Uses the same function call light(intersection) for
the LHS

5-41

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Construct How the Construct Follows the Rules

Each LHS Each LHS:

• Contains a single expression

• Is the output of a function call and therefore not a
constant

• Is of enumerated type TrafficLights, which you define
in TrafficLights.m on the MATLAB path (see “How
to Define Enumerated Data in a Stateflow Chart” on
page 15-8)

• Uses a function call that has no side effects

Each RHS Each RHS:

• Is an enumerated value and therefore a constant

• Is of enumerated type TrafficLights

Enabling the Conversion

1 Open the Configuration Parameters dialog box.

2 In the Code Generation pane, select ert.tlc for the System target file.

This step specifies an ERT-based target for your model.

3 In the Code Generation > Code Style pane, select the Convert
if-elseif-else patterns to switch-case statements check box.

Tip This conversion works on a per-model basis. If you select this check
box, the conversion applies to:

• Flow graphs in all charts of a model

• MATLAB functions in all charts of a model

• All MATLAB Function blocks in that model

5-42

Enhancing Readability of Generated Code for Flow Graphs

Generating Code for Your Model
In the Code Generation pane of the Configuration Parameters dialog box,
click Build in the lower right corner.

Troubleshooting the Generated Code
The generated code for the flow graph appears something like this:

if (sf_color == RED) {
/* Transition: '<S1>:11' */
/* Transition: '<S1>:12' */
/* MATLAB Function 'stop': '<S1>:23' */
/* '<S1>:23:6' */
rtb_traffic_speed = 0;

/* Transition: '<S1>:15' */
/* Transition: '<S1>:16' */

} else {
/* Transition: '<S1>:10' */
/* MATLAB Function 'light': '<S1>:19' */
if (ifelse_using_enums_U.In1 < 20.0) {

/* '<S1>:19:3' */
/* '<S1>:19:4' */
sf_color = GREEN;

} else if ((ifelse_using_enums_U.In1 >= 20.0) &&
(ifelse_using_enums_U.In1 < 25.0)) {

/* '<S1>:19:5' */
/* '<S1>:19:6' */
sf_color = YELLOW;

} else {
/* '<S1>:19:8' */
sf_color = RED;

}

if (sf_color == YELLOW) {
/* Transition: '<S1>:13' */
/* Transition: '<S1>:14' */
/* MATLAB Function 'slowdown': '<S1>:24' */
/* '<S1>:24:6' */
rtb_traffic_speed = 1;

5-43

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

/* Transition: '<S1>:16' */
} else {

/* Transition: '<S1>:17' */
/* MATLAB Function 'accelerate': '<S1>:25' */
/* '<S1>:25:6' */
rtb_traffic_speed = 2;

}
}

Because the MATLAB function light appears inlined, inequality comparisons
appear in these lines of code:

if (ifelse_using_enums_U.In1 < 20.0) {
....
} else if ((ifelse_using_enums_U.In1 >= 20.0) &&

(ifelse_using_enums_U.In1 < 25.0)) {
....

Because inequalities appear in the body of the if-elseif-else code for the
flow graph, the conversion to switch-case statements does not occur. To
prevent this behavior, do one of the following:

• Specify that the function light does not appear inlined. See “Changing the
Inlining Property for the Function” on page 5-44.

• Modify the flow graph. See “Modifying the Flow Graph to Ensure
Switch-Case Statements” on page 5-46.

Changing the Inlining Property for the Function. If you do not want to
modify your flow graph, change the inlining property for the function light:

1 Right-click the function box for light and select Properties.

The properties dialog box appears.

2 For Function Inline Option, select Function.

3 Click OK to close the dialog box.

5-44

Enhancing Readability of Generated Code for Flow Graphs

Note You do not have to change the inlining property for the other three
MATLAB functions in the chart. Because the flow graph does not call those
functions during evaluation of conditions, the inlining property for those
functions can remain Auto.

When you regenerate code for your model, the code for the flow graph now
appears something like this:

switch (ifelse_using_enums_light(ifelse_using_enums_U.In1)) {
case RED:
/* Transition: '<S1>:11' */
/* Transition: '<S1>:12' */
/* MATLAB Function 'stop': '<S1>:23' */
/* '<S1>:23:6' */
ifelse_using_enums_Y.Out1 = 0.0;

/* Transition: '<S1>:15' */
/* Transition: '<S1>:16' */
break;

case YELLOW:
/* Transition: '<S1>:10' */
/* Transition: '<S1>:13' */
/* Transition: '<S1>:14' */
/* MATLAB Function 'slowdown': '<S1>:24' */
/* '<S1>:24:6' */
ifelse_using_enums_Y.Out1 = 1.0;

/* Transition: '<S1>:16' */
break;

default:
/* Transition: '<S1>:17' */
/* MATLAB Function 'accelerate': '<S1>:25' */
/* '<S1>:25:6' */
ifelse_using_enums_Y.Out1 = 2.0;
break;

}

5-45

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

Because the MATLAB function light no longer appears inlined, the
conversion to switch-case statements occurs. The switch-case statements
provide the following benefits to enhance readability:

• The code reduces the use of parentheses and braces.

• The LHS expression
ifelse_using_enums_light(ifelse_using_enums_U.In1) appears only
once, minimizing repetition in the code.

Modifying the Flow Graph to Ensure Switch-Case Statements. If you
do not want to change the inlining property for the function light, modify
your flow graph:

1 Add chart local data color_out with the enumerated type TrafficLights.

2 Replace each instance of light(intersection) with color_out.

3 Add the action {color_out = light(intersection)} to the default
transition of the flow graph.

5-46

Enhancing Readability of Generated Code for Flow Graphs

The chart should now look something like this:

When you regenerate code for your model, the code for the flow graph uses
switch-case statements.

5-47

5 Modeling Logic Patterns and Iterative Loops Using Flow Graphs

5-48

6

Building Mealy and Moore
Charts

• “Overview of Mealy and Moore Machines” on page 6-2

• “Creating Mealy and Moore Charts” on page 6-6

• “Design Considerations for Mealy Charts” on page 6-7

• “Design Considerations for Moore Charts” on page 6-13

• “Changing Chart Type” on page 6-24

• “Debugging Mealy and Moore Charts” on page 6-25

6 Building Mealy and Moore Charts

Overview of Mealy and Moore Machines

In this section...

“Semantics of Mealy and Moore Machines” on page 6-2

“Running a Demo of Mealy and Moore Machines” on page 6-3

“The Default State Machine Type” on page 6-3

“What Is State?” on page 6-4

“Availability of Output” on page 6-4

“Advantages of Mealy and Moore Charts Over Classic Stateflow Charts”
on page 6-4

Semantics of Mealy and Moore Machines
Mealy and Moore are often considered the basic, industry-standard paradigms
for modeling finite-state machines. Generally in state machine models, the
next state is a function of the current state and its inputs, as follows:

X n f X n u() ((),)+ =1

In this equation:

X(n) Represents the state at time step n

X(n+1) Represents the state at the next time step n+1

u Represents inputs

In this context, Mealy and Moore machines each have well-defined semantics.

6-2

Overview of Mealy and Moore Machines

Type of
Machine

Semantics Applications

Mealy Output is a function of inputs
and state:

y g X u= (,)

Clocked synchronous
machines where state
transitions occur on clock
edges

Moore Output is a function only of
state:

y g X= ()

Clocked synchronous
machines where outputs
are modified at clock edges

You can create charts that implement pure Mealy or Moore semantics as a
subset of Stateflow chart semantics (see “Creating Mealy and Moore Charts”
on page 6-6). Mealy and Moore charts can be used in simulation and code
generation of C and hardware description language (HDL).

Note To generate HDL code from Stateflow charts, you must use Simulink®

HDL Coder™ software, which is available separately.

Running a Demo of Mealy and Moore Machines
Stateflow software ships with a model that shows how to use Mealy and Moore
machines for sequence recognition in signal processing. To run the demo:

1 At the MATLAB prompt, type:

demo simulink stateflow

The Help browser shows a list of demos you can access.

2 Click the demo titled Sequence Recognition Using Mealy and Moore
Charts.

The Default State Machine Type
When you create a Stateflow chart, the default type is a hybrid state
machine model that combines the semantics of Mealy and Moore charts with

6-3

6 Building Mealy and Moore Charts

the extended Stateflow chart semantics (see Chapter 3, “Stateflow Chart
Semantics”). This default chart type is called Classic.

What Is State?
State is a combination of local data and chart activity. Therefore, computing
state means updating local data and making transitions from a currently
active state to a new state. State persists from one time step to another. In
a Classic Stateflow chart, output behaves like state because output values
persist between time steps. However, unlike state, output is available outside
the chart through output ports. By contrast, output in Mealy and Moore
charts does not persist and instead must be computed in each time step.

Availability of Output
Mealy machines compute output on transitions, while Moore machines
compute outputs in states. Therefore, Mealy charts can compute output
earlier than Moore charts — that is, at the time the chart’s default path
executes. If you enable the chart property Execute (enter) Chart At
Initialization, this computation occurs at t = 0 (first time step); otherwise, it
occurs at t = 1 (next time step). By contrast, Moore machines can compute
outputs only after the default path executes. Until then, outputs take the
default values.

The following summary describes the earliest time at which Mealy and Moore
charts can compute outputs:

Execute (enter) Chart
at Initialization

Mealy Computes
Outputs at:

Moore Computes
Outputs at:

Enabled t = 0 t = 1

Disabled t = 1 t = 2

Advantages of Mealy and Moore Charts Over Classic
Stateflow Charts
Mealy and Moore charts offer the following advantages over Classic Stateflow
charts:

6-4

Overview of Mealy and Moore Machines

• You can verify the Mealy and Moore charts you create to ensure that they
conform to their formal definitions and semantic rules. Error messages
appear at compile time (not at design time).

• Moore charts provide a more efficient implementation than Classic charts,
both for C and HDL targets.

6-5

6 Building Mealy and Moore Charts

Creating Mealy and Moore Charts
To create a new Mealy or Moore chart, follow these steps:

1 Add a new Stateflow block to a Simulink model; then double-click the block
to open the Stateflow Editor.

2 Right-click in the Stateflow Editor and select Properties.

The Chart Properties dialog box opens on your desktop.

3 From the State Machine Type drop-down menu, selectMealy orMoore.

4 Click OK.

The chart icon updates to display the selected chart type:

Mealy Moore

5 Design your chart according to the guidelines for the chart type (see “Design
Considerations for Mealy Charts” on page 6-7 and “Design Considerations
for Moore Charts” on page 6-13.

6-6

Design Considerations for Mealy Charts

Design Considerations for Mealy Charts

In this section...

“Mealy Semantics” on page 6-7

“Design Rules for Mealy Charts” on page 6-7

“Example: Mealy Vending Machine” on page 6-10

Mealy Semantics
To ensure that output is a function of input and state, Mealy state machines
enforce the following semantics:

• Outputs never depend on previous outputs.

• Outputs never depend on the next state.

• Chart wakes up periodically based on a system clock.

Note A chart provides one time base for input and clock (see “Calculate
Output and State Using One Time Base” on page 6-10).

• Chart must compute outputs whenever there is a change on the input port.

• Chart must compute outputs only in transitions, not in states.

Design Rules for Mealy Charts
To conform to the Mealy definition of a state machine, you must ensure that a
Mealy chart computes outputs every time there is a change on the input port.
As a result, you must follow a set of design rules for Mealy charts.

• “Compute Outputs in Condition Actions Only” on page 6-8

• “Do Not Use State Actions or Transition Actions” on page 6-8

• “Restrict Use of Data” on page 6-8

• “Restrict Use of Events” on page 6-9

• “Calculate Output and State Using One Time Base” on page 6-10

6-7

6 Building Mealy and Moore Charts

Compute Outputs in Condition Actions Only
You can compute outputs only in the condition actions of outer and inner
transitions. A common modeling style for Mealy machines is to test inputs in
conditions and compute outputs in the associated action.

Do Not Use State Actions or Transition Actions
You cannot use state actions or transition actions in Mealy charts. This
restriction enforces Mealy semantics by:

• Preventing you from computing output without considering changes on
the input port

• Ensuring that output depends on current state and not next state

Restrict Use of Data
You can define inputs, outputs, local data, parameters, and constants in
Mealy charts, but other data restrictions apply:

• “Restrict Machine-Parented Data to Constants and Parameters” on page
6-8

• “Do Not Define Data Store Memory” on page 6-9

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine,
which is the collection of all Stateflow blocks in a Simulink model. The
Stateflow machine is the highest level of the Stateflow hierarchy. When you
define data at this level, every chart in the machine can read and modify the
data. To ensure that Mealy charts do not access data that can be modified
unpredictably outside the chart, you can define only constants and parameters
at the machine level.

Note Chart parameters have constant value during simulation and code
generation.

6-8

Design Considerations for Mealy Charts

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Mealy charts because DSM objects can be modified by objects
external to the chart. A Stateflow chart uses data store memory to share data
with a Simulink model. Data store memory acts as global data that can be
modified by other blocks and models in the Simulink hierarchy that contains
the chart. Mealy charts should not access data that can change unpredictably.

Restrict Use of Events
Limit the use of events in Mealy charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use event-based temporal logic to
guard transitions

You can use event-based temporal
logic in Mealy charts because
it behaves synchronously (see
“Operators for Event-Based
Temporal Logic” on page 10-64).
Think of the change in value of a
temporal logic condition as an event
that the chart schedules internally.
Therefore, at each time step, the
chart retains its notion of state
because it knows how many ticks
remain before the temporal event
executes.

Note In Mealy charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Keywords for
Implicit Events” on page 9-40).

Use local events to guard transitions

You cannot use local events in
Mealy charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Mealy
semantics that require charts to
compute outputs whenever input
changes.

6-9

6 Building Mealy and Moore Charts

Calculate Output and State Using One Time Base
You can use one time base for clock and input, as determined by the Simulink
solver (see “Solvers”). The Simulink solver sets the clock rate to be fast
enough to capture input changes. As a result, a Mealy chart commonly
computes outputs and changes states in the same time step.

Example: Mealy Vending Machine
The following chart uses Mealy semantics to model a vending machine.

6-10

Design Considerations for Mealy Charts

Opening the Model
To open the model of a Mealy vending machine, type
sf_mealy_vending_machine at the MATLAB command prompt.

Logic of the Mealy Vending Machine
In this example, the vending machine requires 15 cents to release a can of
soda. The purchaser can insert a nickel or a dime, one at a time, to purchase
the soda. The chart behaves like a Mealy machine because its output soda
depends on both the input coin and current state, as follows:

When initial state got_0 is active. No coin has been received or no coins
are left.

• If a nickel is received (coin == 1), output soda remains 0, but state
got_nickel becomes active.

• If a dime is received (coin == 2), output soda remains 0, but state got_dime
becomes active.

• If input coin is not a dime or a nickel, state got_0 stays active and no
soda is released (output soda = 0).

In active state got_nickel. A nickel was received.

• If another nickel is received (coin == 1), state got_dime becomes active,
but no can is released (soda remains at 0).

• If a dime is received (coin == 2), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If input coin is not a dime or a nickel, state got_nickel stays active and
no can is released (output soda = 0).

In active state got_dime. A dime was received.

• If a nickel is received (coin == 1), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If a dime is received (coin == 2), a can is released (soda = 1), 15 cents
is banked, and the active state becomes got_nickel because a nickel
(change) is left.

6-11

6 Building Mealy and Moore Charts

• If input coin is not a dime or a nickel, state got_dime stays active and no
can is released (output soda = 0).

Design Rules in Mealy Vending Machine
This example of a Mealy vending machine illustrates the following Mealy
design rules:

• The chart computes outputs in condition actions.

• There are no state actions or transition actions.

• The chart defines chart inputs (coin) and outputs (soda).

• The value of the input coin determines the output — whether or not soda
is released.

6-12

Design Considerations for Moore Charts

Design Considerations for Moore Charts

In this section...

“Moore Semantics” on page 6-13

“Design Rules for Moore Charts” on page 6-13

“Example: Moore Traffic Light” on page 6-20

Moore Semantics
In Moore charts, output is a function of current state only. At every time step,
a Moore chart wakes up, computes its outputs, and then evaluates its inputs
to reconfigure itself for the next time step. For example, after evaluating its
inputs, the Moore chart may take transitions to a new configuration of active
states, also called next state. However, the Moore chart must always compute
its outputs before changing state.

To ensure that output is a function only of state, Moore state machines enforce
the following semantics:

• Outputs depend only on the current state, not the next state.

• Outputs never depend on previous outputs.

• Chart must compute outputs only in states, not in transitions.

• Chart must compute outputs before updating state.

Design Rules for Moore Charts
To conform to the Moore definition of a state machine, you must ensure that
every time a Moore chart wakes up, it computes outputs from the current set
of active states without regard to input. As a result, you must follow a set of
design rules for Moore charts.

• “Compute Outputs in State Actions, Not on Transitions” on page 6-14

• “Restrict Data to Inputs, Outputs, and Constants” on page 6-16

• “Reference Input Only in Conditions” on page 6-17

• “Do Not Use Actions on Transitions” on page 6-19

6-13

6 Building Mealy and Moore Charts

• “Do Not Use Graphical Functions” on page 6-19

• “Do Not Use Truth Tables, MATLAB Functions, or Simulink Functions”
on page 6-19

• “Restrict Use of Events” on page 6-19

Compute Outputs in State Actions, Not on Transitions
To ensure that outputs depend solely on current state, you must compute
outputs in state actions, subject to the following restrictions:

• “Combine During and Exit Actions” on page 6-14

• “Allow Actions in Leaf States Only” on page 6-15

• “Do Not Label State Actions” on page 6-16

You cannot define actions on transitions because transitions almost always
depend on inputs. For example, if you compute outputs in a condition action
on a transition, the chart updates outputs whenever there is a change on the
input — a violation of Moore semantics.

Combine During and Exit Actions. For Classic charts, you can define
different types of actions in states (see “State Action Types” on page 10-2).
Each action can consist of multiple command statements. In Moore charts,
you can include only one action per state, but the chart executes the action as
both a during and an exit action. This duality ensures that the chart never
exits a state before computing its outputs because:

• The chart executes the action while the state is active and there are no
valid transitions to take (like a during action)

• The chart also executes the action just before exiting the state to take a
valid transition (like an exit action)

In other words, all active states in Moore charts compute their outputs in a
consistent way whether an outer transition is valid or not.

To implement the duality of execution, the during and exit actions must be
identical, as in this example.

6-14

Design Considerations for Moore Charts

Moore states do not differentiate between during and exit actions, as shown
here.

Note There are no labels on state actions in Moore charts (see “Do Not Label
State Actions” on page 6-16).

Allow Actions in Leaf States Only. In Moore charts, you can add actions
only to leaf states. A leaf state is a state that resides at the lowest level of
the Stateflow hierarchy and, therefore, does not parent any other states.
This restriction ensures that when you compute outputs in state actions,
the following is true:

• Outputs are not defined at multiple levels in the hierarchy with different
values.

• The same top-down semantics apply for executing Moore charts as for
Classic charts. In this way, charts compute outputs as if they evaluate
actions before inner and outer flow graphs. This behavior guarantees that
the outputs will be identical for both chart types.

You can compute outputs in leaf states that have exclusive (OR) or parallel
(AND) decomposition. However, you should not compute the same outputs in

6-15

6 Building Mealy and Moore Charts

sibling parallel (AND) states because the values computed by the last state
executed will prevail, overwriting the previously computed values.

For descriptions of chart execution semantics, see “Types of Chart Execution”
on page 3-39 and Semantic Rules Summary.

Do Not Label State Actions. Do not label state actions in Moore charts
with any keywords — such as du, during, ex, or exit. State actions behave
in Moore charts as during and exit actions automatically, as explained
in “Combine During and Exit Actions” on page 6-14. Moore charts never
execute entry actions because these actions always execute as the result of a
transition and, therefore, depend on inputs.

Restrict Data to Inputs, Outputs, and Constants
You can define inputs, outputs, parameters, and constants in Moore charts,
but other data restrictions apply:

• “Do Not Define Local Data” on page 6-16

• “Restrict Machine-Parented Data to Constants and Parameters” on page
6-17

• “Do Not Define Data Store Memory” on page 6-17

Do Not Define Local Data. You cannot define local data in Moore charts.
In Classic charts, you can use local data to transfer inputs to outputs, as
in this example:

local_D = input_U;
output_Y = local_D;

However, in Moore charts, you compute outputs from current state only, but
never from local data. When a chart contains local data, it cannot easily verify
that outputs do not depend on inputs.

6-16

Design Considerations for Moore Charts

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine, which
is the collection of Stateflow blocks in a Simulink model. The Stateflow
machine is the highest level of the Stateflow hierarchy. When you define
data at this level, every chart in the machine can read and modify the
data. To ensure that Moore charts do not access data that can be modified
unpredictably outside the chart, you can define only constants and parameters
at the machine level.

Note Chart parameters have constant value during simulation and code
generation.

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Moore charts because DSM objects can be modified by objects
external to the chart. A Stateflow chart uses data store memory to share data
with a Simulink model. Data store memory acts as global data that can be
modified by other blocks and models in the Simulink hierarchy that contains
the chart. Moore charts should not access data that can change unpredictably.

Reference Input Only in Conditions
In Classic Stateflow charts, you can test inputs in conditions on transitions,
and then modify outputs in associated condition actions and transition
actions. However, in Moore charts, outputs can never depend on inputs.
Therefore, you can set up conditions on transitions that reference inputs, but
you cannot add actions to transitions that modify outputs based on those
conditions. For example, you can use these transitions in a Moore chart.

6-17

6 Building Mealy and Moore Charts

In this example, each transition tests input u in a condition, but modifies
output y in a state action.

By contrast, these transitions are illegal in a Moore chart.

6-18

Design Considerations for Moore Charts

Here, each transition tests input u in a condition, but modifies output y in
a condition action, based on the value of the input. This construct violates
Moore semantics and generates a compiler error. Similarly, you cannot use
transition actions in Moore charts.

Do Not Use Actions on Transitions
You cannot define condition actions or transition actions in Moore charts (see
“Reference Input Only in Conditions” on page 6-17).

Do Not Use Graphical Functions
You cannot use graphical functions in Moore charts. This restriction prevents
scenarios that violate Moore semantics, such as:

• Adding conditions that call functions which compute outputs as a side effect

• Adding state actions that call functions which reference inputs

Do Not Use Truth Tables, MATLAB Functions, or Simulink
Functions
You cannot use truth tables, MATLAB functions, or Simulink functions in
Moore charts. These restrictions prevent violations of Moore semantics during
chart execution.

Restrict Use of Events
Limit the use of events in Moore charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use event-based temporal logic to
guard transitions

You can use event-based temporal
logic in Moore charts because
it behaves synchronously (see
“Operators for Event-Based
Temporal Logic” on page 10-64).
Think of the change in value of a

Use local events to guard transitions

You cannot use local events in
Moore charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Moore
semantics that require charts to

6-19

6 Building Mealy and Moore Charts

Do: Do Not:

temporal logic condition as an event
that the chart schedules internally.
Therefore, at each time step, the
chart retains its notion of state
because it knows how many ticks
remain before the temporal event
executes.

Note In Moore charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Keywords for
Implicit Events” on page 9-40).

compute outputs whenever input
changes.

Example: Moore Traffic Light
The following chart uses Moore semantics to model a traffic light:

6-20

Design Considerations for Moore Charts

Opening the Model
To open the model of a Moore traffic light, type sf_moore_traffic_light
at the MATLAB command prompt.

6-21

6 Building Mealy and Moore Charts

Logic of the Moore Traffic Light
In this example, the traffic light model contains a Moore chart called
Light_Controller, which operates in five traffic states. Each state represents
the color of the traffic light in two opposite directions — North-South and
East-West — and the duration of the current color. The name of each state
represents the operation of the light viewed from the North-South direction.

This chart uses temporal logic to regulate state transitions. The after
operator implements a countdown timer, which initializes when the source
state is entered. By default, the timer provides a longer green light in the
East-West direction than in the North-South direction because the volume
of traffic is greater on the East-West road. The green light in the East-West
direction stays on for at least 20 clock ticks, but it can remain green as long as
no traffic arrives in the North-South direction. A sensor detects whether cars
are waiting at the red light in the North-South direction. If so, the light turns
green in the North-South direction to keep traffic moving.

The Light_Controller chart behaves like a Moore machine because it updates
its outputs based on current state before transitioning to a new state, as
follows:

When initial state Stop is active. Traffic light is red for North-South,
green for East-West.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = GREEN (East-West) based on current state.

• After 20 clock ticks, active state becomes StopForTraffic.

In active state StopForTraffic. Traffic light has been red for North-South,
green for East-West for at least 20 clock ticks.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = GREEN (East-West) based on current state.

• Checks sensor.

• If sensor indicates cars are waiting ([sens] is true) in the North-South
direction, active state becomes StopToGo.

6-22

Design Considerations for Moore Charts

In active state StopToGo. Traffic light must reverse traffic flow in response
to sensor.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = YELLOW (East-West) based on current state.

• After 3 clock ticks, active state becomes Go.

In active state Go. Traffic light has been red for North-South, yellow for
East-West for 3 clock ticks.

• Sets output y1 = GREEN (North-South) based on current state.

• Sets output y2 = RED (East-West) based on current state.

• After 10 clock ticks, active state becomes GoToStop.

In active state GoToStop. Traffic light has been green for North-South,
red for East-West for 10 clock ticks.

• Sets output y1 = YELLOW (North-South) based on current state.

• Sets output y2 = RED (East-West) based on current state.

• After 3 clock ticks, active state becomes Stop.

Design Rules in Moore Traffic Light
This example of a Moore traffic light illustrates the following Moore design
rules:

• The chart computes outputs in state actions.

• Actions appear in leaf states only.

• Leaf states contain no more than one action.

• The chart tests inputs in conditions on transitions.

• The chart uses temporal logic, but no asynchronous events.

• The chart defines chart inputs (sens) and outputs (y1 and y2).

6-23

6 Building Mealy and Moore Charts

Changing Chart Type
The best practice is to not change from one Stateflow chart type to another in
the middle of development. You cannot automatically convert the semantics
of the original chart to conform to the design rules of the new chart type.
Changing type usually requires you to redesign your chart to achieve
equivalent behavior— that is, where both charts produce the same sequence
of outputs given the identical sequence of inputs. To assist you, diagnostic
messages appear at compile time (see “Debugging Mealy and Moore Charts”
on page 6-25). In some cases, however, there may be no way to translate
specific behaviors without violating chart definitions.

Here is a summary of what happens when you change chart types mid-design.

From To Result

Mealy Classic Mealy charts retain their semantics when changed to
Classic type.

Classic Mealy If the Classic chart confirms to Mealy semantic rules, the
Mealy chart exhibits equivalent behavior, provided that
output is defined at every time step.

Moore Classic State actions in the Moore chart behave as entry actions
because they are not labeled. Therefore, the Classic chart
will not exhibit behavior that is equivalent to the original
Moore chart. Requires redesign.

Classic Moore Actions that are unlabeled in the Classic chart (entry
actions by default) behave as during and exit actions.
Therefore, the Moore chart will not exhibit behavior that is
equivalent to the original Classic chart. Requires redesign.

Mealy Moore

Moore Mealy

Converting between these two types does not produce
equivalent behavior because Mealy and Moore rules about
placement of actions are mutually exclusive. Requires
redesign.

6-24

Debugging Mealy and Moore Charts

Debugging Mealy and Moore Charts
At compile time, informative diagnostic messages appear to help you:

• Design Mealy and Moore charts from scratch

• Redesign legacy Classic charts to conform to Mealy and Moore semantics

• Redesign charts to convert between Mealy and Moore types

For example, recall the Mealy vending machine chart described in “Example:
Mealy Vending Machine” on page 6-10.

6-25

6 Building Mealy and Moore Charts

If you change the chart type to Moore and rebuild, you get the following
diagnostic message:

Stateflow Moore chart cannot have condition or transition actions.

This indicates that you cannot define actions on transitions. Without actions,
you cannot compute outputs on transitions in Moore charts (see “Do Not Use
Actions on Transitions” on page 6-19). According to Moore semantics, you
must instead compute outputs in state actions (see “Design Rules for Moore
Charts” on page 6-13).

6-26

Debugging Mealy and Moore Charts

In the Mealy chart, each condition action computes output (whether or not
soda is released) based on input (the coin received). Each state represents one
of the three possible coin inputs: nickel, dime, or no coin. The Mealy chart
computes the output as it transitions to the next state. When you move this
logic out of transitions and into state actions in the Moore chart, you need
more states. The reason is that in the Moore chart, each state must represent
not only coins received, but also the soda release condition. The Moore chart
must compute output according to the active state before considering input.
As a result, there will be a delay in releasing soda, even if the machine
receives enough money to cover the cost.

The equivalent vending machine, designed as a Moore chart, is as follows.

6-27

6 Building Mealy and Moore Charts

6-28

Debugging Mealy and Moore Charts

The semantics of the two charts differ as follows:

Mealy Vending Machine Moore Vending Machine

Uses 3 states Uses 5 states

Computes outputs in condition
actions

Computes outputs in state actions

Updates output based on input Updates output before evaluating
input, requiring an extra time step
to produce the soda

For this vending machine, Mealy is a better modeling paradigm because there
is no delay in releasing soda once sufficient coins are received. By contrast,
the Moore vending machine requires an extra time step to pass before
producing soda. Since the Moore vending machine accepts a nickel, a dime,
or no coin in a given time step, it is possible that the soda will be produced
in a time step in which a coin is accepted toward the next purchase. In this
situation, the delivery of a soda may appear to be in response to this coin, but
actually occurs because the vending machine received the purchase price in
previous time steps.

6-29

6 Building Mealy and Moore Charts

6-30

7

Extending Stateflow Charts

• “Using History Junctions to Extend Charts and States” on page 7-2

• “Using Subcharts to Extend Charts” on page 7-6

• “Using Supertransitions to Extend Transitions” on page 7-12

• “Extending Transitions with Smart Behavior” on page 7-20

• “Using Graphical Functions to Extend Actions” on page 7-30

• “Using Boxes to Extend Charts” on page 7-50

• “Using Notes to Extend Charts” on page 7-58

• “Printing Stateflow Charts” on page 7-61

7 Extending Stateflow® Charts

Using History Junctions to Extend Charts and States

In this section...

“About History Junctions” on page 7-2

“Creating a History Junction” on page 7-2

“Changing History Junction Size” on page 7-3

“Changing History Junction Properties” on page 7-3

About History Junctions
History junctions extend the ability of charts and states by recording the
activity of substates inside superstates. Use a history junction in a chart or
superstate to indicate that its last active substate becomes active when the
chart or superstate becomes active.

Creating a History Junction
To create a history junction, do the following:

1 In the editor toolbar, click the History Junction icon:

2 Move your pointer into the chart.

The pointer takes on the shape of a junction.

3 Click to place a history junction inside the state whose last active substate
it records.

To create multiple history junctions, do the following:

1 In the editor toolbar, double-click the History Junction icon.

2 The button is now in multiple-object mode.

3 Click anywhere in the drawing area to place a history junction.

7-2

Using History Junctions to Extend Charts and States

4 Move to and click another location to create an additional history junction.

5 Click the History Junction icon or press the Esc key to cancel the operation.

To move a history junction to a new location, click and drag it to the new
position.

Changing History Junction Size
To change the size of junctions, do the following:

1 Select the history junctions whose size you want to change.

2 Place your pointer over one of the junctions and right-click.

3 In the resulting submenu, place your pointer over Junction Size.

A menu of junction sizes appears.

4 Select a size from the menu of junction sizes.

Changing History Junction Properties
To edit the properties for a junction, do the following:

1 Right-click a junction.

2 In the resulting submenu, select Properties.

The History Junction dialog box appears as shown.

7-3

7 Extending Stateflow® Charts

3 Edit the fields in the properties dialog box, which are described in the
following table:

Field Description

Parent Parent of this history junction; read-only; click
the hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

4 When finished editing, select one of the following:

• Select the Apply button to save the changes.

7-4

Using History Junctions to Extend Charts and States

• Select the Cancel button to cancel any changes you’ve made.

• Select OK to save the changes and close the dialog box.

• Select the Help button to display the Stateflow online help in an HTML
browser window.

7-5

7 Extending Stateflow® Charts

Using Subcharts to Extend Charts

In this section...

“What Is a Subchart?” on page 7-6

“Creating a Subchart” on page 7-7

“Rules of Subchart Conversion” on page 7-7

“Example of Converting a State to a Subchart” on page 7-7

“Manipulating Subcharts as Objects” on page 7-9

“Opening a Subchart” on page 7-9

“Editing a Subchart” on page 7-10

“Navigating Subcharts” on page 7-11

What Is a Subchart?
You can create charts within charts. A chart that is embedded in another
chart is called a subchart. The subchart can contain anything a top-level chart
can, including other subcharts. You can nest subcharts to any level.

A subcharted state is a superstate of the states and charts that it contains.
It appears as a block with its name in the block center. However, you can
define actions and default transitions for subcharts just as you can for
superstates. You can also create transitions to and from subcharts just as
you can create transitions to and from superstates. Further, you can create
transitions between states residing outside a subchart and any state within
a subchart. The term supertransition refers to a transition that crosses
subchart boundaries in this way. See “Using Supertransitions to Extend
Transitions” on page 7-12 for more information.

Subcharts enable you to reduce a complex chart to a set of simpler,
hierarchically organized charts. This design makes the chart easier to
understand and maintain, without changing the chart behavior. Subchart
boundaries do not apply during simulation and code generation.

Subcharts define a containment hierarchy within a top-level chart. A
subchart or top-level chart is the parent of the charts it contains at the first

7-6

Using Subcharts to Extend Charts

level and an ancestor of all the subcharts contained by its children and their
descendants at lower levels.

Some subcharts can be atomic if they meet certain modeling requirements.
For more information, see Chapter 11, “Making States Reusable with Atomic
Subcharts”.

Creating a Subchart
You create a subchart by converting an existing state, box, or graphical
function into the subchart. The object to convert can be one that you create
for making a subchart or an existing object whose contents you want to turn
into a subchart.

To convert a new or existing state, box, or graphical function to a subchart:

1 Right-click the object and selectMake Contents > Subcharted.

2 Confirm that the object now appears as a subchart.

To convert the subchart back to its original form, right-click the subchart. In
the context menu, select Make Contents > Subcharted.

Rules of Subchart Conversion
When you convert a box to a subchart, the subchart retains the attributes of
a box. For example, the position of the resulting subchart determines its
activation order in the chart if implicit ordering is enabled (see “Using Boxes
to Extend Charts” on page 7-50 for more information).

You cannot undo the operation of converting a subchart back to its original
form. When you perform this operation, the undo and redo buttons are
disabled from undoing and redoing any prior operations.

Example of Converting a State to a Subchart
Suppose that you have the following chart:

7-7

7 Extending Stateflow® Charts

1 To convert the On state to a subchart, right-click the state and selectMake
Contents > Subcharted.

2 Confirm that the On state now appears as a subchart.

7-8

Using Subcharts to Extend Charts

Manipulating Subcharts as Objects
Subcharts also act as individual objects. You can move, copy, cut, paste,
relabel, and resize subcharts as you would states and boxes. You can also
draw transitions to and from a subchart and any other state or subchart at the
same or different levels in the chart hierarchy (see “Using Supertransitions to
Extend Transitions” on page 7-12).

Opening a Subchart
Opening a subchart allows you to view and change its contents. To open
a subchart, do one of the following:

• Double-click anywhere in the box that represents the subchart.

• Select the box representing the subchart and press the Enter key.

The contents of the subchart appear.

7-9

7 Extending Stateflow® Charts

A shaded border surrounds the contents of the subchart. This border displays
supertransitions.

To return to the previous view, select Back from the shortcut menu, press the
Esc key on your keyboard, or select the up or back arrow on the toolbar.

Editing a Subchart
After you open a subchart (see “Opening a Subchart” on page 7-9), you can
perform any editing operation on its contents that you can perform on a
top-level chart. This means that you can create, copy, paste, cut, relabel, and
resize the states, transitions, and subcharts in a subchart. You can also group
states, boxes, and graphical functions inside subcharts.

You can also cut and paste objects between different levels in your chart. For
example, to copy objects from a top-level chart to one of its subcharts, first

7-10

Using Subcharts to Extend Charts

open the top-level chart and copy the objects. Then open the subchart and
paste the objects into the subchart.

Transitions from outside subcharts to states or junctions inside subcharts are
called supertransitions. You create supertransitions differently than you do
ordinary transitions. See “Using Supertransitions to Extend Transitions” on
page 7-12 for information on creating supertransitions.

Navigating Subcharts
The Stateflow Editor toolbar contains a set of buttons for navigating the
subchart hierarchy of a chart.

Tool Description

If the Stateflow Editor is displaying a subchart, clicking this
button replaces the subchart with the subchart’s parent in
the Stateflow Editor. If the Stateflow Editor is displaying a
top-level chart, clicking this button replaces the chart with the
Simulink model window containing that chart.

Clicking this button shows the chart that you visited before the
current chart, so that you can navigate up the hierarchy.

Clicking this button shows the chart that you visited after
visiting the current chart, so that you can navigate down the
hierarchy.

Note You can also use the key sequence .. (that is, press the period key twice)
to navigate up to the parent object for a subcharted state, box, or function.

7-11

7 Extending Stateflow® Charts

Using Supertransitions to Extend Transitions

In this section...

“What Is a Supertransition?” on page 7-12

“Drawing a Supertransition Into a Subchart” on page 7-14

“Drawing a Supertransition Out of a Subchart” on page 7-17

“Labeling Supertransitions” on page 7-18

What Is a Supertransition?
A supertransition is a transition between different levels in a chart, for
example, between a state in a top-level chart and a state in one of its
subcharts, or between states residing in different subcharts at the same or
different levels in a chart. You can create supertransitions that span any
number of levels in your chart, for example, from a state at the top level to a
state that resides in a subchart several layers deep in the chart.

7-12

Using Supertransitions to Extend Transitions

The point where a supertransition enters or exits a subchart is called a slit.
Slits divide a supertransition into graphical segments. For example, the
following chart shows a supertransition leaving the On subchart:

7-13

7 Extending Stateflow® Charts

The same supertransition appears inside the subchart as follows:

In this example, supertransition [Heater.On.warm()] goes from NORM in
the On subchart to the Off state in the parent chart. Both segments of the
supertransition have the same label.

Drawing a Supertransition Into a Subchart
Use the following steps to draw a supertransition from an object outside a
subchart to an object inside the subchart.

7-14

Using Supertransitions to Extend Transitions

Note You cannot undo the operation of drawing a supertransition. When you
perform this operation, the undo and redo buttons are disabled from undoing
and redoing any prior operations.

1 Position your pointer over the border of the state.

The pointer assumes the crosshairs shape.

2 Drag the mouse.

Dragging the mouse causes a supertransition segment to appear. The
segment looks like a regular transition. It is curved and is tipped by an
arrowhead.

3 Drag the segment’s tip anywhere just inside the border of the subchart.

The arrowhead now penetrates the slit.

If you are not happy with the initial position of the slit, you can continue to
drag the slit around the inside edge of the subchart to the desired location.

7-15

7 Extending Stateflow® Charts

4 Continue dragging your pointer toward the center of the subchart.

A wormhole appears in the center of the subchart.

A wormhole allows you to open a subchart while drawing a supertransition.

5 Drag your pointer over the center of the wormhole.

The subchart opens. Now the wormhole and supertransition are visible
inside the subchart.

6 Drag and drop the tip of the supertransition anywhere on the border of the
object that you want to terminate the transition.

7-16

Using Supertransitions to Extend Transitions

Note If the terminating object resides within a subchart in the current
subchart, continue to drag the tip of the supertransition through the
wormhole of the inner subchart and complete the connection inside the
inner chart. In this way, you can draw a supertransition to an object at any
subchart depth in the chart.

Drawing a Supertransition Out of a Subchart
Use the following steps to draw a supertransition out of a subchart.

Caution You cannot undo the operation of drawing a supertransition. When
you perform this operation, the undo and redo buttons are disabled from
undoing and redoing any prior operations.

1 Draw an inner transition segment from the source object anywhere just
outside the border of the subchart

A slit appears as shown.

2 Keep dragging the transition away from the border of the subchart.

A wormhole appears.

7-17

7 Extending Stateflow® Charts

3 Drag the transition down the wormhole.

The parent of the subchart appears.

4 Complete the connection.

Note If the parent chart is itself a subchart and the terminating object
resides at a higher level in the subchart hierarchy, you can continue
drawing by dragging the supertransition into the border of the parent
subchart. In this way, you can connect objects separated by any number of
layers in the subchart hierarchy.

Labeling Supertransitions
A supertransition is displayed with multiple resulting transition segments for
each layer of containment traversed. For example, if you create a transition
between a state outside a subchart and a state inside a subchart of that
subchart, you create a supertransition with three segments, each displayed at
a different containment level.

7-18

Using Supertransitions to Extend Transitions

You can label any one of the transition segments constituting a supertransition
using the same procedure used to label a regular transition (see “Labeling
Transitions” on page 4-19). The resulting label appears on all the segments
that constitute the supertransition. Also, if you change the label on any one of
the segments, the change appears on all segments.

7-19

7 Extending Stateflow® Charts

Extending Transitions with Smart Behavior

In this section...

“What Are Smart Transitions?” on page 7-20

“Setting Smart Behavior in Transitions” on page 7-20

“What Smart Transitions Do” on page 7-20

“What Nonsmart Transitions Do” on page 7-27

What Are Smart Transitions?
Smart transitions attach their ends to the surfaces of Stateflow objects and
maintain their shapes and uniqueness when you rearrange chart objects.

Setting Smart Behavior in Transitions
By default, new transitions have smart behavior, on the assumption that this
behavior is desirable in most circumstances. You can disable or enable smart
behavior in existing transitions with the following steps:

1 Right-click a transition.

On the resulting menu, observe the selection titled Smart. If a check mark
appears in front of Smart, the transition has smart behavior.

2 If no check mark appears for Smart, select it to enable smart behavior.

To disable smart transition behavior, select Smart so that no check mark
appears.

Note Transitions with smart behavior differ graphically only. Apart from
graphical behavior, there is no difference in meaning between a transition
with and without smart behavior.

What Smart Transitions Do
The following topics discuss some of the behaviors of smart transitions:

7-20

Extending Transitions with Smart Behavior

• “Smart Transitions Slide Around Surfaces” on page 7-21

• “Smart Transitions Slide and Maintain Shape” on page 7-22

• “Smart Transitions Connect States to Junctions at 90 Degree Angles” on
page 7-23

• “Smart Transitions Snap to an Invisible Grid” on page 7-25

• “Smart Transitions Bow Symmetrically” on page 7-26

• “Smart Transitions Prefer Straight Lines from Junctions” on page 7-27

Smart Transitions Slide Around Surfaces
In the following example, state B is attached to state A by a smart transition.
The example shows state B as you drag it counterclockwise around the upper
right corner of state A. During this process, state B turns to its selection
color and the transition turns to a light shade of gray. The arrows show the
dragging direction.

1 2 3

4 5 6

The following behavior applies to the preceding example:

1 The first capture shows states A and B at the beginning of movement.

7-21

7 Extending Stateflow® Charts

2 As B moves upward, the back end of the transition slides upward on A,
keeping the transition straight.

3 As B moves around the corner of A, the back end of the transition suddenly
hops around the upper right-hand corner of A. The transition appears
curved from the top surface of A to the left side of B. This shape maintains
perpendicularity with each attached state side.

Note A hop around the corner of a state is necessary because transitions
cannot attach at corners of states.

4 As B moves on top of A, the transition stays curved but its front end slides
down to the lower left-hand corner of B.

5 As B continues to move to the left over A, the front end of the transition
hops around the lower left-hand corner of B.

6 Finally, as B moves directly over A, the front end of the transition slides
over the bottom edge of B.

As B continues to circle A, steps 1 through 6 repeat for each remaining side
of A.

Smart Transitions Slide and Maintain Shape
While smart transitions allow their ends to slide around surfaces of connected
objects, they also try to maintain their original shape during moving. In the
following example, a pair of transitions with smart behavior slide during a
resizing to maintain their original shape.

1 2 3

7-22

Extending Transitions with Smart Behavior

In the following example, the ends of a pair of transitions with smart behavior
originate from a junction and terminate in a state. As the junction moves
around the state, the ends slide around the state and maintain the same
relative spacing between each other. The arrows indicate the direction of
movement.

1 2 3

Smart Transitions Connect States to Junctions at 90 Degree
Angles
Straight-line connections to states must be in one of four directions: left,
right, up, or down. To maintain their straightness, smart transitions from
junctions always seek to connect to a state through equivalent locations on
the junction (left, right, top, bottom). In the following example, a junction
connects to two states, A and B. Watch the behavior of two straight smart
transitions as the junction moves to different locations.

7-23

7 Extending Stateflow® Charts

1 2 3

4 5 6

1 The junction starts with two straight smart transition connections to states
A and B.

2 The junction connects to state A through its left side. Since the junction
is below A, only a curved connection is possible.

State B could be connected by a straight line through the junction’s left
side, but this is already occupied by the connection to A. Therefore, B is
connected through the junction’s bottom, and must be curved.

3 The junction connects to B by a straight transition through the junction’s
top connection. No straight-line connection to A is possible, therefore the
junction is connected to state A with a curved transition through its left
side.

4 At this location (under A, to the left of B), straight-line transitions to A
and B are possible from the junction’s top and right connection points,
respectively.

7-24

Extending Transitions with Smart Behavior

5 At the location left of state A, the junction connects to state B through
its right connection point. Since the junction is above B, only a curved
connection is possible.

6 Above A, a straight-line transition to state A is possible through the
junction’s bottom connector. A straight-line connection to state B is not
possible, so the junction is connected to state B through a curved transition
from its right connection.

Smart Transitions Snap to an Invisible Grid
Junctions that are connected to other junctions with smart transitions will
snap to an invisible grid consisting of horizontal and vertical lines that pass
through the center of each junction. The following example depicts this
behavior.

1 2 3

Here, the invisible grid is depicted for each of the three junctions by dashed
vertical and horizontal lines. Each junction is connected to each other through
nonlinear smart transitions:

1 In the first scene, the snap grid for each junction does not overlap. The
arrow indicates that junction A is being moved toward the vertical snap
line for junction B.

2 When A is within a very small distance of B’s snap line, A snaps into
position directly above B and centered in its vertical snap line. The arrow
indicates that A is now being moved toward the horizontal snap line for
junction C.

3 When A is within a very small distance of C’s horizontal snap line, A snaps
into position directly to the side of C and centered in its horizontal snap line.

7-25

7 Extending Stateflow® Charts

Smart Transitions Bow Symmetrically
Transitions with smart behavior bow symmetrically between junctions. In
the following examples, transitions with smart behavior are drawn between
two junctions:

1 2 3

1 In the first case, a transition originates at the junction on the left and
terminates on the left side of the right junction. This results in a straight
line.

2 In the second case, a transition originates at the junction on the left and
terminates on the top of the right junction. This results in a transition
line bowed up.

3 In the third case, a transition originates at the junction on the left and
terminates on the right side of the right junction. This results in a
transition line bowed up even more.

Bowed smart transitions maintain symmetry by maintaining equality
between transition entry and exit angles, as shown.

7-26

Extending Transitions with Smart Behavior

You can bow a smart transition between two junctions to any degree. Place
your pointer anywhere on the transition (except end points) and click and drag
in a direction perpendicular to a straight line connecting the two junctions.
You can move the mouse in any direction to bow the transition but only the
component perpendicular to the straight line applies.

Disabling smart behavior for a transition allows you to distort the transition
asymmetrically (see “Nonsmart Transitions Distort Asymmetrically” on page
7-29). However, if you enable smart behavior again, the transition returns
to its previous bowed shape.

Smart Transitions Prefer Straight Lines from Junctions
Transitions with smart behavior prefer straight lines coming from junctions.
In the following example, the terminating junction moves in a radial direction
around another junction.

1 2 3

The smart transition maintains a straight line, because the end on the
originating junction follows the tip of the transition.

What Nonsmart Transitions Do
The following topics describe some of the behavior exhibited by transitions
without smart behavior.

• “Nonsmart Transitions Anchor Connection Points” on page 7-28

7-27

7 Extending Stateflow® Charts

• “Nonsmart Transitions Distort Asymmetrically” on page 7-29

You can disable and enable smart behavior in transitions. See the section
“Setting Smart Behavior in Transitions” on page 7-20.

Nonsmart Transitions Anchor Connection Points
Contrast the example in the section “Smart Transitions Slide Around
Surfaces” on page 7-21 with the following example.

1 2 3

4 5 6

A nonsmart transition connects state A to state B. The pointer appears over
state B and clicks and drags to new locations counterclockwise around A.
During this process, state B turns to its highlight color but the transition
remains unchanged, a sign of a nonsmart transition.

As B moves around A, the transition changes into a distorted curve that
maintains the original attachment points. These points remain unchanged
in position, although the angle of attachment is always perpendicular to the
side of the state.

7-28

Extending Transitions with Smart Behavior

Nonsmart Transitions Distort Asymmetrically
By clicking and dragging on different locations along a nonsmart transition,
you can reshape it into an asymmetric curve suited to your needs. Consider
the following example:

1 2 3

For this example, use the following procedure:

1 Drag a horizontal transition between two junctions.

2 Right-click the transition and select Smart to disable smart behavior.

3 Place your pointer anywhere on the transition.

4 Click and drag your pointer up and to the left.

7-29

7 Extending Stateflow® Charts

Using Graphical Functions to Extend Actions

In this section...

“What Is a Graphical Function?” on page 7-30

“Why Use a Graphical Function?” on page 7-30

“Where to Use a Graphical Function” on page 7-30

“Workflow for Defining a Graphical Function” on page 7-31

“Managing Large Graphical Functions” on page 7-35

“Calling Graphical Functions in Stateflow Action Language” on page 7-38

“Exporting Chart-Level Graphical Functions” on page 7-39

“Specifying Graphical Function Properties” on page 7-47

What Is a Graphical Function?
A graphical function is a program that you write with flow graphs using
connective junctions and transitions. You create a graphical function, fill
it with a flow graph, and call it many times in the actions of states and
transitions.

Why Use a Graphical Function?
A graphical function is easier to create, access, and manage than a textual
function, such as a C or MATLAB function that you must define externally.
Like a textual function, a graphical function can accept arguments and return
values. Unlike a textual function, a graphical function is a native Stateflow
object. You use the Stateflow Editor to create a graphical function that resides
in your model along with the charts that invoke the function.

Where to Use a Graphical Function
A graphical function can reside anywhere in a chart, state, or subchart.
The location of a function determines its scope, that is, the set of states and
transitions that can call the function. In particular, graphical functions
are visible to the chart, to the parent state and its parents, and to sibling
transitions and states. These exceptions apply:

7-30

Using Graphical Functions to Extend Actions

• If the chart containing the function exports its graphical functions, the
scope of the function is the entire Stateflow machine, which encompasses
all the charts in the model. See “Exporting Chart-Level Graphical
Functions” on page 7-39 for more information.

• A function that you define in a state or subchart overrides any functions of
the same name in the parents and ancestors of that state or subchart.

Workflow for Defining a Graphical Function

Creating a Graphical Function
Use these steps to create a graphical function in your chart:

1 Click the graphical function icon in the editor toolbar:

2 Move your pointer to the location for the new graphical function in your
chart and click to insert the function box.

3 Enter the function signature.

The function signature specifies a name for your function and the formal
names for its arguments and return values. A signature has this syntax:

[r1, r2,..., rn] = func(a1,a2,..., an)

where func is the name of your function, a1, a2, ..., an are formal names for
its arguments, and r1, r2, ..., rn are formal names for its return values.

Note You can define arguments and return values as scalars, vectors,
or 2-D matrices of any data type.

4 Click outside of the function box.

The following signature is for a graphical function that has the name f1, which
takes three arguments (a, b, and c) and returns three values (x, y, and z).

7-31

7 Extending Stateflow® Charts

Note In the chart, you can change the signature of your graphical function
at any time. After you edit the signature, the Model Explorer updates to
reflect the changes.

Programming a Graphical Function
To program a graphical function, follow these steps:

1 Click the default transition icon in the editor toolbar:

2 Move your pointer inside the function box in your chart and click to insert
the default transition and its terminating junction.

3 Enter transition conditions and actions for your graphical function. If
necessary, add connective junctions and transitions to your function.

Note Connective junctions and transitions are the only graphical elements
you can use in a graphical function. Because a graphical function must
execute completely when you call it, you cannot use states.

This function box shows a flow graph that returns different products of its
arguments.

7-32

Using Graphical Functions to Extend Actions

Defining Graphical Function Data
You must define the data in your graphical function:

1 Open the Model Explorer.

7-33

7 Extending Stateflow® Charts

2 Expand the chart object in the Model Explorer, so that you can see the
return values and arguments of the function signature as data items that
belong to your graphical function.

The Scope column in the Model Explorer indicates the role of each
argument or return value. Arguments have the scope Input, and return
values have the scope Output.

3 For each function argument and return value, right-click the data row in
the Model Explorer and select Properties from the context menu.

4 In the Data properties dialog box for each argument and return value,
specify the data properties.

7-34

Using Graphical Functions to Extend Actions

These rules apply:

• Each argument and return value can be a scalar or matrix of values.

• Arguments cannot have initial values.

5 Create any additional data items that your function must have to process
its programming.

Your function can access its own data or data belonging to parent states or
the chart. The data items that you create for the function itself can have
one of these scopes:

• Local

Local data persists from one function call to the next.

• Temporary

Temporary data initializes at the start of every function call.

• Constant

Constant data retains its initial value through all function calls.

Note You can initialize your function data (other than arguments and
return values) from the MATLAB workspace. However, you can save only
local items to this workspace.

Managing Large Graphical Functions
You can make your graphical function as large as you want, as shown below.

7-35

7 Extending Stateflow® Charts

However, if your function grows too large, you can hide its contents by
right-clicking inside the function box and selecting Make Contents >
Subcharted from the context menu. This option makes your graphical
function opaque.

7-36

Using Graphical Functions to Extend Actions

To access the programming of your subcharted graphical function, double-click
it. This action dedicates the entire chart window to programming your
function.

7-37

7 Extending Stateflow® Charts

To access your original chart, click the Back button .

Calling Graphical Functions in Stateflow Action
Language

Description
To call your graphical function, use Stateflow action language. Any state or
transition action in the scope of your function can perform a function call.

7-38

Using Graphical Functions to Extend Actions

Syntax
Syntax for a function call is the same as that of a function signature, with
actual arguments replacing the formal ones specified in a signature. If the
data types of the actual and formal argument differ, a function casts the
actual argument to the type of the formal argument.

See “Creating a Graphical Function” on page 7-31 for information about
syntax for a function signature.

Tip If the formal arguments of a function signature are scalars, verify that
inputs and outputs of function calls follow the rules of scalar expansion. For
more information, see “How Scalar Expansion Works for Functions” on page
13-6.

Example
In this example, a state entry action calls a graphical function that returns
three products.

Exporting Chart-Level Graphical Functions

Why Export Graphical Functions?
When you export chart-level graphical functions, you extend the scope of your
functions to all other charts in your model.

7-39

7 Extending Stateflow® Charts

How to Export Chart-Level Graphical Functions
To export graphical functions to your main model:

1 Open the chart where your graphical function resides.

2 Open the Chart properties dialog box.

3 Select Export Chart Level Graphical Functions (Make Global).

4 If your graphical function resides in a library chart, link that chart to your
main model.

Rules for Exporting Chart-Level Graphical Functions

Link library charts to your main model to export graphical functions
from libraries
You must perform this step to export graphical functions from library charts.
Otherwise, a simulation error occurs.

Do not export graphical functions that contain unsupported inputs
or outputs

You cannot export a graphical function when inputs or outputs have any
of the following properties:

• Enumerated data type

• Fixed-point data type with word length greater than 32 bits

• Bus type (such as inheritance from a Simulink.Bus object)

• Variable size

Example of Exporting Chart-Level Graphical Functions
This example describes how to export graphical functions in library charts
to your main model.

1 Create these objects:

• Add a model named main_model, with a chart named modChart.

7-40

Using Graphical Functions to Extend Actions

• Add a library model named lib1, with a chart named lib1Chart.

• Add a library model named lib2, with a chart named lib2Chart.

7-41

7 Extending Stateflow® Charts

2 Create these graphical functions in the library charts:

• For lib1Chart, add this graphical function.

• For lib2Chart, add this graphical function.

7-42

Using Graphical Functions to Extend Actions

3 For modChart, add a graphical function and a default transition with a
lib1_func action.

4 For each chart, follow these steps:

a Open the Chart properties dialog box.

b In the Chart properties dialog box, select Export Chart Level
Graphical Functions (Make Global).

c Click OK.

7-43

7 Extending Stateflow® Charts

5 Drag lib1Chart and lib2Chart into main_model from lib1 and lib2,
respectively. Your main model should look something like this:

Each chart now defines a graphical function that any chart in main_model
can call.

6 Open the Model Explorer.

7 In the Model Hierarchy pane of the Model Explorer, navigate to
main_model.

8 Add the data x and y to the Stateflow machine:

a Select Add > Data.

b In the Name column, enter x.

c In the Initial Value column, enter 0.

d Use the default settings for other properties of x.

e Select Add > Data.

f In the Name column, enter y.

g In the Initial Value column, enter 1.

h Use the default settings for other properties of y.

7-44

Using Graphical Functions to Extend Actions

This step ensures that input and output data are defined globally to
support exported graphical functions.

9 Open the Configuration Parameters dialog box.

10 In the Configuration Parameters dialog box, go to the Solver pane.

11 In the Solver options section, make these changes:

a For Type, select Fixed-step.

b For Solver, select Discrete (no continuous states).

c For Fixed-step size, enter 1.

d Click OK.

This step ensures that when you simulate your model, a discrete solver is
used. For more information, see “Solvers” in the Simulink documentation.

What Happens During Simulation. When you simulate the model, these
actions take place during each time step.

Phase The object... Calls the
graphical
function...

Which...

1 modChart lib1_func Reads two input
arguments x and
y

2 lib1_func lib2_func Passes the two
input arguments

3 lib2_func mod_func Adds x and y and
assigns the sum
to x

How to View the Simulation Results. To view the simulation results, add
a scope to your model. Follow these steps:

1 Open the Simulink Library Browser.

7-45

7 Extending Stateflow® Charts

2 From the Simulink/Sinks Library, select the Scope block and add it to
main_model.

3 Open the Model Explorer.

4 In the Model Hierarchy pane, navigate to modChart.

5 Add the output data z to the chart:

a Select Add > Data.

b In the Name column, enter z.

c In the Scope column, select Output.

d Use the default settings for other properties.

6 For modChart, update the default transition action to read as follows:

{x = lib1_func(x,y); z = x;}

7 In the model window, connect the outport from modChart to the inport of
the Scope block.

7-46

Using Graphical Functions to Extend Actions

8 Double-click the Scope block to open the display.

9 Start simulation.

10 After the simulation ends, right-click in the scope display and select
Autoscale.

The results look something like this:

Specifying Graphical Function Properties
You can set general properties for your graphical function through its
properties dialog box:

1 Right-click your graphical function box.

2 Select Properties from the context menu.

The properties dialog box for your graphical function appears.

7-47

7 Extending Stateflow® Charts

The fields in the properties dialog box are:

Field Description

Name Click this read-only function name to bring your
function to the foreground in its native chart.

Breakpoints Select Function Call to set a breakpoint that pauses
simulation when your graphical function executes.

7-48

Using Graphical Functions to Extend Actions

Field Description

Function Inline
Option

Select one of these options to control the inlining of
your function in generated code:

• Auto
Decides whether or not to inline your function
based on an internal calculation.

• Inline
Inlines your function as long as you do not export it
to other charts, and it is not part of a recursion. (A
recursion exists if your function calls itself directly
or indirectly through another function call.)

• Function
Does not inline your function.

Label Specify the signature label for your function in this
field. See “Creating a Graphical Function” on page
7-31 for more information.

Description Enter a textual description or comment.

Document link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

7-49

7 Extending Stateflow® Charts

Using Boxes to Extend Charts

In this section...

“When to Use Boxes” on page 7-50

“Semantics of Boxes” on page 7-50

“Rules for Using Boxes” on page 7-51

“Drawing and Editing a Box” on page 7-51

“Examples of Using Boxes” on page 7-53

When to Use Boxes
Use boxes to organize graphical objects in your chart.

Semantics of Boxes

Visibility of Graphical Objects in Boxes
Boxes add a level of hierarchy to Stateflow charts. This property affects
visibility of functions and states inside a box to objects that reside outside of
the box. If you refer to a box-parented function or state from a location outside
of the box, you must include the box name in the path. See “Using a Box
to Group Functions” on page 7-53.

Activation Order of Parallel States
Boxes affect the implicit activation order of parallel states in a chart. If your
chart uses implicit ordering, parallel states within a box wake up before other
parallel states that are lower or to the right in that chart. Within a box,
parallel states wake up in top-down, left-right order. See “Using a Box to
Group States” on page 7-55.

Note To specify activation order explicitly on a state-by-state basis, you
must select User specified state/transition execution order in the Chart
properties dialog box. This option is selected by default when you create a new
chart. For details, see “Explicit Ordering of Parallel States” on page 3-76.

7-50

Using Boxes to Extend Charts

Rules for Using Boxes
When you use a box, these rules apply:

• You must include the box name in the path when you refer to a
box-parented function or state from a location outside of the box.

• You can move or draw graphical objects inside a box, such as functions
and states.

You can draw a state around the objects you want inside it and then convert
that state to a box. See “Changing a State to a Box” on page 7-53.

• You can add data to a box so that all the elements in the box can share
the same data.

• You can group a box and its contents into a single graphical element. See
“Grouping States” on page 4-7.

• You can subchart a box to hide its elements. See “Using Subcharts to
Extend Charts” on page 7-6.

• You cannot define action statements for a box, such as entry, during,
and exit actions.

• You cannot define a transition to or from a box. However, you can define a
transition to or from a state within a box.

Drawing and Editing a Box

Creating a Box
You create boxes in your chart by using the box tool shown below.

7-51

7 Extending Stateflow® Charts

1 Select the Box tool.

2 Move your pointer into the drawing area.

In the drawing area, your pointer becomes box-shaped.

3 Click in any location to create a box.

The new box appears with a question mark (?) name in its upper left
corner.

4 Click the question mark label.

A text cursor appears in place of the question mark.

7-52

Using Boxes to Extend Charts

5 Enter a name for the box and then click outside of the box.

Deleting a Box
To delete a box, click it to select it and choose Edit > Cut from the context
menu or press the Delete key.

Changing a State to a Box
You can change an existing state to a box and back to a state with this
procedure:

1 Right-click the state.

2 From the context menu, select Type.

A submenu appears adjacent to the context menu.

3 From the submenu, select Box.

This action converts the state to a box, redrawing its border with sharp
corners to indicate its changed status.

4 Repeat the preceding steps on the box and select State from the submenu
instead of Box to change the box to a state.

Examples of Using Boxes

Using a Box to Group Functions
This chart shows a box named Status that groups together MATLAB
functions.

7-53

7 Extending Stateflow® Charts

Chart execution takes place as follows:

1 The state Cold activates first.

2 Upon entry, the state Cold invokes the function Status.msgCold.

This function displays a status message that the temperature is cold.

Note Because the MATLAB function resides inside a box, the path of the
function call must include the box name Status. If you omit this prefix,
an error message appears.

3 If the value of the input data temp exceeds 80, a transition to the state
Warm occurs.

4 Upon entry, the state Warm invokes the function Status.msgWarm.

7-54

Using Boxes to Extend Charts

This function displays a status message that the temperature is warm.

Note Because the MATLAB function resides inside a box, the path of the
function call must include the box name Status. If you omit this prefix,
an error message appears.

5 If the value of the input data temp drops below 60, a transition to the state
Cold occurs.

6 Steps 2 through 5 repeat until the simulation ends.

Using a Box to Group States
This chart shows a box named Status that groups together related states. The
chart uses implicit ordering for parallel states, instead of the default explicit
mode. (For details, see “Implicit Ordering of Parallel States” on page 3-77.)

7-55

7 Extending Stateflow® Charts

The main ideas of this chart are:

• The state Temp wakes up first, followed by the state Wind_Chill. Then,
the state Monitor wakes up.

Note This implicit activation order occurs because Temp and Wind_Chill
reside in a box. If you remove the box, the implicit activation order changes,
as shown, to: Temp, Monitor, Wind_Chill.

• Based on the input data temp, transitions between substates occur in the
parallel states Status.Temp and Status.Wind_Chill.

• When the transition from Status.Temp.Cold to Status.Temp.Warm occurs,
the transition condition in(Status.Temp.Warm) becomes true.

• When the transition from Status.Temp.Warm to Status.Temp.Cold occurs,
the transition condition in(Status.Temp.Cold) becomes true.

7-56

Using Boxes to Extend Charts

Note Because the substates Status.Temp.Cold and Status.Temp.Warm
reside inside a box, the argument of the in operator must include the
box name Status. If you omit this prefix, an error message appears. For
information about the in operator, see “Checking State Activity” on page
10-97.

7-57

7 Extending Stateflow® Charts

Using Notes to Extend Charts

In this section...

“Creating Notes” on page 7-58

“Editing Existing Notes” on page 7-58

“Changing Note Font and Color” on page 7-59

“Moving Notes” on page 7-60

“Deleting Notes” on page 7-60

Creating Notes
You can enter comments/notes in any location on the chart with the following
procedure:

1 Place your pointer at the desired location in the chart.

2 Right-click the mouse.

3 From the resulting menu, select Add Note.

A blinking cursor appears at the location you selected. Default text is italic,
9 point.

4 Begin typing your comments.

As you type, the text moves left to right.

5 Press the Return key to start a new line.

6 When finished typing, click outside the typed note text.

Editing Existing Notes
To edit existing note text:

1 Left-click the mouse on the comment location you want to edit.

2 Once the blinking cursor appears, begin typing or use the arrow keys to
move to a new text location.

7-58

Using Notes to Extend Charts

Changing Note Font and Color
To change font and color for your chart notes, follow the procedures described
in the section “Specifying Colors and Fonts in a Chart” on page 4-30.

You can also change your note text to bold or italic:

1 Right-click the note text and select Text Format.

2 In the context menu,

3 In the submenu, select Bold or Italic (default).

TeX Instructions
In the preceding procedure, note a third selection of the Text Format
submenu called TeX instructions. This selection enables you to use a subset
of TeX commands embedded in the string to produce special characters. For
example, you can embed Greek letters and mathematical symbols.

The following example uses the TeX instructions selection:

1 Right-click the text of an example note.

2 In the context menu, select Text Format.

3 In the submenu, make sure that TeX instructions has a check mark in
front of it. Otherwise, select it.

4 Click the note text to place your pointer in it.

5 Replace the existing note text with the following expression.

\it{\omega_N = e^{(-2\pii)/N}}

6 Click outside the note.

The note in your chart now looks like this:

7-59

7 Extending Stateflow® Charts

Moving Notes
To move your notes:

1 Place your pointer over the text of the note.

2 Click and drag the note to a new location.

3 Release the left mouse button.

Deleting Notes
To delete your notes:

1 Place your pointer over the text of the note.

2 Click and hold the left mouse button on the note.

A dim rectangle appears surrounding the note.

3 Select the Delete key.

Alternatively, you can also do the following:

1 Place your pointer over the text of the note.

2 Right-click the note.

3 From the resulting shortcut menu, select Cut.

7-60

Printing Stateflow® Charts

Printing Stateflow Charts

In this section...

“Printing Scaled Charts” on page 7-61

“Using Tiled Printing for Stateflow Charts” on page 7-64

“Generating a Model Report” on page 7-67

“Printing the Current Chart” on page 7-69

Printing Scaled Charts
By default, Stateflow software scales each chart that you print to fit on a
single page. If you prefer to print charts without scaling to preserve clarity
and detail, you can use tiled printing, as described in “Using Tiled Printing
for Stateflow Charts” on page 7-64.

To print scaled charts, follow these steps:

1 Open the chart or subchart you want to print.

2 In the editor, select File > Print.

The Print Model dialog box appears:

7-61

7 Extending Stateflow® Charts

3 In the Print Model dialog box, select your printer and number of copies.

4 Select the charts you want to print by choosing one of these options:

Option Description

Current system Prints the current chart or subchart

Current system and above Prints the current chart or subchart
and all systems above it in the
model hierarchy

7-62

Printing Stateflow® Charts

Option Description

Current system and below Prints the current chart or subchart
and all systems below it in the
model hierarchy, with the option of
looking into the contents of masked
and library Simulink blocks

All systems Prints all systems in the model
hierarchy, with the option of
looking into the contents of masked
and library Simulink blocks

5 Customize your print job as needed using these options:

Option Description

Enable tiled printing for all
systems

Enables tiled printing for all
charts and overrides any individual
tiled-print settings. See “Using
Tiled Printing for Stateflow Charts”
on page 7-64.

Include Print Log Includes a list of all printed charts.

Look under mask dialog Prints the contents of Simulink
masked subsystems when
encountered at or below the level
of the current chart or subchart
(when printing Current system
and below) or the top-level system
(when printing All systems).

Expand unique library links Prints the contents of library
blocks that appear in Simulink
subsystems that are printed with
Current system and below or
All systems.

7-63

7 Extending Stateflow® Charts

Option Description

Print Sample Time Legend Prints the Sample Time Legend on
a separate page from your model.
The legend contains sample time
information for your entire model,
including any subsystems.

Frame Prints a title block frame with each
chart.

To learn how to create print frames,
see “PrintFrame Editor Overview”
in the Simulink User’s Guide.

6 Click OK.

For more information about all print options, see “Printing a Block Diagram”
in the Simulink software documentation.

Using Tiled Printing for Stateflow Charts
Stateflow charts support Simulink tiled printing options (see “Tiled Printing”
in the Simulink documentation). Tiled printing enables you to print Stateflow
charts without scaling to fit a page and, therefore, without sacrificing clarity
and detail. With tiled printing, you can distribute a chart over a specified
number of pages and, therefore, control the total size of the printed image.
You can choose different tiled-print settings for each of your charts to
customize the appearance of all printed images.

If you want to scale charts to fit on a single printed page, see “Printing Scaled
Charts” on page 7-61.

Printing Charts on Tiled Pages
To print Stateflow charts on tiled pages, follow these steps:

1 Open the chart or subchart you want to print.

2 In the editor, select File > Enable Tiled Printing.

7-64

Printing Stateflow® Charts

To enable tiled printing for all systems in your model, select the Enable
tiled printing for all systems check box on the Print Model dialog box

3 To visualize the chart’s size and layout with respect to the page, select
View > Show Page Boundaries.

If your chart is too large to fit on one page, the editor displays the page
boundaries as tiles in a checkerboard pattern, as in this example:

7-65

7 Extending Stateflow® Charts

In this chart, state #6 extends beyond the page boundary. To correct the
problem, you can select and drag this state to a different tile so that it
prints in its entirety on a separate page.

7-66

Printing Stateflow® Charts

Note Stateflow software uses a row-major scheme to number tiled pages.
For example, the first page of the first row is 1, the second page of the first
row is 2, and so on.

4 Select File > Print.

By default, this command prints all of a system’s tiled pages. Alternatively,
you can specify a range of tiled page numbers to print. See “Printing Tiled
Pages” in the Simulink documentation.

Generating a Model Report
The Print Details report is an extension of the Print Details report in the
Simulink model window. It provides a report of Stateflow and Simulink
objects relative to the chart currently in view from which you select the report.

To generate a model report on chart objects:

1 Open the chart or subchart for which you want a report.

2 In the editor, select File > Print Details.

The Print Details dialog box appears as follows:

7-67

7 Extending Stateflow® Charts

3 Enter the destination directory of the report file and select options to
specify what objects appear in the report.

For details on setting the fields in the File locations/naming options
section of this dialog box, see “Generating a Model Report” in the Simulink
software documentation. For details on the report you receive from the
option you choose in the System reporting options section, see “System
Report Options” on page 7-68 and “Report Format” on page 7-69.

4 Click Print.

The Print Details dialog box appears and tracks the activity of the report
generator during report generation. See “Generating a Model Report” in the
Simulink software documentation for more details on this window.

If no serious errors occur, the HTML report appears in your default browser.

Note You can also use MATLAB® Report Generator™ software to generate
a report that documents an entire model, including both Simulink and
Stateflow objects. See the MATLAB Report Generator User’s Guide.

System Report Options
Reports for the current Stateflow chart vary with your choice of one of the
System reporting options fields:

• Current— Reports on the chart or subchart in the current editor window
and its immediate parent Simulink system.

• Current and above — This option is grayed out and unavailable for
printing chart details.

• Current and below — Reports on the chart or subchart in the current
editor window and all contents at lower levels of the hierarchy, along with
the immediate Simulink system.

• Entire model — Reports on the entire model including all charts and
all Simulink systems.

If you select this option, you can modify the report as follows:

7-68

Printing Stateflow® Charts

- Look under mask dialog – Includes the contents of masked
subsystems in the report.

- Expand unique library links – Includes the contents of library blocks
that are subsystems in the report.

The report includes a library subsystem only once even if it occurs in
more than one place in the model.

Report Format
The general top-down format of the Print Details report is as follows:

• The report shows the title of the system in the Simulink model containing
the chart or subchart in current view.

• A representation of Simulink hierarchy for the containing system and its
subsystems follows. Each subsystem in the hierarchy links to the report of
its Stateflow charts.

• The report section for the Stateflow charts of each system or subsystem
begins with a small report on the system or subsystem, followed by a report
of each contained chart.

• Each chart report includes a reproduction of its chart with links for
subcharted states that have reports of their own.

• An appendix tabulates the covered Stateflow and Simulink objects in the
report.

Printing the Current Chart
The Print Current View option prints an individual chart or subchart as
follows:

1 Open the chart or subchart that you want to print.

2 In the editor, select File > Print Current View.

3 In the submenu, choose one of these options:

• To File— Converts the current view to a graphics file.

Select the format for the graphics file from a submenu of graphical file
types.

7-69

7 Extending Stateflow® Charts

• To Clipboard— Copies the current view to the system clipboard.

Select the format for the clipboard copy from a submenu of graphical
formats.

• To Figure— Converts the current view to a MATLAB figure window.

• To Printer— Prints the current view on the current printer.

Tip You can also print the current view from the MATLAB command line
using the sfprint function.

7-70

8

Defining Data

• “Adding Data” on page 8-2

• “Setting Data Properties in the Data Dialog Box” on page 8-5

• “Sharing Data with Simulink Models and the MATLAB Workspace” on
page 8-29

• “Sharing Global Data with Simulink Models” on page 8-33

• “Sharing Chart Data with External Modules” on page 8-40

• “Typing Stateflow Data” on page 8-43

• “Sizing Stateflow Data” on page 8-52

• “Defining Temporary Data” on page 8-58

• “Using Dot Notation to Identify Data in a Chart” on page 8-59

• “Resolving Data Properties from Simulink Signal Objects” on page 8-65

• “Best Practices for Using Data in Stateflow Charts” on page 8-71

• “Transferring Data Across Models” on page 8-73

8 Defining Data

Adding Data

In this section...

“When to Add Data” on page 8-2

“Where You Can Use Data” on page 8-2

“Diagnostic for Detecting Unused Data” on page 8-2

“Adding Data Using the Stateflow Editor” on page 8-3

“Adding Data Using the Model Explorer” on page 8-3

When to Add Data
Add data when you want to store values that are visible at a specific level
of the Stateflow hierarchy.

Where You Can Use Data
You can store and retrieve data that resides internally in the Stateflow
workspace, and externally in the Simulink model or application that embeds
the Stateflow chart. Actions in your chart can refer to internal and external
data.

Diagnostic for Detecting Unused Data
If you have unused data in your chart, a warning message appears during
simulation with a list of data you can remove. By removing objects that have
no effect on simulation, you can reduce the size of your model. This diagnostic
checks for usage of Stateflow data, except for the following types:

• Machine-parented data

• Inputs and outputs of MATLAB functions

• Data of parameter scope in a chart that contains atomic subcharts

After you select data for removal, a dialog box confirms your choice. In this
dialog box, you can specify that other deletions occur without confirmation.
If you prevent the confirmation dialog box from appearing, you can reenable
it at any time by typing at the command prompt:

8-2

Adding Data

sfpref('showDeleteUnusedConfGui', 1)

You can control the level of diagnostic action for unused data in the
Diagnostics > Stateflow pane of the Configuration Parameters dialog box.
For more information, see the documentation for the “Unused data and
events” diagnostic.

Adding Data Using the Stateflow Editor

How to Add Data
To add data using the Stateflow Editor, follow these steps:

1 In the Stateflow Editor, select Add > Data.

2 In the context menu, select a scope for the new data object.

See “Scope” on page 8-9 for a description of each type of scope.

Selecting scope adds a default definition of the new data object to the
Stateflow hierarchy and displays the Data properties dialog box.

3 Specify properties for the new data object in the Data properties dialog
box, as described in “Setting Data Properties in the Data Dialog Box” on
page 8-5.

Visibility of Data You Add in the Stateflow Editor
If you add data in the Stateflow Editor, that data is visible to all objects in
the chart.

Adding Data Using the Model Explorer

How to Add Data
To add data using the Model Explorer, follow these steps:

1 In the Stateflow Editor, select Tools > Explore.

8-3

8 Defining Data

The Model Explorer opens. If no object is selected, the current chart or
subchart appears highlighted in the Model Hierarchy pane. Otherwise,
the selected object appears highlighted.

2 In theModel Hierarchy pane, select the object in the Stateflow hierarchy
where you want the new data to be visible.

The object you select becomes the parent of the data object.

3 In the Model Explorer, select Add > Data.

This action adds a default definition for the data in the hierarchy, and the
data definition appears in a new row in the Model Explorer.

4 Change the properties of the data, as described in “Setting Data Properties
in the Data Dialog Box” on page 8-5.

Visibility of Data You Add in the Model Explorer
In the Model Explorer, you can add data that is visible at these levels in the
Stateflow hierarchy:

• Stateflow machine

• Stateflow chart

• Box

• State

• Subchart

• Substate

• Function

8-4

Setting Data Properties in the Data Dialog Box

Setting Data Properties in the Data Dialog Box

In this section...

“What Is the Data Properties Dialog Box?” on page 8-5

“When to Use the Data Properties Dialog Box” on page 8-6

“Opening the Data Properties Dialog Box” on page 8-7

“Properties You Can Set in the General Pane” on page 8-8

“Properties You Can Set in the Description Pane” on page 8-25

“Entering Expressions and Parameters for Data Properties” on page 8-26

What Is the Data Properties Dialog Box?
You use the Data properties dialog box to set and modify the properties of data
objects. Properties vary according to the scope and type of the data object.
The Data properties dialog box displays only the property fields relevant to
the data object you are defining. For example, the dialog box displays these
properties and default values for a data object whose scope is Constant and
type is Fixed point.

8-5

8 Defining Data

For many data properties, you can enter expressions or parameter values.
Using parameters to set properties for many data objects simplifies
maintenance of your model, because you can update multiple properties by
changing a single parameter.

When to Use the Data Properties Dialog Box

• Use the General pane to define the name, scope, size, complexity, type,
initial value, and limit range of a data object. See “Properties You Can Set
in the General Pane” on page 8-8.

8-6

Setting Data Properties in the Data Dialog Box

• Use the Description pane to index into a data object array and enter
a description about the data object. See “Properties You Can Set in the
Description Pane” on page 8-25.

Opening the Data Properties Dialog Box
To open the Data properties dialog box, use one of these methods:

• Add a new data object in the Stateflow Editor, as described in “Adding
Data Using the Stateflow Editor” on page 8-3.

After you add the data object, the Data properties dialog box appears.

• Open the Data properties dialog box from the Model Explorer for a data
object that already exists in the Stateflow hierarchy. Use one of these
techniques:

- Double-click the data object in the Contents pane.

- Right-click the data object in the Contents pane and select Properties.

- Select the data object in the Contents pane and then select
View > Show Dialog Pane.

The Data properties dialog box opens inside the Model Explorer.

For more information about adding data objects in the Model Explorer, see
“Adding Data Using the Model Explorer” on page 8-3.

8-7

8 Defining Data

Properties You Can Set in the General Pane
The General pane of the Data properties dialog box appears as shown.

You can set these properties in the General pane.

Name
Name of the data object. For more information, see “Rules for Naming
Stateflow Objects” on page 2-5.

8-8

Setting Data Properties in the Data Dialog Box

Scope
Location where data resides in memory, relative to its parent. You can set
scope to one of these values:

Scope Value Description

Local Data defined in the current Stateflow chart only.

Constant Read-only constant value that is visible to the parent
Stateflow object and its children.

Parameter Constant whose value is defined in the MATLAB
workspace, or derived from a Simulink block
parameter that you define and initialize in the parent
masked subsystem. The Stateflow data object must
have the same name as the parameter.

See “Working with Block Masks” in Simulink software
documentation for information on how to assign a
parameter to a masked subsystem.

See “Sharing Simulink Parameters with Stateflow
Charts” on page 8-30 to learn how to use Simulink
block parameters with Stateflow charts.

Input Input argument to a function if the parent is
a graphical, truth table, or MATLAB function.
Otherwise, the Simulink model provides the data to
the Stateflow chart via an input port on the Stateflow
block. See “Sharing Input and Output Data with
Simulink Models” on page 8-29.

Output Return value of a function if the parent is a graphical,
truth table, or MATLAB function. Otherwise, the
Stateflow chart provides the data to the Simulink
model via an output port on the Stateflow block.
See “Sharing Input and Output Data with Simulink
Models” on page 8-29.

8-9

8 Defining Data

Scope Value Description

Data Store Memory Data object that binds to a Simulink data store, which
is a signal that functions like a global variable because
all blocks in a model can access that signal. This
binding allows the Stateflow chart to read and write
the Simulink data store, thereby sharing global data
with the model. The Stateflow object must have the
same name as the Simulink data store. See “Sharing
Global Data with Simulink Models” on page 8-33.

Temporary Data that persists only during the execution of a
function. You can define temporary data only for
a graphical, truth table, or MATLAB function, as
described in “Defining Temporary Data” on page 8-58.

Exported Data from the Simulink model that is made available
to external code defined in the Stateflow hierarchy,
as described in “Sharing Chart Data with External
Modules” on page 8-40. You can define exported data
only for a Stateflow machine.

Imported Data parented by the Simulink model that is defined
by external code embedded in the Stateflow machine,
as described in “Sharing Chart Data with External
Modules” on page 8-40. You can define imported data
only for a Stateflow machine.

Port
Index of the port associated with the data object. This property applies only to
input and output data. See “Sharing Input and Output Data with Simulink
Models” on page 8-29.

Data must resolve to Simulink signal object
Option that specifies that output or local data explicitly inherits properties
from Simulink.Signal objects of the same name in the MATLAB base
workspace or the Simulink model workspace. The data can inherit these
properties:

• Size

8-10

Setting Data Properties in the Data Dialog Box

• Complexity

• Type

• Minimum value

• Maximum value

• Initial value

• Storage class (in the generated code)

• Sampling mode (for Truth Table block output data)

For more information, see “Resolving Data Properties from Simulink Signal
Objects” on page 8-65.

Size
Size of the data object. The size can be a scalar value or a MATLAB vector of
values. To specify a scalar, set the Size property to 1 or leave it blank. To
specify a MATLAB vector, use a multidimensional array, where the number
of dimensions equals the length of the vector and the size of each dimension
corresponds to the value of each vector element.

The scope of the data object determines what sizes you can specify. Stateflow
data store memory inherits all of its properties — including size — from the
Simulink data store to which it is bound. For all other scopes, size can be
scalar, vector, or a matrix of n-dimensions.

For more information, see “Sizing Stateflow Data” on page 8-52.

Variable size
Option that specifies whether the data object changes dimensions during
simulation. This check box is available only for input and output data. For
more information, see Chapter 14, “Using Variable-Size Data in Stateflow
Charts”.

Complexity
Option that specifies whether the data object accepts complex values. You can
choose one of these settings:

8-11

8 Defining Data

Complexity
Setting

Description

Off Data object does not accept complex values.

On Data object accepts complex values.

Inherited Data object inherits the complexity setting from a
Simulink block.

For more information, see “How Complex Data Works in Stateflow Charts”
on page 18-2.

Type
Type of data object. You can specify the data type by:

• Selecting a built-in type from the Type drop-down list.

• Using the Data Type Assistant to specify a data Mode and then specifying
the data type based on that mode.

Note Click the Show data type assistant button to display
the Data Type Assistant.

• Entering an expression in the Type field that evaluates to a data type.

Note If you enter an expression for a fixed-point data type, you must
specify scaling explicitly. For example, you cannot enter an incomplete
specification such as fixdt(1,16) in the Type field. If you do not specify
scaling explicitly, an error message appears when you try to simulate
your model.

To ensure that a data type definition is valid for fixed-point data, use one of
the two options above.

For more information, see “Typing Stateflow Data” on page 8-43.

8-12

Setting Data Properties in the Data Dialog Box

Lock data type setting against changes by the fixed-point tools
Select this check box to prevent replacement of the current data type with a
type that the Fixed-Point Tool or Fixed-Point Advisor chooses. See “Automatic
Scaling Tools” in the Simulink® Fixed Point™ User’s Guide for instructions on
autoscaling fixed-point data.

Initial value
Initial value of the data object. If you do not specify a value, the default is 0.0.
The options for initializing values depend on the scope of the data object, as
follows:

Scope What to Specify for Initial Value

Local Expression or parameter defined in the Stateflow
hierarchy, MATLAB workspace, or Simulink masked
subsystem

Constant Constant value or expression. The expression is
evaluated when you update the chart, and the resulting
value is used as a constant for running the Stateflow
chart.

Parameter You cannot enter a value. The chart inherits the initial
value from the parameter.

Input You cannot enter a value. The chart inherits the initial
value from the Simulink input signal on the designated
port.

Output Expression or parameter defined in the Stateflow
hierarchy, MATLAB workspace, or Simulink masked
subsystem

Data Store
Memory

You cannot enter a value. The chart inherits the initial
value from the Simulink data store to which it resolves.

For more information, see “Initializing Data from the MATLAB Base
Workspace” on page 8-31 and “Sharing Simulink Parameters with Stateflow
Charts” on page 8-30.

8-13

8 Defining Data

Limit range properties
Range of acceptable values for this data object. Stateflow software uses this
range to validate the data object during simulation. To establish the range,
specify these properties:

• Minimum — The smallest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

• Maximum — The largest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

The smallest value you can set for Minimum is -inf and the largest value
you can set for Maximum is inf.

Note A Simulink model uses the Limit range properties to calculate
best-precision scaling for fixed-point data types. You must specify a minimum
or maximum value before you can select Calculate Best-Precision Scaling
in the General pane. For more information, see “Calculate Best-Precision
Scaling” on page 8-19.

For more information on entering values for Limit range properties, see
“Entering Expressions and Parameters for Data Properties” on page 8-26.

Test point
Option that designates the data object as a test point. Enabling this option
guarantees that you can observe the data object during simulation (see
“Working with Test Points” in the Simulink documentation). Data objects
can be test points if:

• Scope is Local

• Parent is not a Stateflow machine

• Data type is not ml

8-14

Setting Data Properties in the Data Dialog Box

Watch in debugger
Option that enables you to watch the data values in the Stateflow Debugger
(see “Watching Data in the Stateflow Debugger” on page 26-42).

Fixed-Point Data Properties
Properties that apply to fixed-point data. For a detailed discussion about
fixed-point data, see “Fixed-Point Concepts” in the Simulink Fixed Point
User’s Guide.

8-15

8 Defining Data

When the Data Type Assistant Mode is Fixed point, the Data Type
Assistant displays fields for specifying additional information about your
fixed-point data.

8-16

Setting Data Properties in the Data Dialog Box

If the Scaling is Slope and bias rather than Binary point, the Data Type
Assistant displays a Slope field and a Bias field rather than a Fraction
length field.

You can use the Data Type Assistant to set these fixed-point properties:

8-17

8 Defining Data

Signedness. Specify whether you want the fixed-point data to be Signed
or Unsigned. Signed data can represent positive and negative values, but
unsigned data represents positive values only. The default setting is Signed.

Word length. Specify the bit size of the word that holds the quantized
integer. Large word sizes represent large values with greater precision than
small word sizes. The default bit size is 16.

• For chart-level data of the following scopes, word length can be any integer
between 0 and 128.

- Input

- Output

- Parameter

- Data Store Memory

• For other Stateflow data, word length can be any integer between 0 and 32.

Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quantization errors. The default method is
Binary point scaling. You can select one of two scaling modes:

Scaling
Mode

Description

Binary
point

If you select this mode, the Data Type Assistant displays
the Fraction length field, which specifies the binary point
location.

Binary points can be positive or negative integers. A positive
integer moves the binary point left of the rightmost bit by
that amount. For example, an entry of 2 sets the binary point
in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by
that amount, as in this example:

8-18

Setting Data Properties in the Data Dialog Box

Scaling
Mode

Description

The default binary point is 0.

Slope
and bias

If you select this mode, the Data Type Assistant displays fields
for entering the Slope and Bias.

Slope can be any positive real number, and the default slope
is 1.0. Bias can be any real number, and the default bias is
0.0. You can enter slope and bias as expressions that contain
parameters you define in the MATLAB workspace.

Note Use binary-point scaling whenever possible to simplify the
implementation of fixed-point data in generated code. Operations with
fixed-point data using binary-point scaling are performed with simple bit
shifts and eliminate expensive code implementations required for separate
slope and bias values.

For more information about fixed-point scaling, see “Scaling” in the Simulink
Fixed Point User’s Guide.

Data type override. Specify whether or not to inherit the data type
override setting of the Fixed-Point Tool that applies to this model. If the data
does not inherit the model-wide setting, the specified data type applies. For
more information about the Fixed-Point Tool, see fxptdlg in the Simulink
documentation.

Calculate Best-Precision Scaling. Click this button to calculate
“best-precision” values for both Binary point and Slope and bias scaling,
based on the Limit range properties you specify in the General tab of the
Data properties dialog box.

8-19

8 Defining Data

To automatically calculate best precision scaling values:

1 In the Data properties dialog box, click the General tab.

2 Specify Limit range properties.

3 Click Calculate Best-Precision Scaling.

Simulink software calculates the scaling values and displays them in the
Fraction length field or the Slope and Bias fields. For more information,
see “Constant Scaling for Best Precision” in the Simulink Fixed Point User’s
Guide.

Note The Limit range properties do not apply to Constant and Parameter
scopes. For Constant, Simulink software calculates the scaling values based
on the Initial value setting. The software cannot calculate best-precision
scaling for data of Parameter scope.

Showing Fixed-Point Details. When you specify a fixed-point data type,
you can use the Fixed-point details subpane to see information about the
fixed-point data type that is currently defined in the Data Type Assistant. To
see the subpane, click the expander next to Fixed-point details in the Data
Type Assistant. The Fixed-point details subpane appears at the bottom
of the Data Type Assistant.

8-20

Setting Data Properties in the Data Dialog Box

The rows labeled Minimum and Maximum show the same values that appear
in the corresponding Minimum and Maximum fields in the Limit range

8-21

8 Defining Data

section. See “Signal Ranges” and “Checking Parameter Values” for more
information.

The rows labeled Representable minimum, Representable maximum, and
Precision show the minimum value, maximum value, and precision that
can be represented by the fixed-point data type currently displayed in the
Data Type Assistant. See “Fixed-Point Concepts” in the Simulink Fixed Point
User’s Guide for information about these three quantities.

The values displayed by the Fixed-point details subpane do not
automatically update if you click Calculate Best-Precision Scaling, or
change the range limits, the values that define the fixed-point data type,
or anything elsewhere in the model. To update the values shown in the
Fixed-point details subpane, click Refresh Details. The Data Type
Assistant then updates or recalculates all values and displays the results.

Clicking Refresh Details does not change anything in the model; it changes
only the display. Click OK or Apply to put the displayed values into effect. If
the value of a field cannot be known without first compiling the model, the
Fixed-point details subpane shows the value as Unknown. If any errors
occur when you click Refresh Details, the Fixed-point details subpane
shows an error flag on the left of the applicable row and a description of the
error on the right. For example, the next figure shows two errors.

8-22

Setting Data Properties in the Data Dialog Box

The row labeled Minimum shows the error Cannot evaluate because
evaluating the expression MySymbol, specified in the Minimum field of the

8-23

8 Defining Data

Limit range section, cannot return a numeric value. When an expression
does not evaluate successfully, the Fixed-point details subpane shows the
unevaluated expression (truncating to 10 characters as needed) in place of
the unavailable value.

To correct this error, define MySymbol in the base workspace to provide a
numeric value. If you click Refresh Details, the value of MySymbol appears
in place of the unevaluated text, and the error indicator and description
disappear.

To correct the overflow error for Maximum, perform one or more of the following
changes so that the fixed-point data type can represent the maximum value
you specify:

• Decrease the value in theMaximum field of the Limit range section.

• Increase Word length.

• Decrease Fraction length.

8-24

Setting Data Properties in the Data Dialog Box

Properties You Can Set in the Description Pane
The Description pane of the Data properties dialog box appears as shown.

You can set these properties in the Description pane.

8-25

8 Defining Data

Save final value to base workspace
Option that assigns the value of the data item to a variable of the same name
in the base workspace at the end of simulation (see “Using Model Workspaces”
in the Simulink documentation).

First index
Index of the first element of the data array. The default value is 0.

Units
Units of measurement that you want to associate with the data object. The
string in this field resides with the data object in the Stateflow hierarchy.

Description
Description of the data object.

Document link
Link to online documentation for the data object. You can enter a Web URL
address or a MATLAB command that displays documentation in a suitable
online format, such as an HTML file or text in the MATLAB Command
Window. When you click the Document link hyperlink at the bottom of the
properties dialog box, Stateflow software evaluates the link and displays the
documentation.

Entering Expressions and Parameters for Data
Properties
You can enter expressions as values for these properties in the Data
properties dialog box:

• “Size” on page 8-11

• “Type” on page 8-12

• “Initial value” on page 8-13

• Minimum and Maximum (see “Limit range properties” on page 8-14)

• “Fixed-Point Data Properties” on page 8-15

8-26

Setting Data Properties in the Data Dialog Box

Expressions can contain a mix of parameters, constants, arithmetic operators,
and calls to MATLAB functions.

Default Data Property Values

When you leave an expression or parameter field blank, Stateflow software
assumes a default value, as follows:

Field Default

Initial value 0.0

Maximum inf

Minimum –inf

Word length 16

Slope 1.0

Bias 0.0

Binary point 0

First index 0

Size • 1 (inherited), for inputs, parameters, and function
outputs

• 1 (scalar), for other data objects

Using Parameters in Expressions
You can include parameters in expressions. A parameter is a constant that
you can:

• Define in the MATLAB workspace (see “Initializing Data from the
MATLAB Base Workspace” on page 8-31)

• Derive from a Simulink block parameter that you define and initialize in
the parent masked subsystem (see “Sharing Simulink Parameters with
Stateflow Charts” on page 8-30)

You can mix both types of parameters in an expression.

8-27

8 Defining Data

Using Constants in Expressions
For expressions in the Data properties dialog box, you can use numeric
constants of the appropriate type and size. Do not use Stateflow constants
in these expressions.

Using Arithmetic Operators in Expressions
You can use these arithmetic operators in expressions in the Data properties
dialog box:

• +

• –

• *

• /

Calling Functions in Expressions
In fields that accept expressions, you can call functions that return property
values of other variables defined in the Stateflow hierarchy, MATLAB
workspace, or Simulink masked subsystem. For example, these functions can
return appropriate values for specified fields in the Data properties dialog box:

Function Returns For Field

Stateflow
function type

Type of input data Data type

MATLAB
function min

Smallest element or
elements of input array

Minimum

MATLAB
function max

Largest element or
elements of input array

Maximum

Simulink
function fixdt

Simulink.NumericType
object that describes
a fixed-point or
floating-point data type

Data type

8-28

Sharing Data with Simulink® Models and the MATLAB® Workspace

Sharing Data with Simulink Models and the MATLAB
Workspace

In this section...

“Sharing Input and Output Data with Simulink Models” on page 8-29

“Sharing Simulink Parameters with Stateflow Charts” on page 8-30

“Initializing Data from the MATLAB Base Workspace” on page 8-31

“Saving Data to the MATLAB Workspace” on page 8-32

Sharing Input and Output Data with Simulink Models
Data flows between Simulink models and Stateflow charts via input ports and
output ports on the Stateflow chart block.

To add input or output data to a Stateflow chart:

1 Add a data object to the Stateflow chart, as described in “Adding Data
Using the Stateflow Editor” on page 8-3.

Note You must add the data to the chart itself, not to any other object
in the chart.

2 Open the Data properties dialog box, as described in “Opening the Data
Properties Dialog Box” on page 8-7.

3 Set the Scope property to one of these values:

• Input

This setting is the same as Input from Simulink in the Add > Data
menu in the Stateflow Editor. A Simulink input port appears on the
Stateflow chart block in the model.

• Output

8-29

8 Defining Data

This setting is the same as Output to Simulink in the Add > Data
menu in the Stateflow Editor. A Simulink output port appears on the
Stateflow chart block in the model.

You assign inputs and outputs to ports in the order in which you add the
data. For example, you assign the first input to input port 1 and the third
output to output port 3. You can change port assignments by editing the
value in the Port field of the Data properties dialog box.

4 Set the type of the input or output data, as described in “Typing Stateflow
Data” on page 8-43.

5 Decide if you want to use strong data typing with the Simulink model, as
described in “Strong Data Typing with Simulink I/O” on page 8-50.

6 Set the size of the input or output data, as described in “Sizing Stateflow
Data” on page 8-52.

Note You cannot type or size Stateflow input data to accept frame-based
data from a Simulink model.

Sharing Simulink Parameters with Stateflow Charts

When to Share Simulink Parameters
Share Simulink parameters with Stateflow charts to maintain consistency
with your Simulink model.

How to Share Simulink Parameters
To share Simulink parameters for a masked subsystem with a Stateflow
chart, follow these steps:

1 In the Simulink mask editor for the parent subsystem, define and initialize
a Simulink parameter (see “Working with Block Masks” in the Simulink
software documentation).

2 In the Stateflow hierarchy, define a data object with the same name as the
parameter (see “Adding Data” on page 8-2).

8-30

Sharing Data with Simulink® Models and the MATLAB® Workspace

3 Set the scope of the data object to Parameter.

A Stateflow chart defines data of scope Parameter as a constant. You
cannot change a parameter value during model execution.

When simulation starts, Simulink software attempts to resolve the Stateflow
data object to a parameter at the lowest level masked subsystem. If
unsuccessful, Simulink software moves up the model hierarchy to resolve the
data object to a parameter at higher level masked subsystems.

Initializing Data from the MATLAB Base Workspace
You can initialize data from the MATLAB base workspace. Initialization
requires that you define data in both the MATLAB base workspace and the
Stateflow hierarchy as follows:

1 Define and initialize a variable in the MATLAB workspace.

2 In the Stateflow hierarchy, define a data object with the same name as the
MATLAB variable (see “Adding Data” on page 8-2).

3 Set the scope of the Stateflow data object to Parameter.

When simulation starts, data resolution occurs. During this process, the
Stateflow data object gets its initial value from the associated MATLAB
variable. For example, if the variable is an array, each element of the
Stateflow array initializes to the same value as the corresponding element of
the MATLAB array.

One-dimensional Stateflow arrays are compatible with MATLAB row and
column vectors of the same size. For example, a Stateflow vector of size 5
is compatible with a MATLAB row vector of size [1,5] or column vector of
size [5,1].

Time of Initialization
Data parent and scope control initialization time for Stateflow data objects.

8-31

8 Defining Data

Data Parent Scope When Initialized

Local,
Exported

Start of simulationMachine

Imported Not applicable

Input Not applicableChart

Output,
Local

Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

State with History Junction Local Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

State without History Junction Local State activation

Input,
Output

Function-call invocationFunction (graphical, truth
table, and MATLAB functions)

Local Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

Saving Data to the MATLAB Workspace
For all scopes except Constant and Parameter, you can instruct the chart to
save the final value of a data object at the end of simulation in the MATLAB
base workspace (not as a masked subsystem parameter).

Use one of these techniques:

• In the Description pane of the Data properties dialog box, select Save
final value to base workspace.

• In the Contents pane of the Model Explorer, follow these steps:

1 Select the row of the data object.

2 Select the check box in the SaveToWorkspace column.

8-32

Sharing Global Data with Simulink® Models

Sharing Global Data with Simulink Models

In this section...

“About Data Stores” on page 8-33

“How Stateflow Charts Work with Local and Global Data Stores” on page
8-33

“Accessing Data Store Memory from a Stateflow Chart” on page 8-34

“Diagnostics for Sharing Data Between Stateflow Charts and Simulink
Blocks” on page 8-37

“Creating a Global Data Store Across Multiple Models” on page 8-38

“Best Practices for Using Data Stores in Stateflow Charts” on page 8-39

About Data Stores
You can use an interface to direct Stateflow charts to access global variables
in Simulink models. A Simulink model implements global variables as
data stores, created either as data store memory blocks or as instances of
Simulink.Signal objects. Data stores enable multiple Simulink blocks to
share data without the need for explicit I/O connections to pass data from one
block to another. Stateflow charts share global data with Simulink models by
reading from and writing to data store memory symbolically using Stateflow
action language.

You can use data stores with buses, but not with arrays of buses. For more
information about using data stores with buses, see "Using Data Stores with
Buses and Arrays of Buses" in the Simulink documentation.

How Stateflow Charts Work with Local and Global
Data Stores
Stateflow charts can interface with local and global data stores. Local data
stores, often implemented as data store memory blocks, are visible to all
blocks in one model. To interact with local data stores, a Stateflow chart must
reside in the model where you define the local data store:

8-33

8 Defining Data

Global data stores have a broader scope, which crosses model reference
boundaries. To interact with global data stores, a Stateflow chart must reside
either in the top model — where the global data store is defined — or in
any model that the top model references. You implement global data stores
as Simulink signal objects.

Accessing Data Store Memory from a Stateflow Chart
To access global data in a Simulink model from a Stateflow chart, you must
bind a Stateflow data object to a Simulink data store — either a data store
memory block or a signal object (see “Binding a Stateflow Data Object
to Data Store Memory” on page 8-34). After you create the binding, the
Stateflow data object becomes a symbolic representation of Simulink data
store memory. You can then use this symbolic object to store and retrieve
global data using Stateflow action language (see “Reading and Writing Global
Data Programmatically” on page 8-36).

Binding a Stateflow Data Object to Data Store Memory
To bind a Stateflow data object to Simulink data store memory, you must
create a data object in the Stateflow hierarchy with the same name as the
data store and with scope set to Data Store Memory. The Stateflow data
object inherits all properties from the data store to which you bind the object.

8-34

Sharing Global Data with Simulink® Models

Follow guidelines for specifying data store properties in “Best Practices for
Using Data Stores in Stateflow Charts” on page 8-39.

Note You cannot edit properties that the data object inherits from the data
store.

Using the Stateflow Editor to Bind a Data Object
In the Stateflow Editor, follow these steps:

1 Select Add > Data > Data Store Memory.

The properties dialog box for the new data object appears with scope
property set to Data Store Memory.

2 In the Name field of the Data properties dialog box, enter the name of the
Simulink data store to which you want to bind.

3 Click OK.

Using the Model Explorer to Bind a Data Object
In the Model Explorer, follow these steps:

1 Select Add > Data.

The Model Explorer adds a data object to the Stateflow chart.

2 Double-click the new data object to open its properties dialog box, and enter
the following information in the General pane:

Field What to Specify

Name Enter the name of the Simulink data store memory block to
which you want to bind.

Scope Select Data Store Memory from the drop-down menu.

3 Click OK.

8-35

8 Defining Data

Resolving Data Store Bindings
Multiple local and global data stores with the same name can exist in the
same model hierarchy. In this situation, the Stateflow data object binds to the
data store that is the nearest ancestor.

Reading and Writing Global Data Programmatically
You can use the Stateflow data object that you bind to Simulink data store
memory to store and retrieve global data in states and transitions using
Stateflow action language. Think of this object as a global variable that you
reference by its symbolic name — the same name as the data store to which
you bind the object. When you store numeric values in this variable, you are
writing to Simulink data store memory. Similarly, when you retrieve numeric
values from this variable, you are reading from the data store memory.

This example of Stateflow action language reads from and writes to a data
store memory block called myglobal.

8-36

Sharing Global Data with Simulink® Models

Diagnostics for Sharing Data Between Stateflow
Charts and Simulink Blocks

Errors to Check For
Multiple reads and writes can occur unintentionally in the same time step.
To detect these situations, you can configure data store memory blocks to
generate errors or warnings for these conditions:

• Read before write

• Write after write

• Write after read

Note These diagnostics are available only for data store memory blocks used
within a single Simulink model, not for data stores created from Simulink
signal objects. In other words, these diagnostics do not work for global data
stores that cross model reference boundaries.

When to Enable Diagnostics
Enable diagnostics on data store memory blocks to ensure the validity of data
that multiple unconnected blocks share while running at different rates. In
this scenario, you can detect conditions when writes do not occur before reads
in the same time step. To prevent these violations, see “Best Practices for
Using Data Stores in Stateflow Charts” on page 8-39.

When to Disable Diagnostics
If you use a data store memory block as a persistent global storage area for
accumulating values across time steps, disable diagnostics to avoid generating
unnecessary warnings.

How to Set Diagnostics for Shared Data
To set diagnostics on data store memory blocks, follow these steps:

1 Double-click the data store memory block in your Simulink model to open
its Block Parameters dialog box.

8-37

8 Defining Data

2 Click the Diagnostics tab.

3 Enable diagnostics by selecting warning or error from the drop-down
menu for each condition you want to detect.

4 Click OK.

Creating a Global Data Store Across Multiple Models
To create read/write references to a global data store that you can share
across multiple models:

1 Define data store memory objects that reside in each chart that shares
the data.

a Use the Model Explorer to add a data object to each chart, as described
in “Adding Data Using the Model Explorer” on page 8-3.

b Give each data object the same name.

c Set the scope of each data object to Data Store Memory.

2 Verify that your models do not contain any Data Store Memory blocks.

However, you can include Data Store Read and Data Store Write blocks.

3 Create a Simulink.Signal object in the MATLAB base workspace.

a In the Model Explorer, navigate to Simulink Root > Base Workspace
in the Model Hierarchy pane.

b Select Add > Simulink.Signal.

c Give the object the same name as the data store memory objects in your
charts.

4 Verify that these settings apply to the Simulink.Signal object:

a Set Data type to an explicit data type.

The data type cannot be auto.

b Set Dimensions to be fully specified.

The signal dimensions cannot be –1, or inherited.

8-38

Sharing Global Data with Simulink® Models

c Set Complexity to real.

d Set Sample mode to Sample based.

e Set Storage class to ExportedGlobal.

Best Practices for Using Data Stores in Stateflow
Charts

When Binding to Data Stores in Charts
When you bind a Stateflow data object to a data store, the Stateflow object
inherits all properties from the data store. To ensure that properties
propagate correctly when you access data stores, follow these guidelines to
create data stores:

• Specify the signal type as real.

• Specify a data type other than auto.

• Minimize the use of automatic-mode properties.

When Enforcing Writes Before Reads in Unconnected Blocks
To enforce writes before reads when unconnected blocks share global data in
charts, follow these guidelines:

• Segregate reads into separate blocks from writes.

• Assign priorities to blocks so that your model invokes write blocks before
read blocks.

For instructions on how to set block execution order, see “Controlling and
Displaying the Sorted Order” in the Simulink documentation.

8-39

8 Defining Data

Sharing Chart Data with External Modules

In this section...

“Methods of Sharing Chart Data with External Modules” on page 8-40

“Exporting Data to External Modules” on page 8-40

“Importing Data from External Modules” on page 8-41

Methods of Sharing Chart Data with External
Modules
A Stateflow machine can share data with external modules, such as Stateflow
charts in other machines or external code assigned to the machine. Sharing
data requires that a Stateflow machine export the data definition to the
external module and that the external module import the data definition from
the Stateflow machine. Similarly, a Stateflow machine can import data that
an external module exports.

Exporting Data to External Modules

To export data from the Stateflow machine to external modules, follow these
steps:

1 In the Model Explorer, add a data object to the Stateflow machine, as
described in “Adding Data Using the Model Explorer” on page 8-3.

2 Set the scope of the data to Exported.

When You Export Data to External Code Assigned to the
Stateflow Machine
For each exported data object, the Stateflow code generator creates a C
declaration of the form

type data;

where type is the C type of the exported data object — such as int16 or
double— and data is the name of the Stateflow object. For example, suppose

8-40

Sharing Chart Data with External Modules

that your Stateflow machine defines an exported int16 item named counter.
The Stateflow code generator exports the item as the C declaration

int16_T counter;

where int16_T is a defined type for int16 integers in Stateflow charts.

The code generator includes declarations for exported data in the generated
target’s global header file. This inclusion makes the declarations visible to
external code compiled into or linked to the target.

See “Exported Data” on page 19-25 for an example of Stateflow data exported
to Stateflow external code.

When You Export Data to an External Stateflow Machine
For each Stateflow machine that wants to share the data exported from the
external machine, you must define a data object of the same name as the
exported data and set the object scope to Imported.

Importing Data from External Modules
To import externally defined data into a Stateflow machine, follow these steps:

1 In the Model Explorer, add a data object to the Stateflow machine, as
described in “Adding Data Using the Model Explorer” on page 8-3.

2 Give the data object the same name as the external data.

3 Set the scope of the data to Imported.

When You Import Data from External Code Assigned to the
Stateflow Machine
For each imported data object, the Stateflow code generator assumes that
external code provides a prototype of the form

type data;

where type is the C data type corresponding to the Stateflow data type of the
imported item — such as int32 or double — and data is the name of the

8-41

8 Defining Data

Stateflow object. For example, suppose that your Stateflow machine defines
an imported int32 integer named counter. The Stateflow code generator
expects the item to be defined in the external C code as

int32_T counter;

See “Imported Data” on page 19-26 for an example of Stateflow external code
data imported into the Stateflow machine.

When You Import Data from an External Stateflow Machine
Make sure that the external Stateflow machine contains a data definition of
scope Exported with the same name as the imported data objects.

8-42

Typing Stateflow® Data

Typing Stateflow Data

In this section...

“What Is Data Type?” on page 8-43

“Specifying Data Type and Mode” on page 8-43

“Built-In Data Types” on page 8-47

“Inheriting Data Types from Simulink Objects” on page 8-48

“Deriving Data Types from Previously Defined Data” on page 8-48

“Typing Data by Using an Alias” on page 8-49

“Strong Data Typing with Simulink I/O” on page 8-50

What Is Data Type?
The term data type refers to the way computers represent numbers in
memory. The type determines the amount of storage allocated to data,
the method of encoding a data value as a pattern of binary digits, and the
operations available for manipulating the data.

Specifying Data Type and Mode
To specify the type of a Stateflow data object:

1 Open the Data properties dialog box, as described in “Opening the Data
Properties Dialog Box” on page 8-7.

2 Select the Scope of the data object for which you want to set the data type.

For more information, see “Properties You Can Set in the General Pane”
on page 8-8.

3 Click the Data Type Assistant button.

8-43

8 Defining Data

Note If you know the specific data type you want to use, you can enter the
data type directly in the Type field, or select it from the Type drop-down
list, instead of using the Data Type Assistant. For more information, see
“Working with Data Types” in the Simulink documentation.

4 Choose aMode in the Data Type Assistant section of the dialog box.

You can choose from these modes for each scope:

Scope Data Type Modes

Inherit Built in Fixed point Enumerated Expression Bus Object

Local yes yes yes yes yes

Constant yes yes yes yes

Parameter yes yes yes yes yes yes

Input yes yes yes yes yes yes

Output yes yes yes yes yes yes

Data Store
Memory

yes

5 Based on the mode you select, specify a data type as follows:

Mode What To Specify

Inherit You cannot specify a value. You inherit the data type from previously defined
data, based on the scope you select for the data object:

• If scope is Input, you inherit the data type from the Simulink input signal
on the designated input port (see “Sharing Input and Output Data with
Simulink Models” on page 8-29).

• If scope is Output, you inherit the data type from the Simulink output
signal on the designated output port (see “Sharing Input and Output Data
with Simulink Models” on page 8-29).

8-44

Typing Stateflow® Data

Mode What To Specify

Note Avoid inheriting data types from output signals. See “Avoid
inheriting output data properties from Simulink blocks” on page 8-71.

• If scope is Parameter, you inherit the data type from the associated
parameter, which you can define in a Simulink model or the MATLAB
workspace (see “Sharing Data with Simulink Models and the MATLAB
Workspace” on page 8-29).

• If scope is Data Store Memory, you inherit the data type from the
Simulink data store to which you bind the data object (see “Sharing Global
Data with Simulink Models” on page 8-33).

Built in Select a data type from the drop-down list of supported data types, as described
in “Built-In Data Types” on page 8-47.

Fixed point Specify the following information about the fixed-point data:

• Whether the data is signed or unsigned

• Word length

• Scaling mode

For information on how to specify these fixed-point data properties, see
“Fixed-Point Data Properties” on page 8-15.

Enumerated Specify the class name for the enumerated data type. For more information,
see Chapter 15, “Using Enumerated Data in Stateflow Charts”.

8-45

8 Defining Data

Mode What To Specify

Expression Enter an expression that evaluates to a data type in the Type field. You can
use these expressions:

• Alias type from the MATLAB workspace, as described in “Typing Data by
Using an Alias” on page 8-49

• type operator to specify the type of previously defined data, as described in
“Deriving Data Types from Previously Defined Data” on page 8-48

• fixdt function to create a Simulink.NumericType object that describes a
fixed-point or floating-point data type

For more information on how to build expressions in the Data properties
dialog box, see “Entering Expressions and Parameters for Data Properties”
on page 8-26.

Bus object In the Bus object field, enter the name of a Simulink.Bus object to associate
with the Stateflow bus object structure. You must define the bus object in the
base workspace. If you have not yet defined a bus object, click Edit to create or
edit a bus object in the Bus Editor.

Note You can also inherit bus object properties from Simulink signals. See
“Using Composite Signals” in the Simulink documentation.

For more information about Stateflow bus object structures, see Chapter 20,
“Working with Structures and Bus Signals in Stateflow Charts”.

8-46

Typing Stateflow® Data

6 Click Apply to save the data type settings.

Built-In Data Types
You can choose from these built-in data types:

Data Type Description

double 64-bit double-precision floating point

single 32-bit single-precision floating point

int32 32-bit signed integer

int16 16-bit signed integer

int8 8-bit signed integer

uint32 32-bit unsigned integer

uint16 16-bit unsigned integer

uint8 8-bit unsigned integer

boolean Boolean (1 = true; 0 = false)

ml Typed internally with the MATLAB array
mxArray. The ml data type provides Stateflow
data with the benefits of the MATLAB
environment, including the ability to assign
the Stateflow data object to a MATLAB
variable or pass it as an argument to a
MATLAB function. See “ml Data Type” on
page 10-47.

Note ml data cannot have a scope outside the
Stateflow hierarchy; that is, it cannot have a
scope of Input to Simulink or Output to
Simulink.

8-47

8 Defining Data

Inheriting Data Types from Simulink Objects
Stateflow data objects of scope Input, Output, Parameter, and Data Store
Memory can inherit their data types from Simulink objects, as follows:

Scope: Can inherit type from:

Input Simulink input signal connected to corresponding input
port in Stateflow chart

Output Simulink output signal connected to corresponding
output port in Stateflow chart

Note Avoid inheriting data types from output signals.
See “Avoid inheriting output data properties from
Simulink blocks” on page 8-71.

Parameter Corresponding MATLAB workspace variable or
Simulink parameter in a masked subsystem

Data Store
Memory

Corresponding Simulink data store

To configure these objects to inherit data types, create the corresponding
objects in the Simulink model, and then select Inherit: Same as Simulink
from the Type drop-down list in the Data properties dialog box. For more
information, see “Specifying Data Type and Mode” on page 8-43.

To determine the data types that the objects inherit, build the Simulink model
and look at the Compiled Type column for each Stateflow data object in
the Model Explorer.

Deriving Data Types from Previously Defined Data
You can use the type operator to derive data types from previously defined
data. In the following example, the expression type(inbus) specifies the
data type of the Stateflow structure counterbus_struct, where inbus is
defined by the Simulink.Bus object COUNTERBUS. Therefore, the structure
counterbus_struct also derives its data type from the bus object COUNTERBUS.

8-48

Typing Stateflow® Data

After you build your model, the Compiled Type column of the Model
Explorer shows the type of each data object in the compiled simulation
application. For more information, see “type Operator” on page 10-26.

Typing Data by Using an Alias
You can specify the type of Stateflow data by using a Simulink data type
alias (see Simulink.AliasType in the Simulink Reference documentation).
Suppose that you define a data type alias named MyFloat as follows:

MyFloat = Simulink.AliasType;
MyFloat.BaseType = 'single';

In the following example, the data y has the same type as MyFloat.

8-49

8 Defining Data

After you build your model, the Compiled Type column of the Model
Explorer shows the type used in the compiled simulation application.

Strong Data Typing with Simulink I/O

By default, inputs to and outputs from Stateflow charts are of type double.
Input signals from Simulink models convert to the type of the corresponding
input data objects in Stateflow charts. Likewise, the data output objects
convert to double before they are exported as output signals to Simulink
models.

8-50

Typing Stateflow® Data

To interface directly with signals of data types other than double without the
need for conversion, select Use Strong Data Typing with Simulink I/O in
the Chart properties dialog box (see “Specifying Chart Properties” on page
19-4). When you select this check box, the chart accepts input signals of any
data type that Simulink supports, as long as the data type of the input signal
matches the type of the corresponding Stateflow data object. Otherwise, you
receive a type mismatch error.

Note For fixed-point data, select Use Strong Data Typing with Simulink
I/O to flag mismatches between input or output fixed-point data in Stateflow
charts and their counterparts in Simulink models.

8-51

8 Defining Data

Sizing Stateflow Data

In this section...

“Methods for Sizing Stateflow Data” on page 8-52

“How to Specify Data Size” on page 8-53

“Inheriting Input or Output Size from Simulink Signals” on page 8-53

“Guidelines for Sizing Data with Numeric Values” on page 8-54

“Guidelines for Sizing Data with MATLAB Expressions” on page 8-55

“Examples of Valid Data Size Expressions” on page 8-56

“Name Conflict Resolution for Variables in Size Expressions” on page 8-56

“Best Practices for Sizing Stateflow Data” on page 8-57

Methods for Sizing Stateflow Data
You can specify the size of Stateflow data by:

• Inheriting the size from a Simulink signal

• Using numeric values

• Using MATLAB expressions

Support for a sizing method depends on the scope of your data:

Method for Sizing DataScope of Data

Inherit the Size Use Numeric
Values

Use MATLAB
Expressions

Local No Yes Yes

Constant No Yes Yes

Parameter No Yes Yes

Input Yes Yes Yes

8-52

Sizing Stateflow® Data

Method for Sizing DataScope of Data

Inherit the Size Use Numeric
Values

Use MATLAB
Expressions

Output Yes Yes Yes

Data store
memory

Yes No No

Stateflow data store memory inherits all data properties, including size,
from the Simulink data store to which it resolves. You cannot specify any
properties explicitly for data store memory.

How to Specify Data Size

Using the Size Field of the Data Properties Dialog Box
To specify the size of Stateflow data in the Data properties dialog box, you use
the Size field, as described in “Properties You Can Set in the General Pane”
on page 8-8. For more information, see:

• “Inheriting Input or Output Size from Simulink Signals” on page 8-53

• “Guidelines for Sizing Data with Numeric Values” on page 8-54

• “Guidelines for Sizing Data with MATLAB Expressions” on page 8-55

Setting the Stateflow.Data Object Property
To specify the size of Stateflow data using API commands, you set the
Props.Array.Size property to a numeric value or a MATLAB expression
that represents a scalar, vector, matrix, or n-dimensional array. For more
information on using the API, see “Data Properties” in the Stateflow API
documentation.

Inheriting Input or Output Size from Simulink Signals
To configure Stateflow input and output data to inherit size from the
corresponding Simulink input and output signals, enter –1 in the Size field
of the Data properties dialog box. This default setting applies to input and
output data that you add to your chart. After you build your model, the

8-53

8 Defining Data

Compiled Size column of the Model Explorer displays the actual size that
the compiled simulation application uses.

The equivalent API command for specifying an inherited data size is:

data_handle.Props.Array.Size = '-1';

Chart actions that store values in the specified output infer the inherited
size of output data. If the expected size in the Simulink signal matches the
inferred size, inheritance is successful. Otherwise, a mismatch occurs during
build time.

Note Stateflow charts cannot inherit frame-based data sizes from Simulink
signals.

Guidelines for Sizing Data with Numeric Values
When you specify data size using numeric values in the Size field of the Data
properties dialog box, follow these guidelines:

Dimensionality What to Specify in the Dialog
Box

Equivalent API Command

Scalar 1 (or leave the field blank) data_handle.Props.Array.Size =
'1';
data_handle.Props.Array.Size =
'';

Vector The number of elements in the row
or column vector

data_handle.Props.Array.Size =
'number_of_elements';

8-54

Sizing Stateflow® Data

Dimensionality What to Specify in the Dialog
Box

Equivalent API Command

Matrix An expression of the format
[r c], where:

• r is the number of rows

• c is the number of columns

data_handle.Props.Array.Size =
'[r c]';

N-dimensional
array

An expression of the format
[Size_of_dim1 Size_of_dim2 ...
Size_of_dimN], where:

• Size_of_dim1 is the size of the
first dimension

• Size_of_dim2 is the size of the
second dimension

• Size_of_dimN is the size of the
N-th dimension

data_handle.Props.Array.Size =
'[Size_of_dim1 Size_of_dim2 ...
Size_of_dimN];

One-dimensional Stateflow vectors are compatible with Simulink row or
column vectors of the same size. For example, Stateflow input or output data
of size 3 is compatible with a Simulink row vector of size [1 3] or column
vector of size [3 1].

Guidelines for Sizing Data with MATLAB Expressions
When you specify data size using MATLAB expressions, follow the same
guidelines that apply to sizing with numeric values (see “Guidelines for Sizing
Data with Numeric Values” on page 8-54). The following guidelines also apply.

• Expressions that specify the size of a dimension:

- Can contain a mix of numeric values, variables, arithmetic operators,
parameters, and calls to MATLAB functions.

- Must evaluate to a positive integer value.

8-55

8 Defining Data

• To specify inherited data size, you must enter –1 in the Size field or set
the Props.Array.Size property for the data to –1. Expressions cannot
evaluate to a value of –1.

• If the expression contains an enumerated value, you must include the type
prefix for consistency with MATLAB naming rules.

For example, Colors.Red is valid but Red is not.

• You cannot size Stateflow input data with an expression that accepts
frame-based data from Simulink.

Examples of Valid Data Size Expressions
The following examples are valid MATLAB expressions for sizing data in
your chart:

• K+3, where K is a chart-level Stateflow data

• N/2, where N is a variable in the MATLAB base workspace

• 2*Colors.Red, where Red is an enumerated value of type Colors

• [fi(2,1,16,2) fi(4,1,16,2)], which specifies a data size of [2 4] using
a signed fixed-point type with word length of 16 and fraction length of 2

Name Conflict Resolution for Variables in Size
Expressions
When multiple variables with identical names exist in a model, the variable
with the highest priority applies:

1 Mask parameters

2 Model workspace

3 MATLAB base workspace

4 Stateflow data

8-56

Sizing Stateflow® Data

Best Practices for Sizing Stateflow Data

Avoid use of variables that can lead to naming conflicts
For example, if a variable named off exists in the MATLAB base workspace
and as local chart data, do not use off in the Size field of the Data properties
dialog box.

Avoid use of size(u) expressions

Instead of using a size(u) expression, use a MATLAB expression that
evaluates directly to the size of Stateflow data.

8-57

8 Defining Data

Defining Temporary Data

In this section...

“When to Define Temporary Data” on page 8-58

“How to Define Temporary Data” on page 8-58

When to Define Temporary Data
Define temporary data when you want to use data that persists only while a
function executes. You can define temporary data in graphical, truth table,
and MATLAB functions in your chart. For example, you can designate a
loop counter to have Temporary scope if the counter value does not need to
persist after the function completes.

How to Define Temporary Data
To define temporary data for a Stateflow function, follow these steps:

1 Open the Model Explorer.

2 In the Model Explorer, select the graphical, truth table, or MATLAB
function that will use temporary data.

3 Select Add > Data.

The Model Explorer adds a default definition for the data in the Stateflow
hierarchy, with a scope set to Temporary by default.

4 Change other properties of the data if necessary, as described in “Setting
Data Properties in the Data Dialog Box” on page 8-5.

8-58

Using Dot Notation to Identify Data in a Chart

Using Dot Notation to Identify Data in a Chart

In this section...

“What Is Dot Notation?” on page 8-59

“Resolution of Data Identifiers with Dot Notation” on page 8-60

“Best Practices for Using Dot Notation in Data Identifiers” on page 8-62

What Is Dot Notation?
Dot notation is a way to identify data at a specific level of the Stateflow chart
hierarchy. For example, you can use dot notation for data identifiers in state
actions and transitions.

In this chart, data resides in the state aa. Identifiers in state actions and
transitions use dot notation to refer to this data.

• In state a, the entry action contains the identifier aa.data.

• In state b, the entry action contains the identifier a.aa.data.

• In the default transition, the action contains the identifier a.aa.data.

8-59

8 Defining Data

Resolution of Data Identifiers with Dot Notation
During simulation, the chart searches for data that matches the identifier
with dot notation. These rules apply:

• The chart does not do an exhaustive search of all data.

• The chart does not stop searching after finding one match. The search
continues until it reaches the chart level.

��������
	
�
���
�

�
���������
	����	��
���

�����
�
	����������
�����
��

��������������

��

���������
�����������
���
�����

��
������
�
������������
���
����
����	
�
���
�
�
���������
	����	��
���

��������
���
��
���	����
��
���������

��

!		���
�
	
�
���
����������
�
������

���������

��"��
�
����

��

���

������ ����������
�
��

�������������
	������

��������������

#����������
�
�����$�������
��	�������������

#�����
�
�����$�����

��������

Process for Resolving Data Identifiers with Dot Notation

8-60

Using Dot Notation to Identify Data in a Chart

The flow chart describes the following search process.

Stage Action

1 The search begins at the level of the hierarchy where the identifier
appears.

• For a state action, that state is the starting point.

• For a transition label, the parent of the source object is the
starting point.

2 The chart searches at that level of the hierarchy for a path to the
data. If the chart finds a match, it adds that path to the list of
possible matches.

3 The chart moves up to the next highest level of the hierarchy. At
that level, the chart searches for a path to the data. If the chart
finds a match, it adds that path to the list of possible matches.

4 The previous step repeats until the search reaches the chart level.

5 At the chart level, one more search occurs for a path to the data.
If a match exists, that path becomes part of the list of possible
matches. Then, the search ends.

6 After the search ends, one of the following occurs:

• If a unique match exists, the statement containing the data
identifier executes.

• If multiple matches exist, the chart sorts them in this order of
priority:

1 Local data in a state, subchart, or function

2 Field name of a bus object (see Chapter 20, “Working with
Structures and Bus Signals in Stateflow Charts”)

3 Value of an enumerated data type (see Chapter 15, “Using
Enumerated Data in Stateflow Charts”)

The statement containing the data identifier executes using the
match of highest priority.

• If no matches exist, an error message appears.

8-61

8 Defining Data

Best Practices for Using Dot Notation in Data
Identifiers
These examples show how to avoid problems when using dot notation in
data identifiers.

Use a Specific Path in the Identifier
Be specific when defining the path to the data.

Suppose that state aa contains data. In state b, the entry action contains the
aa.data identifier that the chart cannot resolve. This search process occurs:

Stage Action Finds a Match?

1 Chooses state b as the starting point and
searches at that level for an object aa that
contains data.

No

2 Moves up to the next level of the hierarchy
and searches at the chart level for an object
aa that contains data.

No

The search ends, and an error message appears because no match exists for
the aa.data identifier.

8-62

Using Dot Notation to Identify Data in a Chart

To avoid this message, use a specific path in the identifier for the entry
action in state b:

en: a.aa.data+=1;

Use Unique State Names
Use unique names when you name the states in a chart.

Suppose that both states named aa contain a data object named data. In state
a, the entry action contains two aa.data identifiers that the chart cannot
resolve. This search process occurs:

Stage Action Finds a Match?

1 Chooses state a as the starting point and
searches at that level for an object aa that
contains data.

Yes

2 Moves up to the next level of the hierarchy
and searches at the chart level for an object
aa that contains data.

Yes

The search ends, and a warning message appears because multiple matches
of equal priority exist for the aa.data identifiers.

8-63

8 Defining Data

To avoid this message, perform one of these corrective actions:

• Rename one of the two states named aa.

• Use a more specific path in the identifiers for the entry action in state a:

en: y+=a.aa.data, a.aa.data+=1;

• Enclose the outer state aa in a box or another state. Adding an enclosure
prevents the search process from detecting that outer state.

8-64

Resolving Data Properties from Simulink® Signal Objects

Resolving Data Properties from Simulink Signal Objects

In this section...

“About Explicit Signal Resolution” on page 8-65

“Inherited Properties” on page 8-65

“Enabling Explicit Signal Resolution” on page 8-66

“A Simple Example” on page 8-66

About Explicit Signal Resolution
Stateflow local and output data in Stateflow charts can explicitly inherit
properties from Simulink.Signal objects in the model workspace or base
workspace. This process is called signal resolution and requires that the
resolved signal have the same name as the chart output or local data.

For information about Simulink signal resolution, see “Resolving Symbols”
and “Hierarchical Symbol Resolution” in the Simulink documentation.

Inherited Properties
When Stateflow local or output data resolve to Simulink signal objects, they
inherit these properties:

• Size

• Complexity

• Type

• Minimum value

• Maximum value

• Initial value

• Storage class

Storage class controls the appearance of Stateflow chart data in the
generated code. See “Creating and Using Custom Storage Classes” in the
Embedded Coder User’s Guide.

8-65

8 Defining Data

Enabling Explicit Signal Resolution
To enable explicit signal resolution, follow these steps:

1 In the model workspace or base workspace, define a Simulink.Signal
object with the properties you want your Stateflow data to inherit.

For more information about creating Simulink signals, see
Simulink.Signal in the Simulink Reference documentation.

2 Add output or local data to a Stateflow chart.

The Data properties dialog box opens.

3 Enter a name for your data that matches the name of the Simulink.Signal
object.

4 In the Data properties dialog box, select the Data must resolve to
Simulink signal object check box.

After you select this check box, the dialog box removes or grays out the
properties that your data inherits from the signal. For a list of properties
that your data can inherit during signal resolution, see “Inherited
Properties” on page 8-65.

A Simple Example
The following model shows how a Stateflow chart resolves local and output
data to Simulink.Signal objects.

8-66

Resolving Data Properties from Simulink® Signal Objects

In the base workspace, there are three Simulink.Signal objects with these
properties:

Name Data Type Dimensions Storage Class

y1 double 1 SimulinkGlobal

y2 uint32 [2 2] Auto

local single 1 ExportedGlobal

8-67

8 Defining Data

The chart contains three data objects — two outputs and a local variable —
that will resolve to a signal with the same name, as follows:

8-68

Resolving Data Properties from Simulink® Signal Objects

When you build the model, each data object inherits the properties of the
identically named signal:

8-69

8 Defining Data

The generated code declares the data based on the storage class that the data
inherits from the associated Simulink signal. For example, the header file
below declares local to be an exported global variable:

/*
* Exported States
*
* Note: Exported states are block states with an exported
* global storage class designation.
*
*/

extern real32_T local; /* '<Root>/Chart' */

8-70

Best Practices for Using Data in Stateflow® Charts

Best Practices for Using Data in Stateflow Charts

In this section...

“Avoid inheriting output data properties from Simulink blocks” on page 8-71

“Restrict use of machine-parented data” on page 8-71

Avoid inheriting output data properties from
Simulink blocks
Stateflow output data should not inherit properties from output signals,
because the values back propagate from Simulink blocks and can be
unpredictable.

In the Stateflow action language, inherited properties of outputs are
determined solely by external information from Simulink models and not from
the code. However, in the MATLAB action language — used in truth tables
and MATLAB functions — inherited properties of outputs are determined
solely from the code and the properties of the inputs.

Restrict use of machine-parented data
Use machine-parented data when you want to use global data definitions
for Mealy and Moore charts, which do not support data store memory (see
Chapter 6, “Building Mealy and Moore Charts” for details). Otherwise, avoid
using machine-parented data. The presence of machine-parented data in a
model prevents reuse of generated code and other code optimizations. This
type of data is also incompatible with many Simulink and Stateflow features.

For example, the following features do not support machine-parented data:

• Enumerated data (see Chapter 15, “Using Enumerated Data in Stateflow
Charts”)

• Simulink functions (see Chapter 24, “Using Simulink Functions in
Stateflow Charts”)

• Chart SimState (see Chapter 12, “Saving and Restoring Simulations with
SimState”)

8-71

8 Defining Data

• Implicit change events (see “Keywords for Implicit Events” on page 9-40)

• Detection of unused data (see “Diagnostic for Detecting Unused Data” on
page 8-2)

• Model referencing (see “Limitations on All Model Referencing” in the
Simulink documentation)

• Analysis by Simulink® Design Verifier™ software

• Code generation by Simulink® PLC Coder™ software

To make Stateflow data accessible to other charts and blocks in a model, use
data store memory. For details, see “Sharing Global Data with Simulink
Models” on page 8-33.

8-72

Transferring Data Across Models

Transferring Data Across Models

In this section...

“Copying Data Objects” on page 8-73

“Moving Data Objects” on page 8-73

Copying Data Objects
When you copy a Stateflow chart from one Simulink model to another, all
data objects in the chart hierarchy are copied except those that the Stateflow
machine parents. However, you can use the Model Explorer to transfer
individual data objects from machine to machine.

To copy a data object, follow these steps:

1 In the Contents pane of the Model Explorer, right–click the data object
you want to copy and select Copy from the context menu.

2 In the Model Hierarchy pane, right-click the destination Stateflow
machine and select Paste from the context menu.

Moving Data Objects
To move a data object, click the object in the Contents pane of the Model
Explorer and drag it to the destination Stateflow machine in the Model
Hierarchy pane.

8-73

8 Defining Data

8-74

9

Defining Events

• “How Events Work in Stateflow Charts” on page 9-2

• “How to Define Events” on page 9-5

• “Setting Properties for an Event” on page 9-7

• “Using Input Events to Activate a Stateflow Chart” on page 9-11

• “Controlling States When Function-Call Inputs Reenable Charts” on page
9-16

• “Using Output Events to Activate a Simulink Block” on page 9-24

• “Using Implicit Events” on page 9-40

• “Counting Events” on page 9-45

• “Best Practices for Using Events in Stateflow Charts” on page 9-47

9 Defining Events

How Events Work in Stateflow Charts

In this section...

“What Is an Event?” on page 9-2

“When to Use Events” on page 9-2

“Types of Events” on page 9-3

“Where You Can Use Events” on page 9-3

“Diagnostic for Detecting Unused Events” on page 9-4

What Is an Event?
An event is a Stateflow object that can trigger actions in one of these objects:

• A Simulink triggered subsystem

• A Simulink function-call subsystem

• A Stateflow chart

When to Use Events
Use events when you want to:

• Activate a Simulink triggered subsystem (see “Using Edge Triggers to
Activate a Simulink Block” on page 9-24)

• Activate a Simulink function-call subsystem (see “Using Function Calls to
Activate a Simulink Block” on page 9-33)

• Trigger actions in parallel states of a Stateflow chart (see “Broadcasting
Events in Actions” on page 10-59)

Although Stateflow software does not limit the number of events you can use
in a chart, the underlying C compiler enforces a theoretical limit of (2^31)-1
events for the generated code.

When should I use conditions instead of events?

Use conditions on transitions when you want to:

9-2

How Events Work in Stateflow® Charts

• Represent conditional statements, for example, x < 1 or x == 0

• Represent a change of input value from a Simulink block

For more information about using conditions on transitions, see “Transition
Action Types” on page 10-7.

Types of Events
An explicit event is an event that you define and can have one of the following
scopes.

Scope Description

Local Event that can occur anywhere in a Stateflow machine
but is visible only in the parent object (and descendants
of the parent). See “Directed Event Broadcasting” on
page 10-59.

Input from
Simulink

Event that occurs in a Simulink block but is broadcast
to a Stateflow chart. See “Using Input Events to
Activate a Stateflow Chart” on page 9-11.

Output to
Simulink

Event that occurs in a Stateflow chart but is broadcast
to a Simulink block. See “Using Output Events to
Activate a Simulink Block” on page 9-24.

An implicit event is a built-in event that broadcasts automatically during
chart execution (see “Using Implicit Events” on page 9-40).

Where You Can Use Events
You can define explicit events at these levels of the Stateflow hierarchy.

An event you define
in a...

Is visible to...

Chart The chart and all states and substates

Subchart The subchart and all states and substates

State The state and all substates

9-3

9 Defining Events

Diagnostic for Detecting Unused Events
If you have unused events in your chart, a warning message appears during
simulation with a list of events you can remove. By removing objects that
have no effect on simulation, you can reduce the size of your model. This
diagnostic checks for usage of Stateflow events, except for the following types:

• Function-call input events

• Edge-triggered input events

After you select an event for removal, a dialog box confirms your choice.
In this dialog box, you can specify that other deletions occur without
confirmation. If you prevent the confirmation dialog box from appearing, you
can reenable it at any time by typing at the command prompt:

sfpref('showDeleteUnusedConfGui', 1)

You can control the level of diagnostic action for unused events in the
Diagnostics > Stateflow pane of the Configuration Parameters dialog box.
For more information, see the documentation for the “Unused data and
events” diagnostic.

9-4

How to Define Events

How to Define Events

In this section...

“Adding Events Using the Stateflow Editor” on page 9-5

“Adding Events Using the Model Explorer” on page 9-5

Adding Events Using the Stateflow Editor
In the Stateflow Editor, you can add events to your Stateflow chart. Follow
these steps:

1 In the Stateflow Editor, select Add > Event.

2 In the resulting submenu, select the scope for the event.

The Stateflow Editor adds a default definition of the new event to the
Stateflow hierarchy, and the Event properties dialog box appears.

3 Specify properties for the event in the Event properties dialog box, as
described in “Setting Properties for an Event” on page 9-7.

Adding Events Using the Model Explorer
To add events using the Model Explorer:

1 In the Stateflow Editor, select Tools > Explore.

The Model Explorer appears.

2 In the Model Explorer, select the object in the Stateflow hierarchy where
you want the new event to be visible.

The object you select becomes the parent of the event.

3 Select Add > Event.

The Model Explorer adds a default definition for the new event in the
hierarchy and displays an entry row for the new event in the Contents
pane.

9-5

9 Defining Events

4 Change the properties of the event you add in one of these ways:

• Right-click the event row and select Properties to open the Event
properties dialog box.

See “Setting Properties for an Event” on page 9-7 for a description of
each property for an event.

• Click individual cells in the entry row to set specific properties such as
Name, Scope, and Port.

9-6

Setting Properties for an Event

Setting Properties for an Event

In this section...

“When to Use the Event Properties Dialog Box” on page 9-7

“Accessing the Event Properties Dialog Box” on page 9-8

“Property Fields” on page 9-9

When to Use the Event Properties Dialog Box
Use the Event properties dialog box when you want to modify properties of an
event, which can vary based on the scope of the event. The Event properties
dialog box displays only the property fields that apply to the event you are
modifying.

For example, the dialog box displays these properties and default values for
an event whose scope is Local.

9-7

9 Defining Events

For input events, the dialog box displays these properties and defaults.

Accessing the Event Properties Dialog Box
To access the Event properties dialog box, use one of these methods:

• Add a new event from the Stateflow Editor.

The Event properties dialog box appears, as described in “Adding Events
Using the Stateflow Editor” on page 9-5.

• Open the Event properties dialog box in the Model Explorer in one of
these ways:

- Double-click the event in the Contents pane.

- Right-click the event in the Contents pane and select Properties.

- Select the event in the Contents pane and then select View > Show
Dialog Pane.

The Event properties dialog box opens inside the Model Explorer.

9-8

Setting Properties for an Event

See “Adding Events Using the Model Explorer” on page 9-5.

Property Fields

Name
Name of the event. Actions reference events by their names. Names must
begin with an alphabetic character, cannot include spaces, and cannot be
shared by sibling events.

Scope
Scope of the event. The scope specifies where the event occurs relative to the
parent object. For information about types of scope, see “Types of Events”
on page 9-3.

Port
Property that applies to input and output events.

• For input events, port is the index of the input signal that triggers the
event.

• For output events, port is the index of the signal that outputs this event.

You assign input and output events to ports in the order in which you add the
events. For example, you assign the first input event to input port 1 and the
third output event to output port 3.

You can change port assignments in the Model Explorer or the Event
properties dialog box. When you change the number of one port, the
numbers of other ports adjust automatically to preserve the relative order.
See “Association of Input Events with Control Signals” on page 9-14 and
“Association of Output Events with Output Ports” on page 9-38.

Trigger
Type of signal that triggers an input or output event. See “Using Input Events
to Activate a Stateflow Chart” on page 9-11 or “Using Output Events to
Activate a Simulink Block” on page 9-24.

9-9

9 Defining Events

Debugger Breakpoints
Option for setting debugger breakpoints at the start or end of an event
broadcast.

Description
Description of this event. You can enter brief descriptions of events in the
hierarchy.

Document Link
Link to online documentation for events in a Stateflow chart. To document a
particular event, set the Document Link property to a Web URL address or
MATLAB expression that displays documentation in a suitable online format
(for example, an HTML file or text in the MATLAB Command Window). When
you click the blue Document Link text, the chart evaluates the expression.

9-10

Using Input Events to Activate a Stateflow® Chart

Using Input Events to Activate a Stateflow Chart

In this section...

“What Is an Input Event?” on page 9-11

“Using Edge Triggers to Activate a Stateflow Chart” on page 9-11

“Using Function Calls to Activate a Stateflow Chart” on page 9-13

“Association of Input Events with Control Signals” on page 9-14

What Is an Input Event?
An input event occurs outside a chart but is visible only in that chart. This
type of event allows other Simulink blocks, including other Stateflow charts,
to notify a specific chart of events that occur outside it.

You can activate a Stateflow chart via a change in control signal (an
edge-triggered input event) or a function call from a Simulink block (a
function-call input event). The sections that follow describe when and how to
use each type of input event.

Note You cannot mix edge-triggered and function-call input events in a
Stateflow chart. If you try to mix these input events, an error message
appears during simulation.

Using Edge Triggers to Activate a Stateflow Chart
An edge-triggered input event causes a Stateflow chart to execute during the
current time step of simulation. This type of input event works only when a
change in control signal acts as a trigger.

When to Use an Edge-Triggered Input Event
Use an edge-triggered input event to activate a chart when your model
requires chart execution at regular (or periodic) intervals.

9-11

9 Defining Events

How to Define an Edge-Triggered Input Event
To define an edge-triggered input event:

1 Add an event to the Stateflow chart, as described in “How to Define Events”
on page 9-5.

Note You must add an input event to the chart and not to one of its objects.

2 Set the Scope property for the event to Input from Simulink.

A single trigger port appears at the top of the Stateflow block in the
Simulink model.

3 Set the Trigger property to one of these edge triggers.

Edge Trigger
Type Description

Rising Rising edge trigger, where the control signal
changes from either 0 or a negative value to a
positive value.

Falling Falling edge trigger, where the control signal
changes from either 0 or a positive value to a
negative value.

Either Either rising or falling edge trigger.

In all cases, the signal must cross 0 to be a valid edge trigger. For example,
a signal that changes from -1 to 1 is a valid rising edge, but a signal that
changes from 1 to 2 is not valid.

Example of Using an Edge-Triggered Input Event
The demo model sf_loop_scheduler shows how to use an edge-triggered
input event to activate a Stateflow chart at regular intervals. For information
on running this model and how it works, see “Scheduling One Subsystem in a
Single Time Step Using a Loop Scheduler” on page 21-13.

9-12

Using Input Events to Activate a Stateflow® Chart

Using Function Calls to Activate a Stateflow Chart
A function-call input event causes a Stateflow chart to execute during the
current time step of simulation.

Note When you use this type of input event, you must also define a
function-call output event for the block that calls the Stateflow chart.

When to Use a Function-Call Input Event
Use a function-call input event to activate a chart when your model requires
access to output data from the chart in the same time step as the function call.

How to Define a Function-Call Input Event
To define a function-call input event:

1 Add an event to the Stateflow chart, as described in “How to Define Events”
on page 9-5.

Note You must add an input event to the chart and not to one of its objects.

2 Set the Scope property for the event to Input from Simulink.

A single trigger port appears at the top of the Stateflow block in the
Simulink model.

3 Set the Trigger property to Function call.

Example of Using a Function-Call Input Event
The demo model sf_loop_scheduler shows how to use a function-call input
event to activate a Stateflow chart. For information on running this model
and how it works, see “Scheduling One Subsystem in a Single Time Step
Using a Loop Scheduler” on page 21-13.

9-13

9 Defining Events

Association of Input Events with Control Signals
When you define one or more input events for a chart, a single trigger port
to the chart block appears. External Simulink blocks can trigger the input
events via a signal or vector of signals connected to the trigger port. The Port
property of an input event associates the event with a specific element of a
control signal vector that connects to the trigger port (see “Port” on page 9-9).

The number of the port that you assign to the input event acts as an index
into the control signal vector. For example, the first element of the signal
vector triggers the input event assigned to input port 1, the fourth element
triggers the input event assigned to input port 4, and so on. You assign port
numbers in the order in which you add the events. However, you can change
these assignments by setting the Port property of an event to the index of the
signal that you use to trigger the event.

Data Types Allowed for Input Events
For multiple input events to a trigger port, the data types of all signals must
be identical. If you use signals of different data types as input events, an error
message appears when you try to simulate your model.

For example, you can mux two input signals of type double to use as input
events to a chart.

9-14

Using Input Events to Activate a Stateflow® Chart

However, you cannot mux two input signals of different data types, such as
boolean and double.

Behavior of Edge-Triggered Input Events
At any given time step, input events are checked in ascending order based
on their port numbers. The chart awakens once per valid event. For
edge-triggered input events, multiple edges can occur in the same time step,
which wake the chart more than once in that time step. In this situation,
events occur (and wake the chart) in an ascending order based on their port
numbers.

Behavior of Function-Call Input Events
For function-call input events, only one trigger event exists. The caller of the
event explicitly calls and executes the chart. Only one function call can be
valid in a single time step.

9-15

9 Defining Events

Controlling States When Function-Call Inputs Reenable
Charts

In this section...

“Setting Behavior for a Reenabled Chart” on page 9-16

“Behavior When the Parent Is the Model Root” on page 9-17

“Behavior When the Chart Is Inside a Model Block” on page 9-20

Setting Behavior for a Reenabled Chart
If you define a function-call input event for a chart, you can control the
behavior of states when this event reenables the chart:

1 Open the Chart properties dialog box.

2 For States When Enabling, select one of these options:

• Held — Maintain most recent values of the states.

• Reset— Revert to the initial values of the states.

• Inherit— Inherit this setting from the parent subsystem.

If... The inherited setting is...

The parent of the chart is the
model root

Held

The chart is inside a Model block Reset

For more information, see
“Referencing a Model” in the
Simulink documentation.

For new charts, the default setting is Held.

9-16

Controlling States When Function-Call Inputs Reenable Charts

Behavior When the Parent Is the Model Root
When the parent of your chart is the model root, the following types of
behavior can occur when a function-call input event reenables the chart.

The chart... When you set the States When
Enabling property to...

Maintains the most recent values of
the states

Inherit or Held

Reverts to the initial values of the
states

Reset

What Happens When the Setting Is Inherit or Held
In the following model, the Caller chart uses the event E to wake up and
execute the Callee chart.

9-17

9 Defining Events

The Caller chart contains two states, A and B.

When you bind E to A:

• Entering A enables the Callee chart.

• Exiting A disables the Callee chart.

• Reentering A reenables the Callee chart.

Each time the Callee chart executes, the output data y increments by one.

In the Chart properties dialog box for Callee, States When Enabling
is Inherit. Because the parent of this chart is the model root, the chart
maintains the most recent values of all states when reenabled.

9-18

Controlling States When Function-Call Inputs Reenable Charts

During simulation, Callee maintains the most recent value of its state when
the function-call input event reenables the chart at t = 20 and 40.

The key behaviors are:

Time Interval Caller Chart Callee Chart

0 – 10 State A is active and
enables Callee.

State A executes by
incrementing y.

10 – 20 State B is active and
disables Callee.

State A does not
execute.

20 – 30 State A is active and
reenables Callee.

State A executes by
incrementing y.

30 – 40 State B is active and
disables Callee.

State A does not
execute.

40 – 50 State A is active and
reenables Callee.

State A executes by
incrementing y.

If States When Enabling is Held, the output is the same.

9-19

9 Defining Events

What Happens When the Setting Is Reset
Suppose that the States When Enabling property is Reset for Callee.
During simulation, Callee reverts to the initial value of its state when the
function-call input event reenables the chart at t = 20 and 40.

Behavior When the Chart Is Inside a Model Block
When your chart is inside a Model block, the following types of behavior can
occur when a function-call input event reenables the chart.

The chart... When you set the States When
Enabling property to...

Maintains the most recent values of
the states

Held

Reverts to the initial values of the
states

Inherit or Reset

9-20

Controlling States When Function-Call Inputs Reenable Charts

What Happens When the Setting Is Inherit or Reset
The following model contains a Model block and a scope. (For more
information about using Model blocks, see “Referencing a Model” in the
Simulink documentation.)

The Model block contains the Caller and Callee charts from “Behavior When
the Parent Is the Model Root” on page 9-17.

In the Chart properties dialog box for Callee, States When Enabling is
Inherit. Because this chart is inside a Model block, the chart reverts to the
initial values of all states when reenabled.

9-21

9 Defining Events

During simulation, Callee reverts to the initial value of its state when the
function-call input event reenables the chart at t = 20 and 40.

The key behaviors are:

Time Interval Caller Chart Callee Chart

0 – 10 State A is active and
enables Callee.

State A executes by
incrementing y.

10 – 20 State B is active and
disables Callee.

State A does not
execute.

20 – 30 State A is active and
reenables Callee.

State A executes by
incrementing y.

30 – 40 State B is active and
disables Callee.

State A does not
execute.

40 – 50 State A is active and
reenables Callee.

State A executes by
incrementing y.

If States When Enabling is Reset, the output is the same.

9-22

Controlling States When Function-Call Inputs Reenable Charts

What Happens When the Setting Is Held
Suppose that the States When Enabling property is Held for Callee.
During simulation, Callee maintains the most recent value of its state when
the function-call input event reenables the chart at t = 20 and 40.

9-23

9 Defining Events

Using Output Events to Activate a Simulink Block

In this section...

“What Is an Output Event?” on page 9-24

“Using Edge Triggers to Activate a Simulink Block” on page 9-24

“Using Function Calls to Activate a Simulink Block” on page 9-33

“Association of Output Events with Output Ports” on page 9-38

“Accessing Simulink Subsystems Triggered By Output Events” on page 9-39

What Is an Output Event?
An output event is an event that occurs in a Stateflow chart but is visible in
Simulink blocks outside the chart. This type of event allows a chart to notify
other blocks in a model about events that occur in the chart.

You use output events to activate other blocks in the same model. You can
define multiple output events in a chart, where each output event maps to an
output port (see “Port” on page 9-9).

Note Output events must be scalar.

Using Edge Triggers to Activate a Simulink Block
An edge-triggered output event activates a Simulink block to execute during
the current time step of simulation. This type of output event works only
when a change in control signal acts as a trigger.

When to Use an Edge-Triggered Output Event
Use an edge-triggered output event to activate a Simulink subsystem when
your model requires subsystem execution at regular (or periodic) intervals.

How to Define an Edge-Triggered Output Event
To define an edge-triggered output event:

9-24

Using Output Events to Activate a Simulink® Block

1 Add an event to the Stateflow chart, as described in “How to Define Events”
on page 9-5.

2 Set the Scope property for the event to Output to Simulink.

For each output event you define, an output port appears on the Stateflow
block.

3 Set the Trigger property of the output event to Either Edge.

Note Unlike edge-triggered input events, you cannot specify a Rising or
Falling edge trigger.

Example of Using an Edge-Triggered Output Event
The following model shows how to use an edge-triggered output event to
activate triggered subsystems at regular intervals.

The chart contains the edge-triggered output event e1 and the local data a,
which switches between 0 and 1 during simulation.

9-25

9 Defining Events

In a chart, the Trigger property of an edge-triggered output event is always
Either Edge. However, Simulink triggered subsystems can have a Rising,
Falling, or Either Edge trigger. This model shows the difference between
triggering a rising edge subsystem and an either edge subsystem.

The output event e1
triggers the...

On... When the data a
switches...

Either edge subsystem Every event broadcast From 0 to 1, or from 1
to 0

Rising edge subsystem Every other event
broadcast

From 0 to 1

9-26

Using Output Events to Activate a Simulink® Block

When you simulate the model, the scope shows these results.

Queuing Behavior for Broadcasting an Edge-Triggered Output
Event Multiple Times
If a chart tries to broadcast the same edge-triggered output event multiple
times in a single time step, the chart dispatches only one of these broadcasts
in the present time step. However, the chart queues up any pending
broadcasts for dispatch — that is, one at a time in successive time steps.
Each time the chart wakes up in successive time steps, if any pending
broadcasts exist for the output event, the chart signals the edge-triggered
subsystem for execution. Based on the block sorted order of the Simulink
model, the edge-triggered subsystem executes. (For details, see “Controlling
and Displaying the Sorted Order” in the Simulink documentation.)

Note For information on what happens for function-call output events,
see “Interleaving Behavior for Broadcasting a Function-Call Output Event
Multiple Times” on page 9-36.

9-27

9 Defining Events

Example of Queuing Behavior for Edge-Triggered Output
Events
In this model, the chart Caller uses the edge-triggered output event
output_cmd to activate the chart Callee.

The chart Caller tries to broadcast the same edge-triggered output event four
times in a single time step, as shown.

Each time the chart Callee is activated, the output data y increments by one.

9-28

Using Output Events to Activate a Simulink® Block

When you simulate the model, you see this output in the scope.

At t = 1, the chart Caller dispatches only one of the four output events.
Therefore, the chart Callee executes once during that time step. However, the
chart Caller queues up the other three event broadcasts for future dispatch
— that is, one at a time for t = 2, 3, and 4. Each time Caller wakes up in
successive time steps, it activates Callee for execution. Therefore, the action
y++ occurs once per time step at t = 1, 2, 3, and 4. During simulation, Callee
executes based on the block sorted order of the Simulink model.

Example of Using Queuing Behavior to Approximate a
Function Call
When you cannot use a function-call output event, such as for HDL code
generation, you can approximate a function call by using:

• An edge-triggered output event

• An enabled subsystem

• Two consecutive event broadcasts

9-29

9 Defining Events

Note While you can approximate a function call, a subtle difference in
execution behavior exists. Execution of a function-call subsystem occurs
during execution of the chart action that provides the trigger. However,
execution of an enabled subsystem occurs after execution of that chart action
is complete.

In the following model, the chart Caller uses the edge-triggered output event
output_cmd to activate the enabled subsystem. The scope shows the value of
the output event during simulation.

9-30

Using Output Events to Activate a Simulink® Block

The chart Caller broadcasts the edge-triggered output event using a send
action.

When you simulate the model, you see the following output in the scope.
The simulation runs for 40 seconds.

9-31

9 Defining Events

When simulation starts, the value of output_cmd is 0. At t = 20, the chart
dispatches output_cmd. Because this value changes to 1, the enabled
subsystem becomes active and executes during that time step. Because no
other event broadcasts occur, the enabled subsystem continues to execute at
every time step until simulation ends. Therefore, the Display block shows a
final value of 40.

To approximate a function call, add a second event broadcast in the same
action.

9-32

Using Output Events to Activate a Simulink® Block

When you simulate the model, you see the following output in the scope.
The simulation runs for 40 seconds.

When simulation starts, the value of output_cmd is 0. At t = 20, the chart
dispatches output_cmd. Because this value changes to 1, the enabled
subsystem becomes active and executes during that time step. The chart
also queues up the second event for dispatch at the next time step. At t = 21,
the chart dispatches the second output event, which changes the value of
output_cmd to 0. Therefore, the enabled subsystem stops executing and the
Display block shows a final value of 20.

The queuing behavior of consecutive edge-triggered output events enables you
to approximate a function call with an enabled subsystem.

Using Function Calls to Activate a Simulink Block
A function-call output event activates a Simulink block to execute during the
current time step of simulation. This type of output event works only on
blocks that you can trigger with a function call.

9-33

9 Defining Events

When to Use a Function-Call Output Event
Use a function-call output event to activate a Simulink block when your
model requires access to output data from the block in the same time step as
the function call.

How to Define a Function-Call Output Event
To define a function-call output event:

1 Add an event to the chart, as described in “How to Define Events” on page
9-5.

2 Set the Scope property for the event to Output to Simulink.

For each output event you define, an output port appears on the Stateflow
block.

3 Set the Scope property of the output event to Function call.

Example of Using a Function-Call Output Event
The demo model sf_loop_scheduler shows how to use a function-call output
event to activate a Simulink block. For information on running this model
and how it works, see “Scheduling One Subsystem in a Single Time Step
Using a Loop Scheduler” on page 21-13.

9-34

Using Output Events to Activate a Simulink® Block

The function-call output
event...

Of the chart... Activates...

call Edge to Function The chart Looping Scheduler

A1 Looping Scheduler The function-call subsystem
A1

9-35

9 Defining Events

Interleaving Behavior for Broadcasting a Function-Call Output
Event Multiple Times
If a chart tries to broadcast the same function-call output event multiple
times in a single time step, the chart dispatches all the broadcasts in that
time step. Execution of function-call subsystems is interleaved with the
execution of the function-call initiator so that output from the function-call
subsystem is available right away in the function-call initiator. (For details,
see “Function-Call Subsystems” in the Simulink documentation.)

Note For information on what happens for edge-triggered output events,
see “Queuing Behavior for Broadcasting an Edge-Triggered Output Event
Multiple Times” on page 9-27.

Example of Interleaving Behavior for Function-Call Output
Events
In this model, the chart Caller uses the function-call output event output_cmd
to activate the chart Callee.

9-36

Using Output Events to Activate a Simulink® Block

The chart Caller tries to broadcast the same function-call output event four
times in a single time step, as shown.

Each time the chart Callee is activated, the output data y increments by one.

9-37

9 Defining Events

When you simulate the model, you see this output in the scope.

At t = 1, the chart Caller dispatches all four output events. Therefore, the
chart Callee executes four times during that time step. Therefore, the action
y++ also occurs four times in that time step. During simulation, execution of
Callee is interleaved with execution of Caller so that output from Callee is
available right away.

Association of Output Events with Output Ports
The Port property associates an output event with an output port on the
chart block that owns the event. This property specifies the position of the
output port relative to others.

All output ports appear sequentially from top to bottom. Output data ports
appear sequentially above output event ports on the right side of a chart block.
As you add output events, their default Port properties appear sequentially
at the end of the current port list.

9-38

Using Output Events to Activate a Simulink® Block

You can change the default port assignment of an event by resetting its Port
property. When you change the Port property for an output event, the ports
for the remaining output events automatically renumber, preserving the
original order. For example, assume you have three output events, OE1, OE2,
and OE3, which associate with the output ports 4, 5, and 6, respectively. If you
change the Port property for OE2 to 6, the ports for OE1 and OE3 renumber to
4 and 5, respectively.

Accessing Simulink Subsystems Triggered By Output
Events
To access the Simulink subsystem associated with a Stateflow output event:

1 In your chart, right-click the state that contains the event of interest.

2 Select Explore.

Using the Explore menu, you can access all events defined in the selected
state.

3 Select the desired event.

The Simulink subsystem associated with the event appears.

9-39

9 Defining Events

Using Implicit Events

In this section...

“What Are Implicit Events?” on page 9-40

“Keywords for Implicit Events” on page 9-40

“Example of an Implicit Event” on page 9-41

“Execution Order of Transitions with Implicit Events” on page 9-42

What Are Implicit Events?
Implicit events are built-in events that occur when a chart executes:

• Chart waking up

• Entry into a state

• Exit from a state

• Value assigned to an internal data object

These events are implicit because you do not define or trigger them explicitly.
Implicit events are children of the chart in which they occur and are visible
only in the parent chart.

Keywords for Implicit Events
To reference implicit events, action statements use this syntax:

event(object)

where event is the name of the implicit event and object is the state or
data in which the event occurs.

Each keyword below generates implicit events in the action language notation
for states and transitions.

9-40

Using Implicit Events

Implicit Event Meaning

change(data_name)
or chg(data_name)

Specifies and implicitly generates a local event
when Stateflow software writes a value to the
variable data_name.

The variable data_name cannot be
machine-parented data. This implicit event
works only with data that is at the chart level or
lower in the hierarchy. For machine-parented data,
use change detection operators to determine when
the data value changes. For more information, see
“Using Change Detection in Actions” on page 10-83.

enter (state_name)
or en(state_name)

Specifies and implicitly generates a local event
when the specified state_name is entered.

exit (state_name)
or ex(state_name)

Specifies and implicitly generates a local event
when the specified state_name is exited.

tick Specifies and implicitly generates a local event when
the chart of the action being evaluated awakens.

wakeup Same as the tick keyword.

If more than one object has the same name, use the dot operator to qualify
the name of the object with the name of its parent. These examples are valid
references to implicit events:

enter(switch_on)
en(switch_on)
change(engine.rpm)

Note The tick (or wakeup) event refers to the chart containing the action
being evaluated. The event cannot refer to a different chart by argument.

Example of an Implicit Event
This example illustrates use of implicit tick events.

9-41

9 Defining Events

Fan and Heater are parallel (AND) superstates. The first time that an event
awakens the Stateflow chart, the states Fan.Off and Heater.Off become
active.

Assume that you are running a discrete-time simulation. Each time that the
chart awakens, a tick event broadcast occurs. After four broadcasts, the
transition from Fan.Off to Fan.On occurs. Similarly, after three broadcasts,
the transition from Heater.Off to Heater.On occurs.

For information about the after operator, see “Using Temporal Logic in State
Actions and Transitions” on page 10-63.

Execution Order of Transitions with Implicit Events
Suppose that:

• Your chart contains parallel states.

• In multiple parallel states, the same implicit event is used to guard a
transition from one substate to another.

9-42

Using Implicit Events

When multiple transitions are valid in the same time step, the transitions
execute based on the order in which they were created in the chart. This order
does not necessarily match the activation order of the parallel states that
contain the transitions. For example, consider the following chart:

When the transition from IV.HERE to IV.THERE occurs, the condition
ex(IV.HERE) is valid for the transitions from A to B for the parallel states I,
II, and III. The three transitions from A to B execute in the order in which
they were created: in state I, then II, and finally III. This order does not
match the activation order of those states.

9-43

9 Defining Events

To ensure that valid transitions execute in the same order that the parallel
states become active, use the in operator instead of implicit enter or exit
events:

With this modification, the transitions from A to B occur in the same order as
activation of the parallel states. For more information about the in operator,
see “Checking State Activity” on page 10-97.

9-44

Counting Events

Counting Events

In this section...

“When to Count Events” on page 9-45

“How to Count Events” on page 9-45

“Example of Collecting and Storing Input Data in a Vector” on page 9-45

When to Count Events
Count events when you want to keep track of explicit or implicit events in
your chart.

How to Count Events
You can count occurrences of explicit and implicit events using the
temporalCount operator. For information about the syntax of this operator,
see “Operators for Event-Based Temporal Logic” on page 10-64.

Example of Collecting and Storing Input Data in a
Vector
The following model collects and stores input data in a vector during chart
simulation:

The chart contains two states and one MATLAB function:

9-45

9 Defining Events

Stage 1: Observation of Input Data
The chart awakens and remains in the Observe state, until the input data u is
positive. Then, the transition to the state Collect_Data occurs.

Stage 2: Storage of Input Data
After the state Collect_Data becomes active, the value of the input data u
is assigned to the first element of the vector y. While this state is active,
each subsequent value of u is assigned to successive elements of y using the
temporalCount operator.

Stage 3: Display of Data Stored in the Vector
After 10 ticks, the data collection process ends, and the transition to the state
Observe occurs. Just before the state Collect_Data becomes inactive, a
function call to status displays the vector data at the MATLAB prompt.

For more information about ticks in a Stateflow chart, see “Using Implicit
Events” on page 9-40.

9-46

Best Practices for Using Events in Stateflow® Charts

Best Practices for Using Events in Stateflow Charts
Use the send command to broadcast explicit events in actions

In state actions (entry, during, exit, and on event_name) and condition
actions, use the send command to broadcast explicit events. Using this
command enhances readability of a chart and ensures that explicit events are
not mistaken for data. See “Directed Event Broadcasting” on page 10-59 for
details.

Do not mix edge-triggered input events and function-call input
events in a chart

If you mix input events that use edge triggers and function calls, the chart
detects this violation during parsing or code generation. An error message
appears and chart execution stops.

Avoid using the enter implicit event to check state activity

Use the in operator instead of the enter implicit event to check state activity.
See “Checking State Activity” on page 10-97 for details.

9-47

9 Defining Events

9-48

10

Using Actions in Stateflow
Charts

• “Defining Action Types” on page 10-2

• “Combining State Actions to Eliminate Redundant Code” on page 10-16

• “Using Operations in Actions” on page 10-20

• “Symbols in Action Language” on page 10-28

• “Calling C Functions in Actions” on page 10-32

• “Using MATLAB Functions and Data in Actions” on page 10-42

• “Using Data and Event Arguments in Actions” on page 10-55

• “Using Arrays in Actions” on page 10-57

• “Broadcasting Events in Actions” on page 10-59

• “Using Temporal Logic in State Actions and Transitions” on page 10-63

• “Using Change Detection in Actions” on page 10-83

• “Checking State Activity” on page 10-97

• “Using Bind Actions to Control Function-Call Subsystems” on page 10-108

10 Using Actions in Stateflow® Charts

Defining Action Types

In this section...

“About Action Types” on page 10-2

“State Action Types” on page 10-2

“Transition Action Types” on page 10-7

“Example of Action Type Execution” on page 10-12

About Action Types
You can attach actions to states and transitions through the syntax of their
labels. States specify actions through five action types: entry, during, exit,
bind, and on event_name. Transitions specify actions through four action
types: event trigger, condition, condition action, and transition action.

State Action Types
States can have different action types, which include entry, during, exit,
bind, and, on event_name actions. The actions for states are assigned to an
action type using label notation with this general format:

name/
entry:entry actions
during:during actions
exit:exit actions
bind:data_name, event_name
on event_name:on event_name actions

10-2

Defining Action Types

For example, different state action types appear in the following chart.

After you enter the name in the state label, enter a carriage return and
specify the actions for the state. The order you use to enter action types in the
label does not matter.

Note If you do not specify the action type explicitly for a statement, the chart
treats that statement as an entry action.

This table summarizes the different state action types.

State Action Abbreviation Description

entry en Executes when the state
becomes active

exit ex Executes when the state is
active and a transition out of
the state occurs

10-3

10 Using Actions in Stateflow® Charts

State Action Abbreviation Description

during du Executes when the state is
active and a specific event
occurs

bind none Binds an event or data object
so that only that state and
its children can broadcast the
event or change the data value

on event_name none Executes when the state
is active and it receives a
broadcast of event_name

on after(n,
event_name)

none Executes when the state is
active and after it receives n
broadcasts of event_name

on before(n,
event_name)

none Executes when the state is
active and before it receives n
broadcasts of event_name

on at(n, event_name) none Executes when the state is
active and it receives exactly n
broadcasts of event_name

on every(n,
event_name)

none Executes when the state is
active and upon receipt of every
n broadcasts of event_name

For a full description of entry, exit, during, bind, and on event_name
actions, see the topics that follow. For more information about the after,
before, at, and every temporal logic operators, see “Using Temporal Logic
in State Actions and Transitions” on page 10-63.

Note In the preceding table, the temporal logic operators use the syntax of
event-based temporal logic. For absolute-time temporal logic, the operators use
a different syntax. For details, see “Operators for Absolute-Time Temporal
Logic” on page 10-70.

10-4

Defining Action Types

Entry Actions
Entry actions are preceded by the prefix entry or en for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,). If you enter the name
and slash followed directly by actions, the actions are interpreted as entry
action(s). This shorthand is useful if you are specifying entry actions only.

Entry actions for a state execute when the state is entered (becomes active). In
the preceding example in “State Action Types” on page 10-2, the entry action
id = x+y executes when the state A is entered by the default transition.

For a detailed description of the semantics of entering a state, see “Steps for
Entering a State” on page 3-70 and “State Execution Example” on page 3-72.

Exit Actions
Exit actions are preceded by the prefix exit or ex for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,).

Exit actions for a state execute when the state is active and a transition out of
the state occurs.

For a detailed description of the semantics of exiting a state, see “Steps for
Exiting an Active State” on page 3-72 and “State Execution Example” on
page 3-72.

During Actions
During actions are preceded by the prefix during or du for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,).

During actions for a state execute when the state is active and an event occurs
and no valid transition to another state is available.

For a detailed description of the semantics of executing an active state, see
“Steps for Executing an Active State” on page 3-71 and “State Execution
Example” on page 3-72.

10-5

10 Using Actions in Stateflow® Charts

Bind Actions
Bind actions are preceded by the prefix bind, followed by a required colon (:),
followed by one or more events or data. Separate multiple data/events with
a carriage return, semicolon (;), or a comma (,).

Bind actions bind the specified data and events to a state. Data bound to a
state can be changed by the actions of that state or its children. Other states
and their children are free to read the bound data, but they cannot change it.
Events bound to a state can be broadcast only by that state or its children.
Other states and their children are free to listen for the bound event, but
they cannot send it.

Bind actions apply to a Stateflow chart whether the binding state is active
or not. In the preceding example in “State Action Types” on page 10-2, the
bind action bind: id, time_out for state A binds the data id and the event
time_out to state A. This binding prevents any other state (or its children) in
the chart from changing id or broadcasting event time_out.

If another state includes actions that change data or broadcast events that
bind to another state, a parsing error occurs. The following example shows a
few of these error conditions:

10-6

Defining Action Types

The following action... Causes a parsing error
because...

bind: id in state B Only one state can change the data
id, which binds to state A

entry: time_out in state C Only one state can broadcast the
event time_out, which binds to state
A

Binding a function-call event to a state also binds the function-call subsystem
that it calls. In this case, the function-call subsystem is enabled when the
binding state is entered and disabled when the binding state is exited. For
more information about this behavior, see “Using Bind Actions to Control
Function-Call Subsystems” on page 10-108.

On Event_Name Actions
On event_name actions are preceded by the prefix on, followed by a unique
event, event_name, followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,). You can specify actions
for more than one event by adding additional on event_name lines for different
events. If you want different events to trigger different actions, enter multiple
on event_name action statements in the state’s label, each specifying the
action for a particular event or set of events, for example:

on ev1: action1();
on ev2: action2();

On event_name actions execute when the state is active and the event
event_name is received by the state. This action coincides with execution of
during actions for the state.

For a detailed description of the semantics of executing an active state, see
“Steps for Executing an Active State” on page 3-71.

Transition Action Types
In “State Action Types” on page 10-2, you see how you can attach actions to
the label for a state. You can also attach actions to a transition on its label.
Transitions can have different action types, which include event triggers,

10-7

10 Using Actions in Stateflow® Charts

conditions, condition actions, and transition actions. The action types follow
the label notation with this general format:

event_trigger[condition]{condition_action}/transition_action

The following example shows typical transition label syntax:

Transition Event
Trigger

Condition Condition
Action

Transition
Action

State A to
state C

event1 temp > 50 func1() None

State A to
state B

event2 None None data1 = 5

Event Triggers
In transition label syntax, event triggers appear first as the name of an event.
They have no distinguishing special character to separate them from other
actions in a transition label. In the example in “Transition Action Types” on

10-8

Defining Action Types

page 10-7, both transitions from state A have event triggers. The transition
from state A to state B has the event trigger event2 and the transition from
state A to state C has the event trigger event1.

10-9

10 Using Actions in Stateflow® Charts

Event triggers specify an event that causes the transition to be taken, provided
the condition, if specified, is true. Specifying an event is optional. The absence
of an event indicates that the transition is taken upon the occurrence of any
event. Multiple events are specified using the OR logical operator (|).

Conditions
In transition label syntax, conditions are Boolean expressions enclosed in
square brackets ([]). In the example in “Transition Action Types” on page
10-7, the transition from state A to state C has the condition temp > 50.

A condition is a Boolean expression to specify that a transition occurs given
that the specified expression is true. Follow these guidelines for defining
and using conditions:

• The condition expression must be a Boolean expression that evaluates to
true (1) or false (0).

• The condition expression can consist of any of the following:

- Boolean operators that make comparisons between data and numeric
values

- A function that returns a Boolean value

- An in(state_name) condition that evaluates to true when the state
specified as the argument is active (see “Checking State Activity” on
page 10-97)

Note A chart cannot use the in condition to trigger actions based on the
activity of states in other charts.

- Temporal logic conditions (see “Using Temporal Logic in State Actions
and Transitions” on page 10-63)

• The condition expression can call a graphical function, truth table function,
or MATLAB function that returns a numeric value.

For example, [test_function(x, y) < 0] is a valid condition expression.

10-10

Defining Action Types

Note If the condition expression calls a function with multiple return
values, only the first value applies. The other return values are not used.

• The condition expression should not call a function that causes the
Stateflow chart to change state or modify any variables.

• Boolean expressions can be grouped using & for expressions with AND
relationships and | for expressions with OR relationships.

• Assignment statements are not valid condition expressions.

• Unary increment and decrement actions are not valid condition expressions.

Condition Actions
In transition label syntax, condition actions follow the transition condition
and are enclosed in curly braces ({}). In the example in “Transition Action
Types” on page 10-7, the transition from state A to state C has the condition
action func1(), a function call.

Condition actions are executed as soon as the condition is evaluated as true,
but before the transition destination has been determined to be valid. If no
condition is specified, an implied condition evaluates to true and the condition
action is executed.

Note A condition is checked only if the event trigger (if any) is active.

Transition Actions
In transition label syntax, transition actions are preceded with a forward
slash (/). In the example in “Transition Action Types” on page 10-7, the
transition from state A to state B has the transition action data1 = 5.

Transition actions execute only after the complete transition path is taken.
They execute after the transition destination has been determined to be valid,
and the condition, if specified, is true. If the transition consists of multiple
segments, the transition action executes only after the entire transition path
to the final destination is determined to be valid.

10-11

10 Using Actions in Stateflow® Charts

Example of Action Type Execution
The following chart shows how Stateflow action language types interact
during simulation:

10-12

Defining Action Types

When you simulate the model, you get the following results:

10-13

10 Using Actions in Stateflow® Charts

The following actions occur in the TransAction state:

Time What Happens in the TransAction State

State TA becomes active.0.0

In TA, the entry action executes by setting the value of outVal to 0.

The transition from TA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The transition action does not execute, because the full transition path from J1 to TB is
not complete.

Evaluation of the condition between J2 and TB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and TB occurs, which returns false. Therefore,
execution returns to TA.

0.1

In TA, the during action executes by decrementing the value of outVal by 1.

0.2 –
1.0

The execution pattern from t = 0.1 repeats for each time step.

The transition from TA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The transition action does not execute, because the full transition path from J1 to TB is
not complete.

Evaluation of the condition between J2 and TB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and TB occurs, which returns true.

State TB becomes active.

1.1

Because the transition from J3 to TB is now complete, the transition action executes by
setting the value of outVal to 0.

10-14

Defining Action Types

The following actions occur in the CondAction state:

Time What Happens in the CondAction State

State CA becomes active.0.0

In CA, the entry action executes by setting the value of outVal_2 to 0.

The transition from CA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The condition action executes by decrementing the value of outVal_2 by 2.

Evaluation of the condition between J2 and CB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and CB occurs, which returns false. Therefore,
execution returns to CA.

0.1

In CA, the during action executes by decrementing the value of outVal_2 by 1.

0.2 –
0.3

The execution pattern from t = 0.1 repeats for each time step.

The transition from CA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The condition action executes by decrementing the value of outVal_2 by 2.

Evaluation of the condition between J2 and CB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and CB occurs, which returns true.

The condition action executes by setting the value of outVal_2 to 0.

0.4

State CB becomes active.

10-15

10 Using Actions in Stateflow® Charts

Combining State Actions to Eliminate Redundant Code

In this section...

“State Actions You Can Combine” on page 10-16

“Why Combine State Actions” on page 10-16

“How to Combine State Actions” on page 10-17

“Order of Execution of Combined Actions” on page 10-18

“Rules for Combining State Actions” on page 10-19

State Actions You Can Combine
You can combine entry, during, and exit actions that execute the same
tasks in a state.

Why Combine State Actions
By combining state actions that execute the same tasks, you eliminate
redundant code. For example:

Separate Actions Equivalent Combined Actions

entry:
y = 0;
y++;

during: y++;

entry: y = 0;
entry, during: y++;

en:
fcn1();
fcn2();

du: fcn1();
ex: fcn1();

en, du, ex: fcn1();
en: fcn2();

Combining state actions this way produces the same chart execution behavior
(semantics) and generates the same code as the equivalent separate actions.

10-16

Combining State Actions to Eliminate Redundant Code

See Also

• “How to Combine State Actions” on page 10-17

• “Order of Execution of Combined Actions” on page 10-18

• “Rules for Combining State Actions” on page 10-19

How to Combine State Actions
Combine a set of entry, during, and/or exit actions that perform the same
task as a comma-separated list in a state. Here is the syntax:

entry, during, exit: task1; task2;...taskN;

You can also use the equivalent abbreviations:

en, du, ex: task1; task2;...taskN;

Valid Combinations
You can use any combination of the three actions. For example, the following
combinations are valid:

• en, du:

• en, ex:

• du, ex:

• en, du, ex:

You can combine actions in any order in the comma-separated list. For
example, en, du: gives the same result as du, en:. See “Order of Execution
of Combined Actions” on page 10-18.

Invalid Combinations
You cannot combine two or more actions of the same type. For example, the
following combinations are invalid:

• en, en:

• ex, en, ex:

10-17

10 Using Actions in Stateflow® Charts

• du, du, ex:

If you combine multiple actions of the same type, you receive a warning that
the chart executes the action only once.

Order of Execution of Combined Actions
States execute combined actions in the same order as they execute separate
actions:

1 Entry actions first, from top to bottom in the order they appear in the state

2 During actions second, from top to bottom

3 Exit actions last, from top to bottom

The order in which you combine actions does not affect state execution
behavior. For example:

This state... Executes actions in this order...

1 en: y = 0;

2 en: y++;

3 du: y++;

1 en: y++;

2 en: y = 0;

3 du: y++;

10-18

Combining State Actions to Eliminate Redundant Code

This state... Executes actions in this order...

1 en: y++;

2 en: y = 0;

3 du: y++;

1 en: y++;

2 en: y = 10;

3 du: y++;

4 ex: y = 10;

Rules for Combining State Actions

• Do not combine multiple actions of the same type.

• Do not create data or events that have the same name as the action
keywords: entry, en, during, du, exit, ex.

10-19

10 Using Actions in Stateflow® Charts

Using Operations in Actions

In this section...

“Binary and Bitwise Operations” on page 10-20

“Unary Operations” on page 10-22

“Unary Actions” on page 10-23

“Assignment Operations” on page 10-23

“Pointer and Address Operations” on page 10-24

“Type Cast Operations” on page 10-25

“Replacing Operators with Target Functions” on page 10-26

Binary and Bitwise Operations
The table below summarizes the interpretation of all binary operators in
Stateflow action language. These operators work with the following order of
precedence (0 = highest, 10 = lowest). Binary operators evaluate from left
to right.

You can specify that the binary operators &, ^, |, &&, and || are interpreted
as bitwise operators in Stateflow generated C code for a chart or for all the
charts in a model. See these individual operators in the table below for
specific binary or bitwise operator interpretations.

Example Precedence Description

a ^ b 0 Operand a raised to power b

Enabled when you clear Enable C-bit
operations in the Chart properties
dialog box. See “Specifying Chart
Properties” on page 19-4.

a * b 1 Multiplication

a / b 1 Division

a %% b 1 Modulus

a + b 2 Addition

10-20

Using Operations in Actions

Example Precedence Description

a - b 2 Subtraction

a >> b 3 Shift operand a right by b bits.
Noninteger operands for this operator
are first cast to integers before the bits
are shifted.

a << b 3 Shift operand a left by b bits. Noninteger
operands for this operator are first cast
to integers before the bits are shifted.

a > b 4 Comparison of the first operand greater
than the second operand

a < b 4 Comparison of the first operand less than
the second operand

a >= b 4 Comparison of the first operand greater
than or equal to the second operand

a <= b 4 Comparison of the first operand less than
or equal to the second operand

a == b 5 Comparison of equality of two operands

a ~= b 5 Comparison of inequality of two operands

a != b 5 Comparison of inequality of two operands

a <> b 5 Comparison of inequality of two operands

a & b 6 One of the following:

• Bitwise AND of two operands

Enabled when you select Enable
C-bit operations in the Chart
properties dialog box. See “Specifying
Chart Properties” on page 19-4.

• Logical AND of two operands

Enabled when you clear Enable C-bit
operations in the Chart properties
dialog box.

10-21

10 Using Actions in Stateflow® Charts

Example Precedence Description

a ^ b 7 Bitwise XOR of two operands

Enabled when you select Enable C-bit
operations in the Chart properties
dialog box. See “Specifying Chart
Properties” on page 19-4.

a | b 8 One of the following:

• Bitwise OR of two operands

Enabled when you select Enable
C-bit operations in the Chart
properties dialog box. See “Specifying
Chart Properties” on page 19-4.

• Logical OR of two operands

Enabled when you clear Enable C-bit
operations in the Chart properties
dialog box.

a && b 9 Logical AND of two operands

a || b 10 Logical OR of two operands

Unary Operations
The following unary operators are supported in Stateflow action language.
Unary operators have higher precedence than binary operators and are
evaluated right to left (right associative).

Example Description

~a Logical NOT of a

Complement of a (if bitops is enabled)

!a Logical NOT of a

-a Negative of a

10-22

Using Operations in Actions

Unary Actions
The following unary actions are supported in Stateflow action language.

Example Description

a++ Increment a

a-- Decrement a

Assignment Operations
The following assignment operations are supported in Stateflow action
language.

Example Description

a = expression Simple assignment

a := expression Used primarily with fixed-point numbers. See
“Assignment (=, :=) Operations” on page 17-34 for a
detailed description.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

The following assignment operations are supported in Stateflow action
language when Enable C-bit operations is selected in the properties dialog
box for the chart. See “Specifying Chart Properties” on page 19-4.

10-23

10 Using Actions in Stateflow® Charts

Example Description

a |= expression Equivalent to a = a | expression (bit operation). See
operation a | b in “Binary and Bitwise Operations”
on page 10-20.

a &= expression Equivalent to a = a & expression (bit operation). See
operation a & b in “Binary and Bitwise Operations”
on page 10-20.

a ^= expression Equivalent to a = a ^ expression (bit operation). See
operation a ^ b in “Binary and Bitwise Operations”
on page 10-20.

Pointer and Address Operations
The address operator (&) is available for use with both Stateflow and custom
code variables. The pointer operator (*) is available for use only with custom
code variables.

Note The action language parser uses a relaxed set of restrictions. Therefore,
syntax errors are not caught until compilation.

The following examples show syntax that is valid for both Stateflow and
custom code variables. The prefix cc_ shows the places where you can use
only custom code variables, and the prefix sfcc_ shows the places where you
can use either Stateflow or custom code variables.

cc_varPtr = &sfcc_var;
cc_ptr = &sfcc_varArray[<expression>];
cc_function(&sfcc_varA, &sfcc_varB, &sfcc_varC);
cc_function(&sfcc_sf.varArray[<expression>]);

The following examples show syntax that is valid only for custom code
variables.

varStruct.field = <expression>;
(*varPtr) = <expression>;
varPtr->field = <expression>;

10-24

Using Operations in Actions

myVar = varPtr->field;
varPtrArray[index]->field = <expression>;
varPtrArray[expression]->field = <expression>;
myVar = varPtrArray[expression]->field;

Type Cast Operations
You can use type cast operators to convert a value of one type to a value that
can be represented in another type. Normally, you do not need to use type
cast operators in actions because Stateflow software checks whether the
types involved in a variable assignment differ and compensates by inserting
the required type cast operator of the target language (typically C) in the
generated code. However, external (custom) code might require data in a
different type from those currently available. In this case, Stateflow software
cannot determine the required type casts, and you must explicitly use a type
cast operator to specify the target language type cast operator to generate.

For example, you might have a custom code function that requires integer
RGB values for a graphic plot. You might have these values in Stateflow data,
but only in data of type double. To call this function, you must type cast the
original data and assign the result to integers, which you use as arguments
to the function.

Stateflow type cast operations have two forms: the MATLAB type cast form
and the explicit form using the cast operator. These operators and the special
type operator, which works with the explicit cast operator, are described in
the topics that follow.

MATLAB Form Type Cast Operators
The MATLAB type casting form has the general form

<type_op>(<expression>)

<type_op> is a conversion type operator that can be double, single, int32,
int16, int8, uint32, uint16, uint8, or boolean. <expression> is the
expression to be converted. For example, you can cast the expression x+3 to a
16-bit unsigned integer and assign its value to the data y as follows:

y = uint16(x+3)

10-25

10 Using Actions in Stateflow® Charts

Explicit Type Cast Operator
You can also type cast with the explicit cast operator, which has the following
general form:

cast(<expression>,<type>)

As in the preceding example, the statement

y = cast(x+3,uint16)

will cast the expression x+3 to a 16-bit unsigned integer and assign it to y,
which can be of any type.

type Operator
To make type casting more convenient, you can use a type operator that
works with the explicit type cast operator cast to let you assign types to
data based on the types of other data.

The type operator returns the type of an existing Stateflow data according to
the general form

type(<data>)

where <data> is the data whose type you want to return.

The return value from a type operation can be used only in an explicit cast
operation. For example, if you want to convert the data y to the same type as
that of data z, use the following statement:

cast(y,type(z))

In this case, the data z can have any acceptable Stateflow type.

Replacing Operators with Target Functions
The target function library published by Embedded Coder code generation
software allows you to replace a subset of arithmetic operators with target
functions. Operator entries of the target function library can specify integral
or fixed-point operand and result patterns. Operator entries may be used
for the following built-in operators:

10-26

Using Operations in Actions

+
-
*
/

For example, you can replace an expression such as y = u1 + u2 with a
target function, provided that u1, u2, and y have types that permit a match
with an addition entry in the target function library.

Stateflow chart semantics may limit operator entry matching because it uses
the target integer size as its intermediate type in all arithmetic expressions.
For example, suppose a Stateflow action contains this arithmetic expression:

y = (u1 + u2) % 3

This expression computes the intermediate addition into a target integer. If
the target integer size is 32 bits, you cannot replace this expression with a
target function library operator entry for addition that produces a signed
16-bit result without loss of precision.

To learn how to create and register function replacement tables in a target
function library, see “Replacing Math Functions and Operators Using Target
Function Libraries” in the Embedded Coder documentation. To select and
view target function libraries, see “Selecting and Viewing Target Function
Libraries” in the Simulink Coder documentation.

10-27

10 Using Actions in Stateflow® Charts

Symbols in Action Language

In this section...

“Boolean Symbols, true and false” on page 10-28

“Comment Symbols, %, //, /*” on page 10-29

“Hexadecimal Notation Symbols, 0xFF” on page 10-29

“Infinity Symbol, inf” on page 10-30

“Line Continuation Symbol, ...” on page 10-30

“Literal Code Symbol, $” on page 10-30

“MATLAB Display Symbol, ;” on page 10-30

“Single-Precision Floating-Point Number Symbol, F” on page 10-31

“Time Symbol, t” on page 10-31

Boolean Symbols, true and false
Use the symbols true and false to represent Boolean constants in Stateflow
action language. You can use these symbols as scalars in expressions.
Examples include:

cooling_fan = true;
heating_fan = false;

Tip These symbols are case-sensitive. Therefore, TRUE and FALSE are not
Boolean symbols.

Do not use true and false in the following cases. Otherwise, error messages
appear.

• Left-hand side of assignment statements

- true++;

- false += 3;

- [true, false] = my_function(x);

10-28

Symbols in Action Language

• Argument of the change implicit event (see “Using Implicit Events” on
page 9-40)

- change(true);

- chg(false);

• Indexing into a vector or matrix (see “How to Assign and Access Values of
Vectors and Matrices” on page 13-8)

- x = true[1];

- y = false[1][1];

Note If you define true and false as Stateflow data objects, your custom
definitions of true and false override the built-in Boolean constants.

Comment Symbols, %, //, /*
Use the symbols %, //, and /* to represent comments in Stateflow action
language as shown in these examples:

% MATLAB comment line
// C++ comment line
/* C comment line */

You can also include comments in generated code for an embedded target
(see “Code Generation Pane: Comments” in the Simulink Coder Reference)
or a Stateflow custom target (see “Configuring a Custom Target” on page
25-55). Stateflow action language comments in generated code use multibyte
character code. Therefore, you can have code comments with characters for
non-English alphabets, such as Japanese Kanji characters.

Hexadecimal Notation Symbols, 0xFF
Stateflow action language supports C style hexadecimal notation, for example,
0xFF. You can use hexadecimal values wherever you can use decimal values.

10-29

10 Using Actions in Stateflow® Charts

Infinity Symbol, inf
Use the MATLAB symbol inf to represent infinity in Stateflow action
language. Calculations like n/0, where n is any nonzero real value, result in
inf.

Note If you define inf as a Stateflow data object, your custom definition
of inf overrides the built-in value.

Line Continuation Symbol, ...
Use the characters ... at the end of a line of action language to indicate that
the expression continues on the next line. For example, you can use the line
continuation symbol in a state action:

entry: total1 = 0, total2 = 0, ...
total3 = 0;

Literal Code Symbol, $
Use $ characters to mark action language that you want the parser to ignore
but you want to appear in the generated code. For example, the parser does
not process any text between the $ characters below.

$
ptr -> field = 1.0;
$

Note Avoid frequent use of literal symbols.

MATLAB Display Symbol, ;
Omitting the semicolon after an expression displays the results of the
expression in the MATLAB Command Window. If you use a semicolon, the
results do not appear.

10-30

Symbols in Action Language

Single-Precision Floating-Point Number Symbol, F
Use a trailing F to specify single-precision floating-point numbers in Stateflow
action language. For example, you can use the action statement x = 4.56F;
to specify a single-precision constant with the value 4.56. If a trailing F does
not appear with a number, double precision applies.

Time Symbol, t
Use the letter t to represent absolute time that the chart inherits from a
Simulink signal in simulation targets. For example, the condition [t -
On_time > Duration] specifies that the condition is true if the difference
between the simulation time t and On_time is greater than the value of
Duration.

The letter t has no meaning for nonsimulation targets, since t depends on the
specific application and target hardware.

Note If you define t as a Stateflow data object, your custom definition of t
overrides the built-in value.

10-31

10 Using Actions in Stateflow® Charts

Calling C Functions in Actions

In this section...

“Calling C Library Functions” on page 10-32

“Calling the abs Function” on page 10-33

“Calling min and max Functions” on page 10-33

“Replacement of C Math Library Functions with Target-Specific
Implementations” on page 10-34

“Calling Custom C Code Functions” on page 10-36

Calling C Library Functions
You can call this subset of the C Math Library functions:

abs* ** acos** asin** atan** atan2** ceil**

cos** cosh** exp** fabs floor** fmod**

labs ldexp** log** log10** pow** rand

sin** sinh** sqrt** tan** tanh**

* The Stateflow abs function goes beyond that of its standard C counterpart
with its own built-in functionality. See “Calling the abs Function” on page
10-33.

** You can also replace calls to the C Math Library with target-specific
implementations for this subset of functions. For more information,
see “Replacement of C Math Library Functions with Target-Specific
Implementations” on page 10-34.

When you can call these math functions, double precision applies unless the
first input argument is explicitly single precision. When a type mismatch
occurs, a cast of the input argument to the expected type replaces the original
argument. For example, if you call the sin function with an integer argument,
a cast of the input argument to a floating-point number of type double
replaces the original argument.

10-32

Calling C Functions in Actions

If you call other C library functions not listed above, include the appropriate
#include... statement in the Simulation Target > Custom Code pane
of the Configuration Parameters dialog box. For details, see Chapter 25,
“Building Targets”.

Calling the abs Function
Interpretation of the Stateflow abs function goes beyond the standard C
version to include integer and floating-point arguments of all types as follows:

• If x is an integer of type int32, the standard C function abs applies to
x, or abs(x).

• If x is an integer of type other than int32, the standard C abs function
applies to a cast of x as an integer of type int32, or abs((int32)x).

• If x is a floating-point number of type double, the standard C function
fabs applies to x, or fabs(x).

• If x is a floating-point number of type single, the standard C function fabs
applies to a cast of x as a double, or fabs((double)x).

• If x is a fixed-point number, the standard C function fabs applies to a cast
of the fixed-point number as a double, or fabs((double)Vx), where Vx
is the real-world value of x.

If you want to use the abs function in the strict sense of standard C, cast its
argument or return values to integer types. See “Type Cast Operations” on
page 10-25.

Note If you declare x in custom code, the standard C abs function applies
in all cases. For instructions on inserting custom code into Stateflow charts,
see Chapter 25, “Building Targets”.

Calling min and max Functions
You can call min and max by emitting the following macros automatically
at the top of generated code.

#define min(x1,x2) ((x1) > (x2) ? (x2):(x1))
#define max(x1,x2) ((x1) > (x2) ? (x1):(x2))

10-33

10 Using Actions in Stateflow® Charts

To allow compatibility with user graphical functions named min() or max(),
generated code uses a mangled name of the following form: <prefix>_min.
However, if you export min() or max() graphical functions to other charts
in your model, the name of these functions can no longer be emitted with
mangled names in generated code and conflict occurs. To avoid this conflict,
rename the min() and max() graphical functions.

Replacement of C Math Library Functions with
Target-Specific Implementations
You can use the target function library published by Embedded Coder code
generation software to replace the default implementations of a subset of C
library functions with target-specific implementations (see “Supported Target
Library Functions” on page 10-34). When you specify a target function library,
Stateflow software generates code that calls the target implementations
instead of the associated C library functions. Furthermore, Stateflow software
also uses target implementations in cases where the compiler generates calls
to math functions, such as in fixed-point arithmetic utilities.

Use of Target Function Libraries
To learn how to create and register function replacement tables in a target
function library, see “Example: Mapping Math Functions to Target-Specific
Implementations” in the Embedded Coder documentation. To select and
view target function libraries, see “Selecting and Viewing Target Function
Libraries” in the Simulink Coder documentation.

Supported Target Library Functions
You can replace the following math functions with target-specific
implementations:

10-34

Calling C Functions in Actions

Function Data Type Support

abs

Note See also “Replacement of
Calls to abs” on page 10-36.

Floating-point and integer

acos Floating-point

asin Floating-point

atan Floating-point

atan2 Floating-point

ceil Floating-point

cos Floating-point

cosh Floating-point

exp Floating-point

floor Floating-point

fmod Floating-point

ldexp Floating-point

log Floating-point

log10 Floating-point

max Floating-point and integer

min Floating-point and integer

pow Floating-point

sin Floating-point

sinh Floating-point

sqrt Floating-point

tan Floating-point

tanh Floating-point

10-35

10 Using Actions in Stateflow® Charts

Replacement of Calls to abs
Replacement of calls to abs can occur as follows:

Type of Argument for abs Result

Floating-point Replacement with target function

Integer Replacement with target function

Fixed-point with zero bias Replacement with ANSI C function

Fixed-point with nonzero bias Error

Calling Custom C Code Functions
You can install your own C code functions for use in the Stateflow action
language for simulation and for C code generation.

• “Specifying Custom C Functions for Simulation” on page 10-36

• “Specifying Custom C Functions for Code Generation” on page 10-37

• “Guidelines for Calling Custom C Functions in Stateflow Action Language”
on page 10-37

• “Guidelines for Writing Custom C Functions That Access Input Vectors” on
page 10-37

• “Example of Function Call in Transition Action” on page 10-38

• “Example of Function Call in State Action” on page 10-39

• “Passing Arguments by Reference” on page 10-40

Specifying Custom C Functions for Simulation
To specify custom C functions for simulation:

1 Open the Configuration Parameters dialog box.

2 Select Simulation Target > Custom Code.

3 Specify your custom C files, as described in “Integrating Custom C Code for
Nonlibrary Charts for Simulation” on page 25-9.

10-36

Calling C Functions in Actions

Specifying Custom C Functions for Code Generation
To specify custom C functions for code generation:

1 Open the Configuration Parameters dialog box.

2 Select Code Generation > Custom Code.

3 Specify your custom C files, as described in “Integrating Custom C Code for
Nonlibrary Charts for Code Generation” on page 25-23.

Guidelines for Calling Custom C Functions in Stateflow Action
Language

• Define a function by its name, any arguments in parentheses, and an
optional semicolon.

• Pass string parameters to user-written functions using single quotation
marks. For example, func('string').

• An action can nest function calls.

• An action can invoke functions that return a scalar value (of type double in
the case of MATLAB functions and of any type in the case of C user-written
functions).

Guidelines for Writing Custom C Functions That Access Input
Vectors

• Use the sizeof function to determine the length of an input vector.

For example, your custom function can include a for-loop that uses sizeof
as follows:

for(i=0; i < sizeof(input); i++) {
......
}

• If your custom function uses the value of the input vector length multiple
times, include an input to your function that specifies the input vector
length.

10-37

10 Using Actions in Stateflow® Charts

For example, you can use input_length as the second input to a sum
function as follows:

int sum(double *input, double input_length)

Your sum function can include a for-loop that iterates over all elements of
the input vector:

for(i=0; i < input_length; i++) {
......
}

Example of Function Call in Transition Action
Example formats of function calls using transition action notation appear
in the following chart.

10-38

Calling C Functions in Actions

A function call to fcn1 occurs with arg1, arg2, and arg3 if the following are
true:

• S1 is active.

• Event e occurs.

• Condition c is true.

• The transition destination S2 is valid.

The transition action in the transition from S2 to S3 shows a function call
nested within another function call.

Example of Function Call in State Action
Example formats of function calls using state action notation appear in the
following chart.

Chart execution occurs as follows:

1 When the default transition into S1 occurs, S1 becomes active.

10-39

10 Using Actions in Stateflow® Charts

2 The entry action, a function call to fcn1 with the specified arguments,
executes.

3 After 5 seconds of simulation time, S1 becomes inactive and S2 becomes
active.

4 The during action, a function call to fcn2 with the specified arguments,
executes.

5 After 10 seconds of simulation time, S2 becomes inactive and S1 becomes
active again.

6 Steps 2 through 5 repeat until the simulation ends.

Passing Arguments by Reference
A Stateflow action can pass arguments to a user-written function by reference
rather than by value. In particular, an action can pass a pointer to a value
rather than the value itself. For example, an action could contain the
following call:

f(&x);

where f is a custom-code C function that expects a pointer to x as an argument.

If x is the name of a data item defined in the Stateflow hierarchy, the
following rules apply:

• Do not use pointers to pass data items input from a Simulink model.

If you need to pass an input item by reference, for example, an array,
assign the item to a local data item and pass the local item by reference.

• If x is a Simulink output data item having a data type other than double,
the chart property Use strong data typing with Simulink I/O must be
on (see “Specifying Chart Properties” on page 19-4).

• If the data type of x is boolean, you must turn off the coder option Use
bitsets to store state-configuration (see “How to Optimize Generated
Code for Embeddable Targets” on page 25-29).

10-40

Calling C Functions in Actions

• If x is an array with its first index property set to 0 (see “Setting Data
Properties in the Data Dialog Box” on page 8-5), then the function must
be called as follows.

f(&(x[0]));

This passes a pointer to the first element of x to the function.

• If x is an array with its first index property set to a nonzero number (for
example, 1), the function must be called in the following way:

f(&(x[1]));

This passes a pointer to the first element of x to the function.

10-41

10 Using Actions in Stateflow® Charts

Using MATLAB Functions and Data in Actions

In this section...

“MATLAB Functions and Stateflow Code Generation” on page 10-42

“ml Namespace Operator” on page 10-42

“ml Function” on page 10-43

“ml Expressions” on page 10-45

“Which ml Should I Use?” on page 10-46

“ml Data Type” on page 10-47

“How Charts Infer the Return Size for ml Expressions” on page 10-50

MATLAB Functions and Stateflow Code Generation
You can call MATLAB functions and access MATLAB workspace variables in
Stateflow actions, using the ml namespace operator or the ml function.

Caution Because MATLAB functions are not available in a target
environment, do not use the ml namespace operator and the ml function if you
plan to build a code generation target.

ml Namespace Operator
The ml namespace operator uses standard dot (.) notation to reference
MATLAB variables and functions in action language. For example, the
statement a = ml.x returns the value of the MATLAB workspace variable x
to the Stateflow data a.

For functions, the syntax is as follows:

[return_val1, return_val2,...] = ml.matfunc(arg1, arg2,...)

For example, the statement [a, b, c] = ml.matfunc(x, y) passes the
return values from the MATLAB function matfunc to the Stateflow data
a, b, and c.

10-42

Using MATLAB® Functions and Data in Actions

If the MATLAB function you call does not require arguments, you must still
include the parentheses. If you omit the parentheses, Stateflow software
interprets the function name as a workspace variable, which, when not found,
generates a run-time error during simulation.

Examples
In these examples, x, y, and z are workspace variables and d1 and d2 are
Stateflow data:

• a = ml.sin(ml.x)

In this example, the MATLAB function sin evaluates the sine of x, which
is then assigned to Stateflow data variable a. However, because x is a
workspace variable, you must use the namespace operator to access it.
Hence, ml.x is used instead of just x.

• a = ml.sin(d1)

In this example, the MATLAB function sin evaluates the sine of d1, which
is assigned to Stateflow data variable a. Because d1 is Stateflow data,
you can access it directly.

• ml.x = d1*d2/ml.y

The result of the expression is assigned to x. If x does not exist prior to
simulation, it is automatically created in the MATLAB workspace.

• ml.v[5][6][7] = ml.matfunc(ml.x[1][3], ml.y[3], d1, d2,
'string')

The workspace variables x and y are arrays. x[1][3] is the (1,3) element
of the two-dimensional array variable x. y[3] is the third element of
the one-dimensional array variable y. The last argument, 'string', is
a literal string.

The return from the call to matfunc is assigned to element (5,6,7)
of the workspace array, v. If v does not exist prior to simulation, it is
automatically created in the MATLAB workspace.

ml Function
You can use the ml function to specify calls to MATLAB functions through
a string expression in the action language. The format for the ml function
call uses this notation:

10-43

10 Using Actions in Stateflow® Charts

ml(evalString, arg1, arg2,...);

evalString is a string expression that is evaluated in the MATLAB
workspace. It contains a MATLAB command (or a set of commands, each
separated by a semicolon) to execute along with format specifiers (%g, %f,
%d, etc.) that provide formatted substitution of the other arguments (arg1,
arg2, etc.) into evalString.

The format specifiers used in ml functions are the same as those used in the C
functions printf and sprintf. The ml function call is equivalent to calling
the MATLAB eval function with the ml namespace operator if the arguments
arg1, arg2,... are restricted to scalars or string literals in the following
command:

ml.eval(ml.sprintf(evalString, arg1, arg2,...))

Stateflow software assumes scalar return values from ml namespace operator
and ml function calls when they are used as arguments in this context. See
“How Charts Infer the Return Size for ml Expressions” on page 10-50.

Examples
In these examples, x is a MATLAB workspace variable, and d1 and d2 are
Stateflow data:

• a = ml('sin(x)')

In this example, the ml function calls the MATLAB function sin to evaluate
the sine of x in the MATLAB workspace. The result is then assigned
to Stateflow data variable a. Because x is a workspace variable, and
sin(x) is evaluated in the MATLAB workspace, you enter it directly in the
evalString argument ('sin(x)').

• a = ml('sin(%f)', d1)

In this example, the MATLAB function sin evaluates the sine of d1 in
the MATLAB workspace and assigns the result to Stateflow data variable
a. Because d1 is Stateflow data, its value is inserted in the evalString
argument ('sin(%f)') using the format expression %f. This means that if
d1 = 1.5, the expression evaluated in the MATLAB workspace is sin(1.5).

• a = ml('matfunc(%g, ''abcdefg'', x, %f)', d1, d2)

10-44

Using MATLAB® Functions and Data in Actions

In this example, the string 'matfunc(%g, ''abcdefg'', x, %f)' is the
evalString shown in the preceding format statement. Stateflow data d1
and d2 are inserted into that string with the format specifiers %g and %f,
respectively. The string ''abcdefg'' is a string literal enclosed with two
single pairs of quotation marks because it is part of the evaluation string,
which is already enclosed in single quotation marks.

• sfmat_44 = ml('rand(4)')

In this example, a square 4-by-4 matrix of random numbers between 0 and
1 is returned and assigned to the Stateflow data sf_mat44. Stateflow data
sf_mat44 must be defined as a 4-by-4 array before simulation. If its size is
different, a size mismatch error is generated during run-time.

ml Expressions
You can mix ml namespace operator and ml function expressions along with
Stateflow data in larger expressions. The following example squares the sine
and cosine of an angle in workspace variable X and adds them:

ml.power(ml.sin(ml.X),2) + ml('power(cos(X),2)')

The first operand uses the ml namespace operator to call the sin function.
Its argument is ml.X, since X is in the MATLAB workspace. The second
operand uses the ml function. Because X is in the workspace, it appears in
the evalString expression as X. The squaring of each operand is performed
with the MATLAB power function, which takes two arguments: the value
to square, and the power value, 2.

Expressions using the ml namespace operator and the ml function can be used
as arguments for ml namespace operator and ml function expressions. The
following example nests ml expressions at three different levels:

a = ml.power(ml.sin(ml.X + ml('cos(Y)')),2)

In composing your ml expressions, follow the levels of precedence set out in
“Binary and Bitwise Operations” on page 10-20. Use parentheses around
power expressions with the ^ operator when you use them in conjunction with
other arithmetic operators.

Stateflow software checks expressions for data size mismatches in your action
language during parsing of your charts and during run-time. Because the

10-45

10 Using Actions in Stateflow® Charts

return values for ml expressions are not known until run-time, Stateflow
software must infer the size of their return values. See “How Charts Infer
the Return Size for ml Expressions” on page 10-50.

Which ml Should I Use?
In most cases, the notation of the ml namespace operator is more
straightforward. However, using the ml function call does offer a few
advantages:

• Use the ml function to dynamically construct workspace variables.

The following flow graph creates four new MATLAB matrices:

The for loop creates four new matrix variables in the MATLAB workspace.
The default transition initializes the Stateflow counter i to 0, while the
transition segment between the top two junctions increments it by 1. If i
is less than 5, the transition segment back to the top junction evaluates
the ml function call ml('A%d = rand(%d)',i,i) for the current value of i.
When i is greater than or equal to 5, the transition segment between the
bottom two junctions occurs and execution stops.

10-46

Using MATLAB® Functions and Data in Actions

The transition executes the following MATLAB commands, which create a
workspace scalar (A1) and three matrices (A2, A3, A4):

A1 = rand(1)
A2 = rand(2)
A3 = rand(3)
A4 = rand(4)

• Use the ml function with full MATLAB notation.

You cannot use full MATLAB notation with the ml namespace operator, as
demonstrated by the following example:

ml.A = ml.magic(4)
B = ml('A + A''')

This example sets the workspace variable A to a magic 4-by-4 matrix using
the ml namespace operator. Stateflow data B is then set to the addition
of A and its transpose matrix, A', which produces a symmetric matrix.
Because the ml namespace operator cannot evaluate the expression A', the
ml function is used instead. However, you can call the MATLAB function
transpose with the ml namespace operator in the following equivalent
expression:

B = ml.A + ml.transpose(ml.A)

As another example, you cannot use arguments with cell arrays or subscript
expressions involving colons with the ml namespace operator. However,
these can be included in an ml function call.

ml Data Type
Stateflow data of type ml is typed internally with the MATLAB type mxArray.
You can assign (store) any type of data available in the Stateflow hierarchy to
a data of type ml. These types include any data type defined in the Stateflow
hierarchy or returned from the MATLAB workspace with the ml namespace
operator or ml function.

Rules for Using ml Data Type
These rules apply to Stateflow data of type ml:

10-47

10 Using Actions in Stateflow® Charts

• You can initialize ml data from the MATLAB workspace just like other data
in the Stateflow hierarchy (see “Initializing Data from the MATLAB Base
Workspace” on page 8-31).

• Any numerical scalar or array of ml data in the Stateflow hierarchy can
participate in any kind of unary operation and any kind of binary operation
with any other data in the hierarchy.

If ml data participates in any numerical operation with other data, the size
of the ml data must be inferred from the context in which it is used, just as
return data from the ml namespace operator and ml function are. See “How
Charts Infer the Return Size for ml Expressions” on page 10-50.

Note The preceding rule does not apply to ml data storing MATLAB 64-bit
integers. You can use ml data to store 64-bit MATLAB integers but you
cannot use 64-bit integers in Stateflow action language.

• You cannot define ml data with the scope Constant.

This option is disabled in the Data properties dialog box and in the Model
Explorer for Stateflow data of type ml.

• You can use ml data to build a simulation target but not to build an
embeddable code generation target (see Chapter 25, “Building Targets”).

• If data of type ml contains an array, you can access the elements of the
array via indexing with these rules:

1 You can index only arrays with numerical elements.

2 You can index numerical arrays only by their dimension.

In other words, you can access only one-dimensional arrays by a single
index value. You cannot access a multidimensional array with a single
index value.

3 The first index value for each dimension of an array is 1, and not 0, as in
C language arrays.

In the examples that follow, mldata is a Stateflow data of type ml,
ws_num_array is a 2-by-2 MATLAB workspace array with numerical
values, and ws_str_array is a 2-by-2 MATLAB workspace array with
string values.

10-48

Using MATLAB® Functions and Data in Actions

mldata = ml.ws_num_array; /* OK */
n21 = mldata[2][1]; /* OK for numerical data of type ml */
n21 = mldata[3]; /* NOT OK for 2-by-2 array data */
mldata = ml.ws_str_array; /* OK */
s21 = mldata[2][1]; /* NOT OK for string data of type ml*/

• ml data cannot have a scope outside a Stateflow chart; that is, you cannot
define the scope of ml data as Input to Simulink or Output to Simulink.

Place Holder for Workspace Data
Both the ml namespace operator and the ml function can access data directly
in the MATLAB workspace and return it to a Stateflow chart. However,
maintaining data in the MATLAB workspace can present Stateflow users with
conflicts with other data already resident in the workspace. Consequently,
with the ml data type, you can maintain ml data in a Stateflow chart and use
it for MATLAB computations in Stateflow action language.

As an example, in the following Stateflow action language statements,
mldata1 and mldata2 are Stateflow data of type ml:

mldata1 = ml.rand(3);
mldata2 = ml.transpose(mldata1);

In the first line of this example, mldata1 receives the return value of the
MATLAB function rand, which, in this case, returns a 3-by-3 array of random
numbers. Note that mldata1 is not specified as an array or sized in any way.
It can receive any MATLAB workspace data or the return of any MATLAB
function because it is defined as a Stateflow data of type ml.

In the second line of the example, mldata2, also of Stateflow data type ml,
receives the transpose matrix of the matrix in mldata1. It is assigned the
return value of the MATLAB function transpose in which mldata1 is the
argument.

Note the differences in notation if the preceding example were to use
MATLAB workspace data (wsdata1 and wsdata2) instead of Stateflow ml
data to hold the generated matrices:

ml.wsdata1 = ml.rand(3);
ml.wsdata2 = ml.transpose(ml.wsdata1);

10-49

10 Using Actions in Stateflow® Charts

In this case, each workspace data must be accessed through the ml namespace
operator.

How Charts Infer the Return Size for ml Expressions
Stateflow expressions using the ml namespace operator and the ml function
evaluate in the MATLAB workspace at run-time. The actual size of the data
returned from the following expression types is known only at run-time:

• MATLAB workspace data or functions using the ml namespace operator or
the ml function call

For example, the size of the return values from the expressions ml.var,
ml.func(), or ml(evalString, arg1, arg2,...), where var is a
MATLAB workspace variable and func is a MATLAB function, cannot be
known until run-time.

• Stateflow data of type ml

• Graphical functions that return Stateflow data of type ml

When these expressions appear in action language, Stateflow code generation
creates temporary data to hold intermediate returns for evaluation of the full
expression of which they are a part. Because the size of these return values
is unknown until run-time, Stateflow software must employ context rules to
infer the sizes for creation of the temporary data.

During run-time, if the actual returned value from one of these commands
differs from the inferred size of the temporary variable that stores it, a size
mismatch error appears. To prevent run-time errors, use the following
guidelines to write action language statements with MATLAB commands or
ml data:

10-50

Using MATLAB® Functions and Data in Actions

Guideline Example

Return sizes of MATLAB commands or data in an
expression must match return sizes of peer expressions.

In the expression ml.func() * (x +
ml.y), if x is a 3-by-2 matrix, then
ml.func() and ml.y are also assumed
to evaluate to 3-by-2 matrices. If either
returns a value of different size (other
than a scalar), an error results during
run-time.

Expressions that return a scalar never produce an
error.

You can combine matrices and scalars in larger
expressions because MATLAB commands use scalar
expansion.

In the expression ml.x + y, if y is
a 3-by-2 matrix and ml.x returns a
scalar, the resulting value is the result
of adding the scalar value of ml.x to
every member of y to produce a matrix
with the size of y, that is, a 3-by-2
matrix.

The same rule applies to subtraction
(-), multiplication (*), division (/), and
any other binary operations.

Arguments

The expression
for each function
argument is a larger
expression for which
the return size of
MATLAB commands
or Stateflow data
of type ml must be
determined.

In the expression z + func(x +
ml.y), the size of ml.y is independent
of the size of z, because ml.y is used at
the function argument level. However,
the return size for func(x + ml.y)
must match the size of z, because they
are both at the same expression level.

MATLAB commands or
Stateflow data of type ml can be
members of these independent
levels of expression, for which
resolution of return size is
necessary:

Array indices

The expression for
an array index is an
independent level of
expression that must
be scalar in size.

In the expression x + array[y], the
size of y is independent of the size of x
because y and x are at different levels
of expression. Also, y must be a scalar.

10-51

10 Using Actions in Stateflow® Charts

Guideline Example

The return size for an indexed array element access
must be a scalar.

The expression x[1][1], where x is a
3-by-2 array, must evaluate to a scalar.

MATLAB command or data elements used in an
expression for the input argument of a MATLAB
function called through the ml namespace operator are
resolved for size. This resolution uses the rule for peer
expressions (preceding rule 1) for the expression itself,
because no size definition prototype is available.

In the function call ml.func(x +
ml.y), if x is a 3-by-2 array, ml.y must
return a 3-by-2 array or a scalar.

MATLAB command or data elements used for the input
argument for a graphical function in an expression are
resolved for size by the function prototype.

If the graphical function gfunc has the
prototype gfunc(arg1), where arg1
is a 2-by-3 Stateflow data array, the
calling expression, gfunc(ml.y + x),
requires that both ml.y and x evaluate
to 2-by-3 arrays (or scalars) during
run-time.

ml function calls can take only scalar or string literal
arguments. Any MATLAB command or data that
specifies an argument for the ml function must return
a scalar value.

In the expression a = ml('sin(x)'),
the ml function calls the MATLAB
function sin to evaluate the sine of x
in the MATLAB workspace. Stateflow
data variable a stores that result.

In an assignment, the size of the right-hand expression
must match the size of the left-hand expression, with
one exception. If the left-hand expression is a single
MATLAB variable, such as ml.x, or Stateflow data
of type ml, the right-hand expression determines the
sizes of both expressions.

In the expression s = ml.func(x),
where x is a 3-by-2 matrix and s is
scalar Stateflow data, ml.func(x)
must return a scalar to match the
left-hand expression, s. However, in
the expression ml.y = x + s, where x
is a 3-by-2 data array and s is scalar,
the left-hand expression, workspace
variable y, is assigned the size of a
3-by-2 array to match the size of the
right-hand expression, x+s, a 3-by-2
array.

10-52

Using MATLAB® Functions and Data in Actions

Guideline Example

In an assignment, Stateflow column vectors on the
left-hand side are compatible with MATLAB row or
column vectors of the same size on the right-hand side.

A matrix you define with a row dimension of 1 is
considered a row vector. A matrix you define with
one dimension or with a column dimension of 1 is
considered a column vector.

In the expression s = ml.func(),
where ml.func() returns a 1-by-3
matrix, if s is a vector of size 3, the
assignment is valid.

If you cannot resolve the return size of MATLAB
command or data elements in a larger expression by
any of the preceding rules, they are assumed to return
scalar values.

In the expression ml.x = ml.y +
ml.z, none of the preceding rules can
be used to infer a common size among
ml.x, ml.y, and ml.z. In this case,
both ml.y and ml.z are assumed to
return scalar values. Even if ml.y
and ml.z return matching sizes at
run-time, if they return nonscalar
values, a size mismatch error results.

The preceding rules for resolving the size of member
MATLAB commands or Stateflow data of type ml in a
larger expression apply only to cases in which numeric
values are expected for that member. For nonnumeric
returns, a run-time error results.

Note Member MATLAB commands or data of type ml
in a larger expression are limited to numeric values
(scalar or array) only if they participate in numeric
expressions.

The expression x + ml.str, where
ml.str is a string workspace variable,
produces a run-time error stating that
ml.str is not a numeric type.

Special cases exist, in which no size checking occurs to resolve the size of
MATLAB command or data expressions that are part of larger expressions.
Use of the following expressions does not require enforcement of size checking
at run-time:

• ml.var

• ml.func()

10-53

10 Using Actions in Stateflow® Charts

• ml(evalString, arg1, arg2,...)

• Stateflow data of type ml

• Graphical function returning a Stateflow data of type ml

In these cases, assignment of a return to the left-hand side of an assignment
statement or a function argument occurs without checking for a size mismatch
between the two:

• An assignment in which the left-hand side is a MATLAB workspace
variable

For example, in the expression ml.x = ml.y, ml.y is a MATLAB workspace
variable of any size and type (structure, cell array, string, and so on).

• An assignment in which the left-hand side is a data of type ml

For example, in the expression m_x = ml.func(), m_x is a Stateflow data
of type ml.

• Input arguments of a MATLAB function

For example, in the expression ml.func(m_x, ml.x, gfunc()), m_x is a
Stateflow data of type ml, ml.x is a MATLAB workspace variable of any
size and type, and gfunc() is a Stateflow graphical function that returns a
Stateflow data of type ml. Although size checking does not occur for the
input type, if the passed-in data is not of the expected type, an error results
from the function call ml.func().

• Arguments for a graphical function that are specified as Stateflow data of
type ml in its prototype statement

Note If you replace the inputs in the preceding cases with non-MATLAB
numeric Stateflow data, conversion to an ml type occurs.

10-54

Using Data and Event Arguments in Actions

Using Data and Event Arguments in Actions
When you use data and event objects as arguments to functions that you
call in action language, the chart assumes that these arguments appear at
the same level in the hierarchy. If the data and event arguments are not at
that level, Stateflow action language attempts to resolve the object name
by searching up the hierarchy. Data or event object arguments parented
anywhere else must have their path hierarchies defined explicitly.

In the following example, state A calls the graphical function addit to add the
Stateflow data x and y and store the result in data z.

The call to function addit from state A can resolve z because that data object
belongs to state A. However, the function call cannot resolve x and y by
looking above state A in the chart hierarchy. Therefore, the function call must
reference x and y explicitly to the parent state AA.

For information about functions you can call in Stateflow action language that
use data as arguments, see these sections:

• “Using Graphical Functions to Extend Actions” on page 7-30

• “Calling C Functions in Actions” on page 10-32

• “Using MATLAB Functions and Data in Actions” on page 10-42

10-55

10 Using Actions in Stateflow® Charts

Only operators for event-based temporal logic take events as arguments. See
“Using Temporal Logic in State Actions and Transitions” on page 10-63.

10-56

Using Arrays in Actions

Using Arrays in Actions

In this section...

“Array Notation” on page 10-57

“Arrays and Custom Code” on page 10-58

Array Notation
A Stateflow action uses C style syntax and zero-based indexing by default to
access array elements. This syntax differs from MATLAB notation, which
uses one-based indexing. For example, suppose you define a Stateflow input
A of size [3 4]. To access the element in the first row, second column, use
the expression A[0][1]. Other examples of zero-based indexing in Stateflow
actions include:

local_array[1][8][0] = 10;

local_array[i][j][k] = 77;

var = local_array[i][j][k];

Note Use the same notation for accessing arrays in Stateflow charts, from
Simulink models, and from custom code.

As an exception to zero-based indexing, scalar expansion is available within
the action language. This statement assigns a value of 10 to all the elements
of the array local_array.

local_array = 10;

Scalar expansion is available for performing general operations. This
statement is valid if the arrays array_1, array_2, and array_3 have the
same value for the Sizes property.

array_1 = (3*array_2) + array_3;

10-57

10 Using Actions in Stateflow® Charts

Note For more information, see Chapter 13, “Using Vectors and Matrices
in Stateflow Charts”.

Arrays and Custom Code
Stateflow action language provides the same syntax for Stateflow arrays
and custom code arrays.

Note Any array variable that is referred to in a Stateflow chart but is not
defined in the Stateflow hierarchy is identified as a custom code variable.

10-58

Broadcasting Events in Actions

Broadcasting Events in Actions

In this section...

“About Events in Actions” on page 10-59

“Directed Event Broadcasting” on page 10-59

“Example of Directed Event Broadcasting Using send” on page 10-60

“Example of Directed Event Broadcasting Using Qualified Event Names”
on page 10-61

About Events in Actions
You can specify an event to be broadcast in the action language. Events have
hierarchy (a parent) and scope. The parent and scope together define a range
of access to events. It is primarily the event’s parent that determines who can
trigger on the event (has receive rights). See “How Events Work in Stateflow
Charts” on page 9-2 for more information.

Directed Event Broadcasting
In the action language, you can broadcast events directly from one state to
another to synchronize parallel (AND) states in the same chart. The following
rules apply:

• The receiving state must be active during the event broadcast.

• An action in one chart cannot broadcast events to states in another chart.

Using a directed event broadcast provides the following benefits over an
undirected broadcast:

• Prevents unwanted recursion during simulation.

• Improves the efficiency of generated code.

For information about avoiding unwanted recursion, see “Guidelines for
Avoiding Unwanted Recursion in a Chart” on page 26-41.

10-59

10 Using Actions in Stateflow® Charts

Example of Directed Event Broadcasting Using send
The format of the directed event broadcast with send is:

send(event_name,state_name)

where event_name is broadcast to state_name and any offspring of that state
in the hierarchy. The event you send must be visible to both the sending state
and the receiving state (state_name).

The state_name argument can include a full hierarchy path to the state.
For example, if the state A contains the state A1, send an event e to state A1
with the following broadcast:

send(e, A.A1)

Tip Do not use the chart name in the full hierarchy path to a state.
Formal chart names include the subsystem in which a chart resides. For
example, in the model sldemo_fuelsys, the chart control_logic is in
the subsystem fuel_rate_control. The formal name for the chart is
fuel_rate_control/control_logic. This name includes the forward slash
character ('/'), which is not a valid character in Stateflow identifiers.

10-60

Broadcasting Events in Actions

This example of a directed event broadcast uses the
send(event_name,state_name) syntax.

In this example, event E_one belongs to the chart and is visible to both A and
B. See “Directed Event Broadcast Using Send Example” on page B-60 for
information on the semantics of this notation.

Example of Directed Event Broadcasting Using
Qualified Event Names
The format of the direct event broadcast using qualified event names is:

state_name.event_name

where event_name is broadcast to its owning state (state_name) and any
offspring of that state in the hierarchy. The event you send is visible only
to the receiving state (state_name).

10-61

10 Using Actions in Stateflow® Charts

The state_name argument can also include a full hierarchy path to the
receiving state. Do not use the chart name in the full path name of the state.

The following example illustrates the use of a qualified event name in a
directed event broadcast.

In this example, event E_one belongs to state B and is visible only to that
state. See “Directed Event Broadcast Using Qualified Event Name Example”
on page B-62 for information on the semantics of this notation.

10-62

Using Temporal Logic in State Actions and Transitions

Using Temporal Logic in State Actions and Transitions

In this section...

“What Is Temporal Logic?” on page 10-63

“Rules for Using Temporal Logic Operators” on page 10-63

“Operators for Event-Based Temporal Logic” on page 10-64

“Examples of Event-Based Temporal Logic” on page 10-66

“Notations for Event-Based Temporal Logic” on page 10-68

“Operators for Absolute-Time Temporal Logic” on page 10-70

“Defining Time Delays” on page 10-71

“Examples of Absolute-Time Temporal Logic” on page 10-73

“Running a Model That Demonstrates Absolute-Time Temporal Logic” on
page 10-74

“Behavior of Absolute-Time Temporal Logic in a Conditionally Executed
Subsystem” on page 10-75

“How Sample Time Affects Chart Execution” on page 10-78

“Tips for Using Absolute-Time Temporal Logic” on page 10-79

What Is Temporal Logic?
Temporal logic controls execution of a Stateflow chart in terms of time.
In state actions and transitions, you can use two types of temporal logic:
event-based and absolute-time. Event-based temporal logic keeps track of
recurring events, and absolute-time temporal logic defines time periods based
on the simulation time of your chart. To operate on these recurring events or
simulation time, you use built-in functions called temporal logic operators.

Rules for Using Temporal Logic Operators
These rules apply to the use of temporal logic operators:

• You can use any explicit or implicit event as a base event for a temporal
operator. A base event is a recurring event on which a temporal operator
operates.

10-63

10 Using Actions in Stateflow® Charts

• For a chart with no input events, you can use the tick or wakeup event to
denote the implicit event of a chart waking up.

• Temporal logic operators can appear only in:

- State actions

- Transitions that originate from states

- Transition segments that originate from junctions when the full
transition path connects two states

Note This restriction means that you cannot use temporal logic operators
in default transitions or flow graph transitions.

Every temporal logic operator has an associated state: the state in which
the action appears or from which the transition originates.

• You must use event notation (see “Notations for Event-Based Temporal
Logic” on page 10-68) to express event-based temporal logic in state actions.

Operators for Event-Based Temporal Logic
For event-based temporal logic, use the operators as described below.

Operator Syntax Description

after after(n, E)

where E is the base event for the
after operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true if the base event E
has occurred at least n times since
activation of the associated state.
Otherwise, the operator returns
false.

In a chart with no input events,
after(n, tick) or after(n,
wakeup) returns true if the chart
has woken up n times or more since
activation of the associated state.

Resets the counter for E to 0
each time the associated state
reactivates.

10-64

Using Temporal Logic in State Actions and Transitions

Operator Syntax Description

before before(n, E)

where E is the base event for the
before operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true if the base event E
has occurred fewer than n times
since activation of the associated
state. Otherwise, the operator
returns false.

In a chart with no input events,
before(n, tick) or before(n,
wakeup) returns true if the chart
has woken up fewer than n times
since activation of the associated
state.

Resets the counter for E to 0
each time the associated state
reactivates.

at at(n, E)

where E is the base event for the
at operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true only at the nth

occurrence of the base event E since
activation of the associated state.
Otherwise, the operator returns
false.

In a chart with no input events,
at(n, tick) or at(n, wakeup)
returns true if the chart has woken
up for the nth time since activation
of the associated state.

Resets the counter for E to 0
each time the associated state
reactivates.

10-65

10 Using Actions in Stateflow® Charts

Operator Syntax Description

every every(n, E)

where E is the base event for the
every operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true at every nth

occurrence of the base event
E since activation of the associated
state. Otherwise, the operator
returns false.

In a chart with no input events,
every(n, tick) or every(n,
wakeup) returns true if the chart
has woken up an integer multiple
n times since activation of the
associated state.

Resets the counter for E to 0
each time the associated state
reactivates. Therefore, this
operator is useful only in state
actions and not in transitions.

temporalCount temporalCount(E)

where E is the base event for the
temporalCount operator.

Increments by 1 and returns a
positive integer value for each
occurrence of the base event E that
takes place after activation of the
associated state. Otherwise, the
operator returns a value of 0.

Resets the counter for E to 0
each time the associated state
reactivates.

Examples of Event-Based Temporal Logic
These examples illustrate usage of event-based temporal logic in state actions
and transitions.

10-66

Using Temporal Logic in State Actions and Transitions

Operator Usage Example Description

after State action

(on after)

on after(5, CLK): status('on'); A status message
appears during each
CLK cycle, starting
5 clock cycles after
activation of the
state.

after Transition ROTATE[after(10, CLK)] A transition out
of the associated
state occurs only on
broadcast of a ROTATE
event, but no sooner
than 10 CLK cycles
after activation of
the state.

before State action

(on before)

on before(MAX, CLK): temp++; The temp variable
increments once per
CLK cycle until the
state reaches the MAX
limit.

before Transition ROTATE[before(10, CLK)] A transition out
of the associated
state occurs only on
broadcast of a ROTATE
event, but no later
than 10 CLK cycles
after activation of
the state.

at State action

(on at)

on at(10, CLK): status('on'); A status message
appears at exactly
10 CLK cycles after
activation of the
state.

10-67

10 Using Actions in Stateflow® Charts

Operator Usage Example Description

at Transition ROTATE[at(10, CLK)] A transition out
of the associated
state occurs only
on broadcast of a
ROTATE event, at
exactly 10 CLK cycles
after activation of
the state.

every State action

(on every)

on every(5, CLK): status('on'); A status message
appears every 5
CLK cycles after
activation of the
state.

temporalCount State action

(during)

du: y = mm[temporalCount(tick)]; This action counts
and returns the
integer number
of ticks that have
elapsed since
activation of the
state. Then, the
action assigns to
the variable y the
value of the mm
array whose index
is the value that
the temporalCount
operator returns.

Notations for Event-Based Temporal Logic
You can use one of two notations to express event-based temporal logic.

Event Notation
Use event notation to define a state action or a transition condition that
depends only on a base event.

10-68

Using Temporal Logic in State Actions and Transitions

Event notation follows this syntax:

tlo(n, E)[C]

where

• tlo is a Boolean temporal logic operator (after, before, at, or every)

• n is the occurrence count of the operator

• E is the base event of the operator

• C is an optional condition expression

Conditional Notation
Use conditional notation to define a transition condition that depends on base
and nonbase events.

Conditional notation follows this syntax:

E1[tlo(n, E2) && C]

where

• E1 is any nonbase event

• tlo is a Boolean temporal logic operator (after, before, at, or every)

• n is the occurrence count of the operator

• E2 is the base event of the operator

• C is an optional condition expression

10-69

10 Using Actions in Stateflow® Charts

Examples of Event and Conditional Notation

Notation Usage Example Description

Event State action

(on after)

on after(5, CLK): temp = WARM; The temp variable
becomes WARM 5
CLK cycles after
activation of the
state.

Event Transition after(10, CLK)[temp == COLD] A transition out of
the associated state
occurs if the temp
variable is COLD,
but no sooner than
10 CLK cycles after
activation of the
state.

Conditional Transition ON[after(5, CLK) && temp == COLD] A transition out
of the associated
state occurs only on
broadcast of an ON
event, but no sooner
than 5 CLK cycles
after activation of
the state and only if
the temp variable is
COLD.

Note You must use event notation in state actions, because the syntax of
state actions does not support the use of conditional notation.

Operators for Absolute-Time Temporal Logic
For absolute-time temporal logic, use the operators as described below.

10-70

Using Temporal Logic in State Actions and Transitions

Operator Syntax Description

after after(n, sec)

where n is any positive number or
expression and sec is a keyword
that denotes the simulation time
elapsed since activation of the
associated state.

Returns true if n seconds of
simulation time have elapsed since
activation of the associated state.
Otherwise, the operator returns
false.

Resets the counter for sec to 0
each time the associated state
reactivates.

before before(n, sec)

where n is any positive number or
expression and sec is a keyword
that denotes the simulation time
elapsed since activation of the
associated state.

Returns true if fewer than n
seconds of simulation time have
elapsed since activation of the
associated state. Otherwise, the
operator returns false.

Resets the counter for sec to 0
each time the associated state
reactivates.

temporalCount temporalCount(sec)

where sec is a keyword that
denotes the simulation time
elapsed since activation of the
associated state.

Counts and returns the number
of seconds of simulation time that
have elapsed since activation of
the associated state.

Resets the counter for sec to 0
each time the associated state
reactivates.

Defining Time Delays
Use the keyword sec to define simulation time that has elapsed since
activation of a state. This keyword is valid only in state actions and in
transitions that originate from states.

Example of Defining Time Delays
The following continuous-time chart defines two absolute time delays in
transitions. (See Chapter 16, “Modeling Continuous-Time Systems in
Stateflow Charts” for information about modeling continuous-time systems.)

10-71

10 Using Actions in Stateflow® Charts

Chart execution occurs as follows:

1 When the chart awakens, the state Input activates first.

2 After 5.33 seconds of simulation time pass, the transition from Input to
Output occurs.

3 The state Input deactivates, and the state Output activates.

4 After another 10.5 seconds of simulation time pass, the transition from
Output to Input occurs.

5 The state Output deactivates, and the state Input activates.

6 Steps 2 through 5 repeat, until the simulation ends.

Example of Detecting Elapsed Time
In the following model, the Step block provides a unit step input to the chart:

10-72

Using Temporal Logic in State Actions and Transitions

The chart determines when the input u equals 1.

If the input equals 1... A transition occurs from...

Before t = 2 Start to Fast

Between t = 2 and t = 5 Start to Good

After t = 5 Start to Slow

Advantages of Using Absolute-Time Temporal Logic for Delays
Use absolute-time temporal logic instead of the implicit tick event for these
reasons:

• Delay expressions that use absolute-time temporal logic are independent
of the sample time of the model. However, the tick event is dependent
on sample time.

• Absolute-time temporal logic works in charts that have function-call input
events. However, the tick event does not work in charts with function-call
inputs.

Examples of Absolute-Time Temporal Logic
These examples illustrate usage of absolute-time temporal logic in state
actions and transitions.

10-73

10 Using Actions in Stateflow® Charts

Operator Usage Example Description

after State action

(on after)

on after(12.3, sec): temp = LOW; The temp variable
becomes LOW after
12.3 seconds of
simulation time
have passed, since
activation of the
state.

after Transition after(12.34, sec) A transition out of
the associated state
occurs after 12.34
seconds of simulation
time have passed,
since activation of
the state.

before Transition [temp > 75 && before(12.34, sec)] A transition out of
the associated state
occurs if the variable
temp exceeds 75 and
fewer than 12.34
seconds have elapsed
since activation of
the state.

temporalCount State action

(exit)

ex: y = temporalCount(sec); This action counts
and returns the
number of seconds
of simulation time
that pass between
activation and
deactivation of the
state.

Running a Model That Demonstrates Absolute-Time
Temporal Logic
The sf_boiler model shows the use of absolute-time temporal logic to
implement a bang-bang controller. To run the model:

10-74

Using Temporal Logic in State Actions and Transitions

1 Type sf_boiler at the MATLAB command prompt.

2 Start simulation of the model.

Behavior of Absolute-Time Temporal Logic in a
Conditionally Executed Subsystem
You can use absolute-time temporal logic in a chart that resides in a
conditionally executed subsystem. (See “Creating Conditional Subsystems” in
the Simulink documentation for details.) When the subsystem is disabled,
the chart becomes inactive and the temporal logic operator pauses while the
chart is asleep. The operator does not continue to count simulation time until
the subsystem is reenabled and the chart is awake.

Example of Absolute-Time Temporal Logic in an Enabled
Subsystem
Suppose that your model has an enabled subsystem that contains a chart
with the after operator. In the subsystem, the States when enabling
parameter is set to held.

Model with Enabled Subsystem Chart in Enabled Subsystem

The Signal Builder block provides the following input signal to the subsystem.

10-75

10 Using Actions in Stateflow® Charts

�%�
�
��
&���
��&������

����'�(

�%�
�
	�
&���
��&������

����'��

�%�
�
����
&���
��&������

����'�)

��
���!�����
&��	

10-76

Using Temporal Logic in State Actions and Transitions

The total time elapsed in an enabled state (both A and B) is as follows.

!����'�*$����
��
���	��
��
���!����
��
+������	�

!����'���$����
��
���	��
��
���,����
��
-������	�

.�����
���	
����/�������
��
���!��
	�
&��	

��&������
��	�
&��	

When the input signal enables the subsystem at time t = 0, the state A
becomes active, or enabled. While the state is active, the time elapsed
increases. However, when the subsystem is disabled at t = 2, the chart goes to
sleep and state A becomes inactive.

For 2 < t < 6, the time elapsed in an enabled state stays frozen at 2 seconds
because neither state is active. When the chart wakes up at t = 6, state A
becomes active again and time elapsed starts to increase. The transition from
state A to state B depends on the time elapsed while state A is enabled, not on
the simulation time. Therefore, state A stays active until t = 9, so that the
time elapsed in that state totals 5 seconds.

When the transition from A to B occurs at t = 9, the output value y changes
from 0 to 1.

10-77

10 Using Actions in Stateflow® Charts

This model behavior applies only to subsystems where you set the Enable
block parameter States when enabling to held. If you set the parameter
to reset, the Stateflow chart reinitializes completely when the subsystem
is reenabled. In other words, default transitions execute and any temporal
logic counters reset to 0.

Note These semantics also apply to the before operator.

How Sample Time Affects Chart Execution
If a Stateflow chart has a discrete sample time, any action in the chart occurs
at integer multiples of this sample time.

A Simple Example
Suppose you have a chart with a discrete sample time of 0.1 seconds:

10-78

Using Temporal Logic in State Actions and Transitions

State A becomes active at time t = 0, and the transition to state B occurs at t =
2.2 seconds. This behavior applies because the Simulink solver does not wake
the chart at exactly t = 2.15 seconds. Instead, the solver wakes the chart at
integer multiples of 0.1 seconds, such as t = 2.1 and 2.2 seconds.

Note This behavior also applies to the before operator.

Tips for Using Absolute-Time Temporal Logic

Use the after Operator to Replace the at Operator
If you use the at operator with absolute-time temporal logic, an error message
appears when you try to simulate your model. Use the after operator instead.

Suppose that you want to define a time delay using the transition at(5.33,
sec).

10-79

10 Using Actions in Stateflow® Charts

Change the transition to after(5.33, sec), as shown below.

Use an Outer Self-Loop Transition with the after Operator to
Replace the every Operator
If you use the every operator with absolute-time temporal logic, an error
message appears when you try to simulate your model. Use an outer self-loop
transition with the after operator instead.

Suppose that you want to print a status message for an active state every 2.5
seconds during chart execution, as shown in the state action of Check_status.

10-80

Using Temporal Logic in State Actions and Transitions

Replace the state action with an outer self-loop transition, as shown below.

10-81

10 Using Actions in Stateflow® Charts

You must also add a history junction in the state so that the chart remembers
the state settings prior to each self-loop transition. (See “Using History
Junctions to Extend Charts and States” on page 7-2.)

10-82

Using Change Detection in Actions

Using Change Detection in Actions

In this section...

“Types of Data Value Changes That You Can Detect” on page 10-83

“Running a Model That Demonstrates Change Detection” on page 10-84

“How Change Detection Works” on page 10-87

“Change Detection Operators” on page 10-89

“Change Detection Example” on page 10-94

Types of Data Value Changes That You Can Detect
You can detect changes in the following types of Stateflow data from one
time step to the next:

• Chart inputs

• Chart outputs

• Local chart variables

• Machine-parented variables

• Data bound to Simulink data store memory

(For more information, see “Sharing Global Data with Simulink Models” on
page 8-33.)

For each of these types of data, you can use operators that detect the following
changes:

10-83

10 Using Actions in Stateflow® Charts

Type of Change Operator

Data changes value from the
beginning of the last time step to the
beginning of the current time step.

See “hasChanged Operator” on page
10-90.

Data changes from a specified value
at the beginning of the last time step
to a different value at the beginning
of the current time step.

See “hasChangedFrom Operator” on
page 10-91.

Data changes to a specified value
at the beginning of the current time
step from a different value at the
beginning of the last time step.

See “hasChangedTo Operator” on
page 10-92.

Change detection operators return 1 if the data value changes or 0 if there is
no change. See “Change Detection Operators” on page 10-89.

Running a Model That Demonstrates Change
Detection
Stateflow software ships with a model sf_tetris2 that demonstrates how
you can detect asynchronous changes in inputs — in this case, user keystrokes
— to manipulate a Tetris shape as it moves through the playing field. The
Stateflow chart TetrisLogic implements this logic:

10-84

Using Change Detection in Actions

TetrisLogic contains a subchart called Moving that calls the operator
hasChanged to determine when users press any of the Tetris control keys, and
then moves the shape accordingly. Here is a look inside the subchart:

10-85

10 Using Actions in Stateflow® Charts

To run the model, follow these steps:

1 At the MATLAB command prompt, type:

demo simulink stateflow

2 Click the model description with the title Tetris.

3 Click the Open this model link in the upper right corner.

10-86

Using Change Detection in Actions

Tip You can also open the model by typing sf_tetris2 at the MATLAB
prompt.

4 Start simulation.

How Change Detection Works
A Stateflow chart detects changes in chart data by evaluating values at time
step boundaries. That is, the chart compares the value at the beginning of
the previous execution step with the value at the beginning of the current
execution step. To detect changes, the chart automatically double-buffers
these values in local variables, as follows:

Local Buffer: Stores:

var_name_prev Value of data at the beginning of the last
time step

var_name_start Value of data at the beginning of the
current time step

Note Double-buffering occurs once per time step except if multiple input
events occur in the same time step. Then, double-buffering occurs once per
input event (see “Handling Changes When Multiple Input Events Occur”
on page 10-89).

When you invoke change detection operations in an action, Stateflow software
performs the following operations:

1 Double-buffers data values after a Simulink event triggers the chart, but
before the chart begins execution.

2 Compares values in _prev and _start buffers. If the values match, the
change detection operator returns 0 (no change); otherwise, it returns
1 (change).

10-87

10 Using Actions in Stateflow® Charts

The following diagram places these tasks in the context of the chart life cycle:

����
����� 0
�������	
�

��&�%���%���
�
�����������

���
�� 0
�������	
�

��&�%���%���
����������������

� 0
�������	
�

����	���
����������������

��
��
��

�����

1
2�
��
��

����

���
�/����
��
&���3�����%
	��
���
���
�����
�
���

�����2
��������%%���
��
������
��
��

���

��

��
������������
��
	��&��4&�������	
�

����� ���
���

���
�� ��

5�
���%���
��������
�������3�
�����

5�
��
�3������

��������	���
���
����
���
�����4	���
��	��

�����6�����
�����6�

�
�5�
�%�	��3�
����
���

����� ���
��
�	

10-88

Using Change Detection in Actions

The fact that buffering occurs before chart execution has implications for
change detection in the following scenarios:

• “Handling Transient Changes in Local Variables” on page 10-89

• “Handling Changes When Multiple Input Events Occur” on page 10-89

Handling Transient Changes in Local Variables
Stateflow software attempts to filter out transient changes in local chart
variables by evaluating their values only at time boundaries (see “How
Change Detection Works” on page 10-87). This behavior means that the
software evaluates the specified local variable only once at the end of the
execution step and, therefore, returns a consistent result. That is, the return
value remains constant even if the value of the local variable fluctuates
within a given time step.

For example, suppose that in the current time step a local variable temp
changes from its value at the previous time step, but then reverts to the
original value. In this case, the operator hasChanged(temp) returns 0 for the
next time step, indicating that no change occurred. For more information, see
“Change Detection Operators” on page 10-89.

Handling Changes When Multiple Input Events Occur
When multiple input events occur in the same time step, Stateflow software
updates the _prev and _start buffers once per event. In this way, a chart
detects changes between input events, even if the changes occur more than
once in a given time step.

Change Detection Operators
Change detection operators check for changes in chart inputs, outputs, and
local variables, and in Stateflow data that is bound to Simulink data store
memory.

You can invoke change detection operators wherever you call built-in
functions in a chart — in state actions, transition actions, condition actions,
and conditions. There are three change detection operators:

• “hasChanged Operator” on page 10-90

10-89

10 Using Actions in Stateflow® Charts

• “hasChangedFrom Operator” on page 10-91

• “hasChangedTo Operator” on page 10-92

hasChanged Operator
The hasChanged operator detects any change in Stateflow data since the last
time step, using the following heuristic:

hasChanged x x xprev start() = ≠{ 0
1

otherwise
if

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChanged (u)
hasChanged (m [expr])
hasChanged (s [expr])

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

Note If you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, do not use an output as the argument of the hasChanged
operator. With this option enabled, the operator always returns 0 (or
false) for outputs, so there is no reason to use change detection.

• Stateflow data that is bound to Simulink data store memory

The arguments cannot be expressions or custom code variables.

Description. hasChanged (u) returns 1 if u changes value since the last
time step. If u is a matrix, hasChanged returns 1 if any element of u changes
value since the last time step.

10-90

Using Change Detection in Actions

hasChanged (m [expr]) returns 1 if the value at location expr of matrix
m changes value since the last time step. expr can be an arbitrary expression
that evaluates to a scalar value.

hasChanged (s [expr]) returns 1 if the value at location expr of
aggregate data s has changed since the last time step. s must be a fully
qualified name, such as u.foo.bar, which resolves to an aggregate data type
such as a structure or bus signal. expr can be an arbitrary expression that
evaluates to a scalar value.

All forms of hasChanged return zero if a chart writes to the data, but does
not change its value.

hasChangedFrom Operator
The hasChangedFrom operator detects when Stateflow data changes from a
specified value since the last time step, using the following heuristic:

hasChangedFrom x x x x xprev start prev x(,)0
0

0
1= ≠ ={ otherwise

if and

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChangedFrom (u , v)
hasChangedFrom (m [expr], v)
hasChangedFrom (s [expr], v)

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

10-91

10 Using Actions in Stateflow® Charts

Note If you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, do not use an output as the first argument of the
hasChangedFrom operator. With this option enabled, the operator always
returns 0 (or false) for outputs, so there is no reason to use change
detection.

• Stateflow data that is bound to Simulink data store memory

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to a scalar value or a
matrix value with the same dimensions as the first argument.

Description. hasChangedFrom (u, v) returns 1 if u changes from the
value specified by v since the last time step. If u is a matrix variable whose
elements all equal the value specified by v, hasChangedFrom returns 1 if one
or more elements of the matrix changes to a different value in the current
time step.

hasChangedFrom (m [expr], v) returns 1 if the value at location expr of
matrix m changes from the value specified by v since the last time step. expr
can be an arbitrary expression that evaluates to a scalar value.

hasChangedFrom (s [expr], v) returns 1 if the value at location expr
of aggregate data s changes from the value specified by v since the last time
step. s must be a fully qualified name, such as u.foo.bar, which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

hasChangedTo Operator
The hasChangedTo operator detects when Stateflow data changes to a
specified value since the last time step, using the following heuristic:

hasChangedTo x x x x xprev start start x(,)0
0

0
1= ≠ ={ otherwise

if and

10-92

Using Change Detection in Actions

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChangedTo (u , v)
hasChangedTo (m [expr], v)
hasChangedTo (s [expr], v)

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a Stateflow chart

Note If you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, do not use an output as the first argument of the
hasChangedTo operator. With this option enabled, the operator always
returns 0 (or false) for outputs, so there is no reason to use change
detection.

• Stateflow data that is bound to Simulink data store memory

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to either a scalar value or
a matrix value with the same dimensions as the first argument.

Description. hasChangedTo (u, v) returns 1 if u changes to the value
specified by v in the current time step. If u is a matrix variable, hasChangedTo
returns 1 if any its of its elements changes value so that all elements of the
matrix equal the value specified by v in the current time step.

hasChangedTo (m [expr], v) returns 1 if the value at location expr of
matrix m changes to the value specified by v in the current time step. expr
can be an arbitrary expression that evaluates to a scalar value.

10-93

10 Using Actions in Stateflow® Charts

hasChangedTo (s [expr], v) returns 1 if the value at location expr
of aggregate data s changes to the value specified by v in the current time
step. s must be a fully qualified name, such as u.foo.bar, which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

Change Detection Example
The following model shows how to use the hasChanged, hasChangedFrom, and
hasChangedTo operators to detect specific changes in an input signal. In this
example, a Ramp block sends a discrete, increasing time signal to a chart:

The model uses a fixed-step solver with a step size of 1. The signal increments
by 1 at each time step. The chart analyzes the input signal for the following
changes at each time step:

• Any change from the previous time step

• Change to the value 3

• Change from the value 3

10-94

Using Change Detection in Actions

To check the signal, the chart calls three change detection operators in a
transition action, and outputs the return values as y1, y2, and y3, as follows:

10-95

10 Using Actions in Stateflow® Charts

During simulation, the outputs y1, y2, and y3 represent changes in the input
signal, as shown in this scope:

��
	

��
���
������������
��.�7

���
���
���
&��
������2����

����
��%

�
 ��

�-
���
������������
��.-
���������
�%������-7
��
�������&
�2����(

��.8������������
���

�����-����8

��
��
������������
��.8

���������
�%��������-����87
��
�������&
�2����(

��.+������������
���

������8����+

10-96

Checking State Activity

Checking State Activity

In this section...

“When to Check State Activity” on page 10-97

“How to Check State Activity” on page 10-97

“The in Operator” on page 10-97

“How Checking State Activity Works” on page 10-98

“State Resolution for Identically Named Substates” on page 10-101

“Best Practices for Checking State Activity” on page 10-103

When to Check State Activity
Check state activity when you have substates in parallel states that can be
active at the same time. For example, checking state activity allows you to
synchronize substates in two parallel states.

How to Check State Activity
Use the in operator to check if a state is active. You can use this operator in
state actions and transitions that originate from states.

The in Operator

Purpose
Checks if a state is active in a given time step during chart execution.

Syntax

in(S)

where S is a fully qualified state.

10-97

10 Using Actions in Stateflow® Charts

Description
The in operator is true and returns a value of 1 whenever state S is active;
otherwise, it returns a value of 0.

Example
This example illustrates the use of the in operator in transition conditions.

In this chart, using the in operator to check state activity synchronizes
substates in the parallel states Place and Tracker. For example, when
the input position u becomes positive, the state transition from Place.L to
Place.R occurs. This transition makes the condition [in(Place.R)] true, and
the transition from Tracker.Moved_Left to Tracker.Moved_Right occurs.

How Checking State Activity Works
Checking state activity is a two-stage process. First, the in operator must find
the desired state. Then, the operator determines if the desired state is active.

10-98

Checking State Activity

• The in operator does not perform an exhaustive search for all states in a
chart that can match the argument. It performs a localized search and
stops.

• The in operator does not stop searching after it finds one match. It
continues to search until it reaches the chart level.

This diagram shows the detailed process of checking state activity.

10-99

10 Using Actions in Stateflow® Charts

��������

���
�����
�
�
���������
	����	��
���

9�����������
��
���%�����
���������
����

��

���������
�����������
���
�����

��
������
�
������������
���
����

����
���
�����
�
�
���������
	����	��
���

��������
���
��
���	����
��
���������

��

!		���
�
��
�����
����������
�
������

���������

��"��
�
����

5���2�
�����
�������
��
�����
�
�
������

9���
��

�
���%
����
%��

��

���

������

10-100

Checking State Activity

When you use the in operator to check state activity, these actions take place:

1 The search begins in the state where you use the in operator.

• If you use the in operator in a state action, then that state is the starting
point.

• If you use the in operator in a transition label, then the parent of the
source state is the starting point.

2 The in operator searches at that level of the hierarchy for a path to a state
that matches the desired state. If the operator finds a match, it adds that
state to the list of possible matches.

3 The operator moves up to the next highest level of the hierarchy. At that
level, the operator searches for a path to a state that matches the desired
state. If the operator finds a match, it adds that state to the list of possible
matches.

4 The in operator repeats the previous step until it reaches the chart level.

5 At the chart level, the operator searches for a path to a state that matches
the desired state. If the operator finds a match, it adds that state to the
list of possible matches. Then, the search ends.

6 After the search ends, one of the following occurs:

• If a unique search result is found, the in operator checks if that state is
active and returns a value of 0 or 1.

• If the operator finds no matches or multiple matches for the desired
state, a warning message appears.

State Resolution for Identically Named Substates
For identically named substates in parallel superstates, the scope of the in
operator remains local with respect to its chart-level superstate. When the
in operator checks activity of a substate, it does not automatically detect an
identically named substate that resides in a parallel superstate.

This example shows how the in operator works in a chart with identically
named substates.

10-101

10 Using Actions in Stateflow® Charts

• Superstates A and B have identical substates A1 and A2.

• The condition in(A1.Y) guards the transition from P to Q in the states
A.A2 and B.A2.

• For the state A.A2, the condition in(A1.Y) refers to the state A.A1.Y.

• For the state B.A2, the condition in(A1.Y) refers to the state B.A1.Y.

For the transition condition of A.A2, the in operator performs these search
actions:

Step Action of the in Operator Finds a Match?

1 Picks A.A2 as the starting point and
searches for the state A.A2.A1.Y

No

2 Moves up to the next level of the
hierarchy and searches for the state
A.A1.Y

Yes

3 Moves up to the chart level and
searches for the state A1.Y

No

10-102

Checking State Activity

The search ends, with the single state A.A1.Y found. The in operator checks
if that state is active and returns a value of 0 or 1.

Localizing the scope of the in operator produces a unique search result. For
example, the in operator of A.A2 does not detect the state B.A1.Y, because the
search algorithm localizes the scope of the operator. Similarly, the in operator
of B.A2 detects only the state B.A1.Y and does not detect the state A.A1.Y.

Best Practices for Checking State Activity

Use a Specific Search Path
Be specific when defining the path of the state whose activity you want to
check. See the examples that follow for details.

Example of No States Matching the Argument of the in Operator.

In the state A.B, the during action invokes the in operator. Assume that
you want to check the activity of the state A.B.Other.C.D. The in operator
performs these search actions:

10-103

10 Using Actions in Stateflow® Charts

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.C.D

No

2 Moves up to the next level of the
hierarchy and searches for the state
A.C.D

No

3 Moves up to the chart level and
searches for the state C.D

No

The search ends, and a warning message appears because no match exists.

To eliminate the warning message, use a more specific path to check state
activity: in(Other.C.D).

Example of the Wrong State Matching the Argument of the in
Operator.

In the state A.B, the during action invokes the in operator. Assume that
you want to check the activity of the state A.B.Other.Q.R. The in operator
performs these search actions:

10-104

Checking State Activity

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.Q.R

No

2 Moves up to the next level of the
hierarchy and searches for the state
A.Q.R

No

3 Moves up to the chart level and
searches for the state Q.R

Yes

The search ends, with the single state Q.R found. The in operator checks if
that state is active and returns a value of 0 or 1.

In this example, the in operator checks the status of the wrong state.
To prevent this error, use a more specific path to check state activity:
in(Other.Q.R).

Use Unique State Names
Use unique names when you name the states in a chart.

10-105

10 Using Actions in Stateflow® Charts

Example of Multiple States Matching the Argument of the in
Operator.

In the state A.B, the during action invokes the in operator. Assume that you
want to check the activity of the state A.B.P.Q.R. The in operator performs
these search actions:

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.P.Q.R

Yes

2 Moves up to the next level of the
hierarchy and searches for the state
A.P.Q.R

No

3 Moves up to the chart level and
searches for the state P.Q.R

Yes

The search ends, and a warning message appears because multiple matches
exist.

To eliminate the warning message, do one of these corrective actions:

10-106

Checking State Activity

• Rename one of the matching states.

• Use a more specific path to the desired state: in(B.P.Q.R).

• Enclose the outer state P.Q.R in a box or another state, as shown below.

Adding an enclosure prevents the in operator of state A.B from detecting
that outer state.

10-107

10 Using Actions in Stateflow® Charts

Using Bind Actions to Control Function-Call Subsystems

In this section...

“About Bind Actions” on page 10-108

“Binding a Function-Call Subsystem to a State” on page 10-108

“Example Model That Binds a Function-Call Subsystem to a State” on
page 10-113

“Behavior of a Bound Function-Call Subsystem” on page 10-116

“Why Avoid Muxed Trigger Events with Binding” on page 10-122

About Bind Actions
Bind actions in a state bind specified data and events to that state. Events
bound to a state can be broadcast only by the actions in that state or its
children. You can also bind a function-call event to a state to enable or
disable the function-call subsystem that the event triggers. The function-call
subsystem enables when the state with the bound event is entered and
disables when that state is exited. Execution of the function-call subsystem is
fully bound to the activity of the state that calls it.

Binding a Function-Call Subsystem to a State
By default, a function-call subsystem is controlled by the Stateflow chart in
which the associated function call output event is defined. This association
means that the function-call subsystem is enabled when the chart wakes up
and remains active until the chart goes to sleep. To achieve a finer level of
control, you can bind a function-call subsystem to a state within the chart
hierarchy by using a bind action (see “Bind Actions” on page 10-6).

Bind actions can bind function-call output events to a state. When you create
this type of binding, the function-call subsystem that is called by the event
is also bound to the state. In this situation, the function-call subsystem is
enabled when the state is entered and disabled when the state is exited.

When you bind a function-call subsystem to a state, you can fine-tune the
behavior of the subsystem when it is enabled and disabled, as described in
the following sections:

10-108

Using Bind Actions to Control Function-Call Subsystems

• “Handling Outputs When the Subsystem is Disabled” on page 10-109

• “Controlling Behavior of States When the Subsystem is Enabled” on page
10-111

Handling Outputs When the Subsystem is Disabled
Although function-call subsystems do not execute while disabled, their output
signals are available to other blocks in the model. If a function-call subsystem
is bound to a state, you can hold its outputs at their values from the previous
time step or reset the outputs to their initial values when the subsystem is
disabled. Follow these steps:

10-109

10 Using Actions in Stateflow® Charts

1 Double-click the outport block of the subsystem to open the Block
Parameters dialog box.

10-110

Using Bind Actions to Control Function-Call Subsystems

2 Select an option for Output when disabled:

Select: To:

held Maintain most recent output value

reset Reset output to its initial value

3 Click OK to record the settings.

Note Setting Output when disabled is meaningful only when the
function-call subsystem is bound to a state, as described in “Binding a
Function-Call Subsystem to a State” on page 10-108.

Controlling Behavior of States When the Subsystem is Enabled
If a function-call subsystem is bound to a state, you can hold the subsystem
state variables at their values from the previous time step or reset the state
variables to their initial conditions when the subsystem executes. In this way,
the binding state gains full control of state variables for the function-call
subsystem. Follow these steps:

10-111

10 Using Actions in Stateflow® Charts

1 Double-click the trigger port of the subsystem to open the Block Parameters
dialog box.

2 Select an option for States when enabling:

10-112

Using Bind Actions to Control Function-Call Subsystems

Select: To:

held Maintain most recent values of the states of the
subsystem that contains the trigger port

reset Revert to the initial conditions of the states of the
subsystem that contains this trigger port

inherit Inherit this setting from the function-call initiator’s
parent subsystem. If the parent of the initiator is the
model root, the inherited setting is held. If the trigger
has multiple initiators, the parents of all initiators
must have the same setting: either all held or all
reset.

3 Click OK to record the settings.

Note Setting States when enabling is meaningful only when the
function-call subsystem is bound to a state, as described in “Binding a
Function-Call Subsystem to a State” on page 10-108.

Example Model That Binds a Function-Call Subsystem
to a State
The following model triggers a function-call subsystem with a trigger event E
that binds to state A of a Stateflow chart:

10-113

10 Using Actions in Stateflow® Charts

This model specifies a fixed-step solver with a fixed-step size of 1 in the
Solver pane of the Configuration Parameters dialog box.

The Stateflow chart contains two states, A and B, and connecting transitions,
along with some actions:

Event E binds to state A with the action bind:E. Event E is defined for the
Stateflow chart with a scope of Output to Simulink and a trigger type of
function-call.

The function-call subsystem contains a trigger port block, an input port, an
output port, and a simple block diagram. The block diagram increments a
counter by 1 at each time step, using a Unit Delay block:

10-114

Using Bind Actions to Control Function-Call Subsystems

The Block Parameters dialog box for the trigger port appears as follows.

The States when enabling parameter uses the setting reset. This setting
resets the state values for the function-call subsystem to zero when it is
enabled.

The Sample time type parameter uses the setting triggered. This setting
sets the function-call subsystem to execute only when it is triggered by a
calling event while it is enabled.

10-115

10 Using Actions in Stateflow® Charts

Setting Sample time type to periodic enables the Sample time field
below it, which defaults to 1. These settings force the function-call subsystem
to execute for each time step specified in the Sample time field while it is
enabled. To accomplish this, the state that binds the calling event for the
function-call subsystem must send an event for the time step coinciding with
the specified sampling rate in the Sample time field. States can send events
with entry or during actions at the simulation sample rate.

• For fixed-step sampling, the Sample time value must be an integer
multiple of the fixed-step size.

• For variable-step sampling, the Sample time value has no limitations.

Behavior of a Bound Function-Call Subsystem
To see how a state controls a bound function-call subsystem, begin simulating
the model in “Example Model That Binds a Function-Call Subsystem to
a State” on page 10-113. The following steps describe the output of the
subsystem.

1 In the chart, the default transition to state A occurs.

2 When state A becomes active, it executes its bind and entry actions. The
binding action, bind:E, binds event E to state A. This action enables the
function-call subsystem and resets its state variables to 0.

10-116

Using Bind Actions to Control Function-Call Subsystems

State A also executes its entry action, en:E, which sends an event E to
trigger the function-call subsystem and execute its block diagram. The
block diagram increments a count by 1 each time using a Unit Delay block.
Because the previous content of the Unit Delay block is 0 after the reset,
the initial output is 0 and the current value of 1 is held for the next call to
the subsystem.

3 The next update event from the model tests state A for an outgoing
transition.

10-117

10 Using Actions in Stateflow® Charts

The temporal operation on the transition to state B, after(10, tick),
allows the transition to be taken only after ten update events are received.
For the second update, the during action of state A, du:E, executes, which
sends an event to trigger the function-call subsystem. The held content of
the Unit Delay block, 1, outputs to the scope.

The subsystem also adds 1 to the held value to produce the value 2, which
the Unit Delay block holds for the next triggered execution.

10-118

Using Bind Actions to Control Function-Call Subsystems

4 The next eight update events increment the subsystem output by 1 at
each time step.

10-119

10 Using Actions in Stateflow® Charts

5 On the 11th update event, the transition to state B occurs and state B
becomes active.

Because the binding to state A is no longer active, the function-call
subsystem is disabled, and its output drops to 0.

10-120

Using Bind Actions to Control Function-Call Subsystems

6 When the next sampling event occurs, the transition from state B to state A
occurs.

Again, the binding action, bind: E, enables the function-call subsystem
and resets its output to 0.

10-121

10 Using Actions in Stateflow® Charts

7 The next 10 update events produce the following output.

Why Avoid Muxed Trigger Events with Binding
The example in “Behavior of a Bound Function-Call Subsystem” on page
10-116 shows how binding events gives control of a function-call subsystem
to a single state in a Stateflow chart. This control does not work when you
allow other events to trigger the function-call subsystem through a mux. For
example, the following model defines two function-call events to trigger a
function-call subsystem using a Mux block:

10-122

Using Bind Actions to Control Function-Call Subsystems

In the chart, E1 binds to state A, but E2 does not. State B sends the triggering
event E2 in its entry action:

10-123

10 Using Actions in Stateflow® Charts

When you simulate this model, you get the following output:

Broadcasting E2 in state B changes the output, which no longer resets.

Note Binding is not recommended when you provide multiple trigger events
to a function-call subsystem through a mux. Muxed trigger events can
interfere with event binding and cause undefined behavior.

10-124

11

Making States Reusable
with Atomic Subcharts

• “What Is an Atomic Subchart?” on page 11-2

• “When to Use Atomic Subcharts” on page 11-4

• “Benefits of Using Atomic Subcharts in a Stateflow Chart” on page 11-5

• “Restrictions for Converting to Atomic Subcharts” on page 11-12

• “Converting to and from Atomic Subcharts” on page 11-15

• “Mapping Variables for Atomic Subcharts” on page 11-20

• “Generating Reusable Code for Unit Testing” on page 11-36

• “Reusing Utility Functions Across Multiple Models” on page 11-39

• “Rules for Using Atomic Subcharts in Stateflow Charts” on page 11-47

• “Tutorial: Reusing a State Multiple Times in a Chart” on page 11-50

• “Tutorial: Reducing the Compilation Time of a Chart” on page 11-60

• “Tutorial: Dividing a Chart into Separate Units for Editing” on page 11-62

• “Tutorial: Generating Reusable Code for Unit Testing” on page 11-65

11 Making States Reusable with Atomic Subcharts

What Is an Atomic Subchart?
In a Stateflow chart, an atomic subchart is a graphical object that helps you
reuse the same state or subchart across multiple charts and models. Atomic
subcharts allow:

• Ease of team development for people working on different parts of the
same chart

• Faster simulation after making small changes to a chart with many states
or levels of hierarchy

• Manual inspection of generated code for a specific state or subchart in
a chart

• Ability to animate and debug multiple charts side by side

States, subcharts, and atomic subcharts have these key similarities and
differences:

Capability State Subchart Atomic
Subchart

Can behave as a
standalone chart

No No Yes

Can generate
reusable code

No No Yes

Supports
access to event
broadcasts
outside the scope
of that object

Yes Yes No

Supports access
to data at any
level of the
hierarchy

Yes Yes No

11-2

What Is an Atomic Subchart?

Atomic subcharts and atomic subsystems (see Atomic Subsystem in the
Simulink documentation) have these key similarities and differences:

Capability Atomic Subchart Atomic Subsystem

Supports generation of
reusable code

Yes Yes

Supports usage as a
library link

Yes Yes

Requires
parameterizing of data
when used as a library
link

Yes No

Supports explicit
specification of sample
time

No Yes

The following demos show how to use atomic subcharts for modeling typical
applications:

This demo... Shows how you can model...

sf_atomic_sensor_pair A redundant sensor pair

sf_elevator An elevator system with two
identical lifts

11-3

11 Making States Reusable with Atomic Subcharts

When to Use Atomic Subcharts
Consider using atomic subcharts when one or more of these scenarios apply:

Scenario Reason for Using
Atomic Subcharts

Reference Tutorial

You want to reuse
the same state or
subchart many times
across different charts
or models to facilitate
large-scale modeling.

You can store an
atomic subchart in a
library to enable reuse
across different charts
and models. When
you change an atomic
subchart in a library,
the change propagates
to all links.

“Comparison of
Modeling Methods”
on page 11-5

“Tutorial: Reusing a
State Multiple Times
in a Chart” on page
11-50

You want to use
simulation to test your
changes, one by one,
without recompiling
the entire chart.

When you modify
an atomic subchart,
recompilation occurs
for only that object
and not the entire
chart.

“Comparison of
Simulation Methods”
on page 11-6

“Tutorial: Reducing
the Compilation Time
of a Chart” on page
11-60

You want to break a
chart into standalone
parts because multiple
people are working on
different parts of the
chart.

Because atomic
subcharts behave as
standalone objects,
people can work
on different parts
of a chart without
affecting any work
that someone else is
doing.

“Comparison of
Editing Methods”
on page 11-7

“Tutorial: Dividing a
Chart into Separate
Units for Editing” on
page 11-62

You want to inspect
Simulink Coder
generated code
manually for a specific
part of a chart.

You can specify that
code for an atomic
subchart appears in a
separate file for unit
testing.

“Comparison of Code
Generation Methods”
on page 11-8

“Tutorial: Generating
Reusable Code for
Unit Testing” on page
11-65

11-4

Benefits of Using Atomic Subcharts in a Stateflow® Chart

Benefits of Using Atomic Subcharts in a Stateflow Chart

In this section...

“Comparison of Modeling Methods” on page 11-5

“Comparison of Simulation Methods” on page 11-6

“Comparison of Editing Methods” on page 11-7

“Comparison of Code Generation Methods” on page 11-8

Comparison of Modeling Methods
The following sections compare two ways of modeling similar states in charts.

Modeling Without Atomic Subcharts
You create a separate instance of each state in your chart.

In this chart, the only difference between the two states are the names of
variables.

11-5

11 Making States Reusable with Atomic Subcharts

Modeling With Atomic Subcharts
You create a single state and convert it to an atomic subchart, which you
store in a new library. From that library, you can copy and paste the atomic
subchart for use in any chart and update the mapping of inputs, outputs,
local data, or parameters as needed.

This modeling method minimizes maintenance of similar states. When
you modify the atomic subchart in the library, your changes propagate
automatically to the links in all charts and models.

For more information, see “Tutorial: Reusing a State Multiple Times in a
Chart” on page 11-50.

Comparison of Simulation Methods
The following sections compare two ways of simulating a chart.

11-6

Benefits of Using Atomic Subcharts in a Stateflow® Chart

Simulation Without Atomic Subcharts
You make a small change to one part of a chart that contains many states or
several levels of hierarchy. When you start simulation to test that change,
recompilation occurs for the entire chart.

Because recompiling the entire chart takes a long time, you make several
changes before testing. However, if you find an error, you must step through
all your changes to identify what causes the error.

Simulation With Atomic Subcharts
You make a small change to an atomic subchart in a chart that contains many
states or several levels of hierarchy. When you start simulation to test that
change, recompilation occurs only for the atomic subchart.

Incremental builds for simulation decrease the time required to recompile the
chart. This reduction enables you to test each change, one by one, instead of
waiting to test multiple changes. By testing each change individually, you
can quickly identify a change that causes an error.

For more information, see “Tutorial: Reducing the Compilation Time of a
Chart” on page 11-60.

Comparison of Editing Methods
The following sections compare two ways of editing a chart.

Editing Without Atomic Subcharts
You edit one part of a chart, while someone else edits another part of the same
chart. At submission time, you merge your changes with someone else’s edits.

Editing With Atomic Subcharts
You store one part of a chart as an atomic subchart in a library. You edit that
subchart separately, while someone else edits the main chart. At submission
time, no merge is necessary because the changes exist in separate models.

For more information, see “Tutorial: Dividing a Chart into Separate Units
for Editing” on page 11-62.

11-7

11 Making States Reusable with Atomic Subcharts

Comparison of Code Generation Methods
The following sections compare two ways of generating code.

Code Generation Without Atomic Subcharts
You generate code for the entire model in one file and look through that entire
file to find code for a specific part of the chart.

11-8

Benefits of Using Atomic Subcharts in a Stateflow® Chart

Code Generation With Atomic Subcharts
You specify code generation parameters so that code for an atomic subchart
appears in a separate file.

11-9

11 Making States Reusable with Atomic Subcharts

11-10

Benefits of Using Atomic Subcharts in a Stateflow® Chart

This method of code generation enables unit testing for a specific part of a
chart. You can avoid searching through unrelated code and focus only on
the part that interests you.

For more information, see “Tutorial: Generating Reusable Code for Unit
Testing” on page 11-65.

11-11

11 Making States Reusable with Atomic Subcharts

Restrictions for Converting to Atomic Subcharts

In this section...

“Rationale for Restrictions” on page 11-12

“Access to Data, Graphical Functions, and Events” on page 11-12

“Use of Event Broadcasts” on page 11-13

“Use of Machine-Parented Data” on page 11-13

“Use of Strong Data Typing with Simulink Inputs and Outputs” on page
11-14

“Use of Output State Activity” on page 11-14

“Use of Supertransitions” on page 11-14

Rationale for Restrictions
Atomic subcharts facilitate the reuse of states and subcharts as standalone
objects. The restrictions in the following sections ensure that you get the
benefits described in “Benefits of Using Atomic Subcharts in a Stateflow
Chart” on page 11-5.

Access to Data, Graphical Functions, and Events
To convert a state or subchart to an atomic subchart, access to objects not
parented by the state or subchart must be one of the following:

• Chart-level data

• Chart-level graphical functions

• Input events

11-12

Restrictions for Converting to Atomic Subcharts

The following restrictions also apply:

If a state or subchart accesses... Then...

Chart-level data That data must have:

• Static, deterministic size

• A built-in data type

Chart-level graphical functions The chart must export those
functions. For more information, see
“Exporting Chart-Level Graphical
Functions” on page 7-39.

Use of Event Broadcasts
The state or subchart that you want to convert to an atomic subchart cannot
refer to:

• Local events that are outside the scope of that state or subchart

• Output events

However, the state or subchart you want to convert can refer to input events.

Use of Machine-Parented Data
The state or subchart that you want to convert to an atomic subchart
cannot reside in a chart that uses machine-parented data with the following
properties:

• Imported or exported

• Is 2-D or higher, or uses a fixed-point type

Machine-parented data with these properties prevent reuse of generated
code and other code optimizations.

11-13

11 Making States Reusable with Atomic Subcharts

Use of Strong Data Typing with Simulink Inputs and
Outputs
To convert a state or subchart to an atomic subchart, your chart must use
strong data typing with Simulink inputs and outputs. To specify strong
data typing:

1 Open the Chart properties dialog box.

2 Select Use Strong Data Typing with Simulink I/O.

3 Click OK to close the dialog box.

Use of Output State Activity
The state or subchart that you want to convert to an atomic subchart cannot
output state activity. To disable this setting:

1 Open the State properties dialog box.

2 Clear Output State Activity.

3 Click OK to close the dialog box.

Use of Supertransitions
The state or subchart that you want to convert to an atomic subchart cannot
have any supertransitions crossing the boundary.

11-14

Converting to and from Atomic Subcharts

Converting to and from Atomic Subcharts

In this section...

“Converting a State or Subchart to an Atomic Subchart” on page 11-15

“Converting an Atomic Subchart to a State or Subchart” on page 11-18

“Restrictions for Converting an Atomic Subchart to a State or Subchart” on
page 11-19

Converting a State or Subchart to an Atomic Subchart
To convert a state or subchart to an atomic subchart, right-click the object in
your chart and select Make Contents > Atomic Subcharted.

After you convert a state or subchart to an atomic subchart, local data appears
as data store memory in the atomic subchart.

Scope of Data Before Conversion Scope of Data After Conversion

Input Input

Output Output

Local Data store memory

Parameter Parameter

Constant Constant

An atomic subchart looks opaque like a regular subchart but includes the
label (Atomic) in the upper-left corner. If you use a linked atomic subchart
from a library, the label (Link) appears in the upper-left corner.

11-15

11 Making States Reusable with Atomic Subcharts

For example, the following model contains a chart, Air Controller, that uses
an atomic subchart:

11-16

Converting to and from Atomic Subcharts

In the Air Controller chart, PowerOn is an atomic subchart, but PowerOff
is a regular subchart:

11-17

11 Making States Reusable with Atomic Subcharts

Converting an Atomic Subchart to a State or Subchart

When an Atomic Subchart Is a Library Link
To convert a linked atomic subchart back to a state or subchart:

1 Right-click the atomic subchart and select Link Options > Disable Link.

2 Follow the steps in “When an Atomic Subchart Is Not a Library Link” on
page 11-18.

When an Atomic Subchart Is Not a Library Link

To convert an atomic subchart
back to...

Follow these steps...

A state
1 Right-click the atomic subchart
in your chart and clear the
Make Contents > Atomic
Subcharted check box.

2 Right-click the object
again and clear the Make
Contents > Subcharted check
box.

You might need to rearrange
graphical objects in your chart
after performing this step.

A regular subchart
1 Right-click the atomic subchart
in your chart and clear the
Make Contents > Atomic
Subcharted check box.

11-18

Converting to and from Atomic Subcharts

Restrictions for Converting an Atomic Subchart to a
State or Subchart
In the following cases, converting an atomic subchart to a state or subchart
does not work:

• Your atomic subchart uses a MATLAB function and contains a nontrivial
mapping of variables. A mapping is nontrivial when the variable in
the subchart does not map to another variable of the same name in the
container chart.

• A parameter in the atomic subchart maps to something other than a single
variable. For example, the following mappings for a parameter named
data1 prevent conversion of an atomic subchart to a state or subchart:

- data2 + 3

- data2.3

- data2(3)

- 3

For more information, see “Mapping Variables for Atomic Subcharts” on
page 11-20.

11-19

11 Making States Reusable with Atomic Subcharts

Mapping Variables for Atomic Subcharts

In this section...

“Why Map Variables for Atomic Subcharts?” on page 11-20

“How to Map Variables in an Atomic Subchart” on page 11-20

“Mapping Input and Output Data for an Atomic Subchart” on page 11-21

“Mapping Data Store Memory for an Atomic Subchart” on page 11-25

“Mapping Parameter Data for an Atomic Subchart” on page 11-28

“Mapping Input Events for an Atomic Subchart” on page 11-32

Why Map Variables for Atomic Subcharts?
Variables in an atomic subchart do not always map directly to variables in the
main chart. To ensure that each variable in your atomic subchart maps to the
correct variable in the main chart, you edit the mapping (or parameterize the
link). For details, see:

• “Mapping Input and Output Data for an Atomic Subchart” on page 11-21

• “Mapping Data Store Memory for an Atomic Subchart” on page 11-25

• “Mapping Parameter Data for an Atomic Subchart” on page 11-28

• “Mapping Input Events for an Atomic Subchart” on page 11-32

How to Map Variables in an Atomic Subchart
Depending on the scope of data or events in an atomic subchart, you update
different sections on theMappings tab of the State properties dialog box.

For... Go to... And...

Input data Input Mapping

Output data Output Mapping

Specify the chart
input or output data
that corresponds to
each atomic subchart
symbol.

11-20

Mapping Variables for Atomic Subcharts

For... Go to... And...

Data store memory Data Store Memory
Mapping

Specify the data
store memory or
chart-level local data
that corresponds to
each atomic subchart
symbol.

Parameter data Parameter Mapping Enter an expression for
evaluation in the mask
workspace of the main
chart.

Input event Input Event Mapping Specify the chart input
event that corresponds
to each atomic subchart
symbol.

Mapping Input and Output Data for an Atomic
Subchart
Suppose that you have a model with two Sine Wave blocks that supply input
signals to a chart:

11-21

11 Making States Reusable with Atomic Subcharts

Your chart contains two linked atomic subcharts from the same library:

Both atomic subcharts contain the following objects:

11-22

Mapping Variables for Atomic Subcharts

If you simulate the model, the output for y2 is zero:

Because atomic subchart B uses u1 and y1 instead of u2 and y2, you must
edit the mapping:

1 Right-click subchart B and select Properties.

11-23

11 Making States Reusable with Atomic Subcharts

2 Click the Mappings tab in the dialog box that appears.

3 Under Input Mapping, specify the main chart symbol for u1 to be u2.

4 Under Output Mapping, specify the main chart symbol for y1 to be y2.

5 Click OK.

11-24

Mapping Variables for Atomic Subcharts

When you run the model again, you get the following results:

Mapping Data Store Memory for an Atomic Subchart
Suppose that you have a model with two Sine Wave blocks that supply input
signals to a chart:

11-25

11 Making States Reusable with Atomic Subcharts

Your chart contains a linked atomic subchart from a library:

The linked atomic subchart contains the following objects:

If you simulate the model, you get an error because the data store memory,
dsm, does not map to any variable in the main chart. To fix the mapping
for dsm:

1 Right-click subchart A and select Properties.

11-26

Mapping Variables for Atomic Subcharts

2 Click the Mappings tab in the dialog box that appears.

3 Under Data Store Memory Mapping, specify the main chart symbol for
dsm to be local_for_atomic_subchart.

Tip You can specify either data store memory or chart-level local data
from the main chart.

11-27

11 Making States Reusable with Atomic Subcharts

4 Click OK.

When you run the model now, you get the following results:

Mapping Parameter Data for an Atomic Subchart
Suppose that you have a model with two Sine Wave blocks that supply input
signals to a chart:

11-28

Mapping Variables for Atomic Subcharts

Your chart contains a linked atomic subchart from a library:

The linked atomic subchart contains the following objects:

If you simulate the model, you get an error because the parameter T is
undefined. To fix this error, specify an expression for T to evaluate in the
mask workspace of the main chart:

1 Right-click subchart A and select Properties.

11-29

11 Making States Reusable with Atomic Subcharts

2 Click the Mappings tab in the dialog box that appears.

3 Under Parameter Mapping, enter 0.2.

4 Click OK.

11-30

Mapping Variables for Atomic Subcharts

When you run the model now, you get the following results:

11-31

11 Making States Reusable with Atomic Subcharts

Mapping Input Events for an Atomic Subchart
The sf_yoyomodel contains a Mux block that supplies input events to a chart:

11-32

Mapping Variables for Atomic Subcharts

The chart contains two superstates: Active and Inactive. The Active state
uses input events to guard transitions between different substates.

To convert the Active state to an atomic subchart, follow these steps:

1 Specify strong data typing for your chart.

a Right-click an open area of the chart and select Properties.

b In the Chart properties dialog box, select Use Strong Data Typing
with Simulink I/O.

c Click OK.

11-33

11 Making States Reusable with Atomic Subcharts

Performing this step enables you to convert the Active state to an atomic
subchart. For more information, see “Restrictions for Converting to Atomic
Subcharts” on page 11-12.

2 Right-click the Active state and select Make Contents > Atomic
Subcharted.

3 Specify the mapping of input events for the atomic subchart.

a Right-click the atomic subchart and select Properties.

b Click the Mappings tab in the dialog box that appears.

c Under Input Event Mapping, note that each atomic subchart symbol
maps to the correct input event in the main chart.

11-34

Mapping Variables for Atomic Subcharts

The default mappings also follow the rules of using input events in
atomic subcharts. For more information, see “Rules for Using Atomic
Subcharts in Stateflow Charts” on page 11-47

d Click OK.

Note In this example, the mappings are trivial because each input event in
the atomic subchart maps to an input event of the same name in the main
chart. For an example of how to use nontrivial mapping of input events, see
the sf_elevator model. A mapping is nontrivial when the variable in the
atomic subchart maps to a variable with a different name in the main chart.

At the MATLAB command prompt, enter:

showdemo('sf_elevator')

In the Elevator System chart, the two linked atomic subcharts use nontrivial
mapping of input events.

11-35

11 Making States Reusable with Atomic Subcharts

Generating Reusable Code for Unit Testing

In this section...

“How to Generate Reusable Code for Linked Atomic Subcharts” on page
11-36

“How to Generate Reusable Code for Unlinked Atomic Subcharts” on page
11-37

How to Generate Reusable Code for Linked Atomic
Subcharts
To specify code generation parameters for linked atomic subcharts from the
same library:

1 Open the library model that contains your atomic subchart.

2 Unlock the library.

3 Right-click the library chart and select Subsystem Parameters.

4 In the dialog box, specify the following parameters:

a On the Main tab, select Treat as atomic unit.

b On the Code Generation tab, set Function packaging to Reusable
function.

c Set File name options to User specified.

d For File name, enter the name of the file with no extension.

e Click OK to apply the changes.

5 (OPTIONAL) Customize the generated function names for atomic
subcharts:

a Open the Configuration Parameters dialog box.

b On the Code Generation pane, set System target file to ert.tlc.

c Navigate to the Code Generation > Symbols pane.

11-36

Generating Reusable Code for Unit Testing

d For Subsystem methods, specify the format of the function names
using a combination of the following tokens:

• $R — root model name

• $F — type of interface function for the atomic subchart

• $N — block name

• $H — subsystem index

• $M — mangle string

e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for
linked atomic subcharts from the same library.

How to Generate Reusable Code for Unlinked Atomic
Subcharts
To specify code generation parameters for an unlinked atomic subchart:

1 In your chart, right-click the atomic subchart and select Properties.

2 In the dialog box, specify the following parameters:

a Set Code generation function packaging to Reusable function.

b Set Code generation file name options to User specified.

c For Code generation file name, enter the name of the file with no
extension.

d Click OK to apply the changes.

3 (OPTIONAL) Customize the generated function names for atomic
subcharts:

a Open the Configuration Parameters dialog box.

b On the Code Generation pane, set System target file to ert.tlc.

c Navigate to the Code Generation > Symbols pane.

d For Subsystem methods, specify the format of the function names
using a combination of the following tokens:

11-37

11 Making States Reusable with Atomic Subcharts

• $R — root model name

• $F — type of interface function for the atomic subchart

• $N — block name

• $H — subsystem index

• $M — mangle string

e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for the
atomic subchart. For more information, see “Tutorial: Generating Reusable
Code for Unit Testing” on page 11-65.

11-38

Reusing Utility Functions Across Multiple Models

Reusing Utility Functions Across Multiple Models

In this section...

“Rationale for Using Atomic Subcharts” on page 11-39

“How to Enable Reuse of Utility Functions” on page 11-39

“Example of Reusing a Timer Function Multiple Times” on page 11-40

Rationale for Using Atomic Subcharts
Suppose that you have a library model that contains a set of utility functions
for use in multiple charts in a model. The utility functions reside in the
library model to enable easier configuration management.

Models that use these utility functions can appear as referenced blocks in
a top model. However, when the utility functions are exported graphical
functions of a Stateflow chart, you can use only one instance of that referenced
block per top model. For a complete list of model referencing limitations, see
“Limitations on All Model Referencing” in the Simulink documentation.

With atomic subcharts, you can avoid the limitation due to exported graphical
functions. You can reuse models with utility functions multiple times as
referenced blocks in a top model.

How to Enable Reuse of Utility Functions
To reuse utility functions across multiple models:

1 Create a library model with a chart that contains the utility function you
want to reuse.

2 Create a separate model with multiple charts.

a In each chart that calls the utility function, add a linked atomic subchart.

b Write each call to the utility function using the full path:

linked_subchart_name.utility_function_name

Using the full path for the function call has the following advantages:

11-39

11 Making States Reusable with Atomic Subcharts

• Makes clear the dependency on the utility function in the linked
atomic subchart

• Avoids pollution of the global namespace

• Does not affect efficiency of the generated code

3 Reuse that model multiple times as referenced blocks in a top model.

Because there are no exported graphical functions in the charts, you can
use more than one instance of that referenced block in the top model.

Example of Reusing a Timer Function Multiple Times
Suppose that you want to reuse a timer function that returns the simulation
time. The following procedure shows how you can:

• Call the timer function from multiple locations in a model

• Reuse that model multiple times in another model

1 Store the timer function you want to reuse in a library model.

a Create a new library named libTimerUtils.

b Add a chart named TimerUtils to the library:

11-40

Reusing Utility Functions Across Multiple Models

c In your chart, add the following graphical function:

The utility function GetTime returns one output tout that corresponds
to simulation time t. For more information about literal symbols you can
use in your chart, see “Symbols in Action Language” on page 10-28.

d Save libTimerUtils.

2 Develop a separate model with multiple charts that use the timer function.

a Create a new model named ex_timer_function_calls.

b Add two charts, Chart1 and Chart2, to the model.

11-41

11 Making States Reusable with Atomic Subcharts

c In each chart, add two states, two transitions, and a linked atomic
subchart:

To add the linked atomic subchart, copy the TimerUtils library chart
and paste it below state A. Name the linked atomic subchart as Time.

11-42

Reusing Utility Functions Across Multiple Models

d In Chart1, add the following state action and transition condition:

Upon entry to state A, the call to GetTime returns the simulation time.
The transition from state A to B occurs when more than 5 seconds of
simulation time passes.

11-43

11 Making States Reusable with Atomic Subcharts

e In Chart2, add the following state action and transition condition:

Upon entry to state A, the call to GetTime returns the simulation time.
The transition from state A to B occurs when more than 7 seconds of
simulation time passes.

f In each chart, add local data with the following properties:

Property Value

Name t0

Scope Local

Type double

g In each chart, open the State properties dialog box for B and select
Output State Activity.

This step adds an output data named B that is Boolean. The value is
1 when state B is active and 0 otherwise. For more information, see
“Outputting State Activity to a Simulink Model” on page 4-16.

h In your model, add two Outport blocks, Out1 and Out2. Then connect
each block to the corresponding output of each chart.

11-44

Reusing Utility Functions Across Multiple Models

Your model should look something like this:

i Configure your model to meet referencing requirements:

i Open the Configuration Parameters dialog box and navigate to the
Optimization > Signals and Parameters pane.

ii Select Inline parameters.

For more information about model referencing requirements,
see “Configuration Parameter Requirements” in the Simulink
documentation.

j Save ex_timer_function_calls.

3 Reuse the timer function in multiple referenced blocks of a top model.

a Create a new model named ex_modelref_utility_functions.

b Add two Model blocks that reference ex_timer_function_calls.

11-45

11 Making States Reusable with Atomic Subcharts

c Add four Outport blocks and connect them as follows:

d Save ex_modelref_utility_functions.

Because the charts in each referenced block do not contain any exported
graphical functions, you can reuse the timer function from the libTimerUtils
library as many times as you want. For more information about model
referencing, see “Referencing a Model” in the Simulink documentation.

11-46

Rules for Using Atomic Subcharts in Stateflow® Charts

Rules for Using Atomic Subcharts in Stateflow Charts
Define data in an atomic subchart explicitly

Be sure to define data that appears in an atomic subchart explicitly in the
main chart. For instructions on how to define data in a chart, see “Adding
Data Using the Model Explorer” on page 8-3.

Map variables of linked atomic subcharts

When you use linked atomic subcharts, map the variables so that data in
the subchart correspond to the correct data in the main chart. For more
information, see “Mapping Variables for Atomic Subcharts” on page 11-20.

Match size, type, and complexity of variables in linked atomic
subcharts

Verify that the size, type, and complexity of variables in a subchart match
the settings of the corresponding variables in the main chart. For more
information, see “Mapping Variables for Atomic Subcharts” on page 11-20.

Export chart-level graphical functions if called from an atomic
subchart

If your atomic subchart contains a function call to a chart-level graphical
function, export that function. In the Chart properties dialog box, select
Export Chart Level Graphical Functions (Make Global). For more
information, see “Exporting Chart-Level Graphical Functions” on page 7-39.

Do not mix edge-triggered and function-call input events in the same
atomic subchart

Input events in an atomic subchart must all use edge-triggered type, or
they must all use function-call type. This restriction is consistent with the
behavior for the container chart. For more information, see “Best Practices for
Using Events in Stateflow Charts” on page 9-47.

11-47

11 Making States Reusable with Atomic Subcharts

Do not map multiple input events in an atomic subchart to the same
input event in the container chart

Each input event in an atomic subchart must map to a unique input event
in the container chart. You can verify unique mappings of input events by
opening the properties dialog box for the atomic subchart and checking the
Input Event Mapping section of the Mappings tab.

Match the trigger type when mapping input events

Each input event in an atomic subchart must map to an input event of the
same trigger type in the container chart.

Do not use atomic subcharts in continuous-time Stateflow charts

Continuous-time charts do not support atomic subcharts.

Do not use Moore charts as atomic subcharts

Moore charts do not have the same simulation behavior as Classic Stateflow
charts with the same constructs.

Do not use outgoing transitions when an atomic subchart uses
top-level local events

You cannot use outgoing transitions from an atomic subchart that uses local
events at the top level of the subchart. Using this configuration causes a
simulation error.

Avoid using execute-at-initialization with atomic subcharts

You get a warning when the following conditions are true:

• The chart property Execute (enter) Chart At Initialization is enabled.

• The default transition path of the chart reaches an atomic subchart.

If an entry action inside the atomic subchart requires access to a chart
input or data store memory, you might get inaccurate results. To avoid this

11-48

Rules for Using Atomic Subcharts in Stateflow® Charts

warning, you can disable Execute (enter) Chart At Initialization or
redirect the default transition path away from the atomic subchart.

For more information about execute-at-initialization behavior, see “Execution
of a Chart at Initialization” on page 3-49.

Avoid using the names of subsystem parameters in atomic subcharts

If a parameter in an atomic subchart matches the name of a Simulink
built-in subsystem parameter, the only mapping allowed for that parameter
is Inherited. Specifying any other parameter mapping in the Mappings
tab of the properties dialog box causes an error. You can, however, change
the parameter value at the MATLAB prompt so that all instances of that
parameter have the same value.

To get a list of Simulink subsystem parameters, enter:

param_list = sort(fieldnames(get_param('built-in/subsystem', 'ObjectParameters')));

Restrict use of machine-parented data

If your chart contains atomic subcharts, do not use machine-parented data
with the following properties:

• Imported or exported

• Is 2-D or higher, or uses fixed-point type

Machine-parented data with these properties prevent reuse of generated
code and other code optimizations.

Use consistent settings for super-step semantics

When you use linked atomic subcharts, verify that your settings for super-step
semantics match the settings in the main chart. For more information, see
“Execution of a Chart with Super Step Semantics” on page 3-40.

11-49

11 Making States Reusable with Atomic Subcharts

Tutorial: Reusing a State Multiple Times in a Chart

In this section...

“Goal of the Tutorial” on page 11-50

“Editing a Model to Use Atomic Subcharts” on page 11-52

“Running the New Model” on page 11-58

“Propagating a Change in the Library Chart” on page 11-58

Goal of the Tutorial
Assume that you have the following model:

The top Sine Wave block uses a frequency of 1 radian per second, and the
bottom Sine Wave block uses a frequency of 2 radians per second. The blocks
use the same amplitude (1) and phase shift (0).

11-50

Tutorial: Reusing a State Multiple Times in a Chart

In the chart, each state uses saturator logic to convert the input sine wave to
an output square wave of the same frequency. The states perform the same
actions and differ only in the names of input and output data:

11-51

11 Making States Reusable with Atomic Subcharts

When you run the model, you get the following results:

Suppose that you want to reuse the contents of state A in the chart. You
can convert that state to an atomic subchart and then use multiple linked
instances of that subchart in your chart.

Editing a Model to Use Atomic Subcharts
The sections that follow describe how to replace states in your chart with
atomic subcharts. This procedure enables reuse of the same object in your
model while retaining the same simulation results.

Step Task Reference

1 Change one of the states into an
atomic subchart.

“Converting a State to an Atomic
Subchart” on page 11-53

2 Create a library that contains
this atomic subchart.

“Creating a Library for the
Atomic Subchart” on page 11-53

11-52

Tutorial: Reusing a State Multiple Times in a Chart

Step Task Reference

3 Replace the states in your chart
with linked atomic subcharts.

“Replacing States with Linked
Atomic Subcharts” on page 11-54

4 Edit the mapping of input
and output variables where
necessary.

“Editing the Mapping of Input
and Output Variables” on page
11-56

Converting a State to an Atomic Subchart
To convert state A to an atomic subchart, right-click the state and selectMake
Contents > Atomic Subcharted. State A changes to an atomic subchart:

Creating a Library for the Atomic Subchart
To enable reuse of the atomic subchart you created in “Converting a State to
an Atomic Subchart” on page 11-53, store the atomic subchart in a library:

1 Create a new library model.

11-53

11 Making States Reusable with Atomic Subcharts

2 Copy the atomic subchart and paste in your library.

The atomic subchart appears as a standalone chart with an input and
an output. This standalone property enables you to reuse the contents of
the atomic subchart.

Note You cannot drag and drop the atomic subchart into your library
model. Only a copy-and-paste operation works.

3 Save your library model.

Replacing States with Linked Atomic Subcharts
To replace the states in your chart with linked atomic subcharts:

1 Delete both states from the chart.

2 Copy the atomic subchart in your library and paste in your chart twice.

11-54

Tutorial: Reusing a State Multiple Times in a Chart

3 Rename the second instance as B.

Each linked atomic subchart appears opaque and contains the label (Link)
in the upper-left corner.

11-55

11 Making States Reusable with Atomic Subcharts

Editing the Mapping of Input and Output Variables
If you simulate the model now, the output for y2 is zero:

You also see warnings about unused data in the Simulation Diagnostics
Viewer. These warnings appear because atomic subchart B uses u1 and y1
instead of u2 and y2. To fix these warnings, you must edit the mapping of
input and output variables:

1 Open the properties dialog box for B.

11-56

Tutorial: Reusing a State Multiple Times in a Chart

2 Click the Mappings tab.

3 Under Input Mapping, select u2 from the drop-down list.

This step ensures that the input variable in your atomic subchart maps to
the correct input variable in the main chart.

4 Under Output Mapping, select y2 from the drop-down list.

This step ensures that the output variable in your atomic subchart maps
to the correct output variable in the main chart.

5 Click OK.

11-57

11 Making States Reusable with Atomic Subcharts

Running the New Model
When you simulate the new model, the results match those of the original
design.

Propagating a Change in the Library Chart
Suppose that you edit the transition from Pos to Neg in the library chart:

11-58

Tutorial: Reusing a State Multiple Times in a Chart

This change propagates to all linked atomic subcharts in your main chart.
You do not have to update each state individually.

11-59

11 Making States Reusable with Atomic Subcharts

Tutorial: Reducing the Compilation Time of a Chart

In this section...

“Goal of the Tutorial” on page 11-60

“Editing a Model to Use Atomic Subcharts” on page 11-61

Goal of the Tutorial
Assume that you have the following model, and the chart has two states:

11-60

Tutorial: Reducing the Compilation Time of a Chart

Suppose that you want to reduce the compilation time of the chart for
simulation. You can convert state A to an atomic subchart. Then you can
make changes, one by one, to state A and see how each change affects
simulation results. Making one change requires recompilation of only the
atomic subchart and not the entire chart.

Editing a Model to Use Atomic Subcharts

1 Right-click state A and selectMake Contents > Atomic Subcharted.

2 Double-click the atomic subchart.

The contents of the subchart appear in a separate window.

3 Start simulation.

Side-by-side animation for the main chart and the atomic subchart occurs.

4 In the atomic subchart, change the state action for Pos to y1 = 2.

5 Restart simulation.

Recompilation occurs only for the atomic subchart and not the entire chart.

11-61

11 Making States Reusable with Atomic Subcharts

Tutorial: Dividing a Chart into Separate Units for Editing

In this section...

“Goal of the Tutorial” on page 11-62

“Editing a Model to Use Atomic Subcharts” on page 11-63

Goal of the Tutorial
Assume that you have the following model, and the chart has two states:

11-62

Tutorial: Dividing a Chart into Separate Units for Editing

Suppose that you want to edit state A separately, while someone else is
editing state B. You can convert state A to an atomic subchart for storage
in a library model. After replacing state A with a linked atomic subchart,
you can make changes separately in the library. These changes propagate
automatically to the chart that contains the linked atomic subchart.

Editing a Model to Use Atomic Subcharts

1 Right-click state A and selectMake Contents > Atomic Subcharted.

2 Create a new library model.

3 Copy the atomic subchart and paste in your library.

Note You cannot drag and drop the atomic subchart into your library
model. Only a copy-and-paste operation works.

4 Save your library model.

5 In your main chart, delete state A.

11-63

11 Making States Reusable with Atomic Subcharts

6 Copy the atomic subchart in your library and paste in your main chart.

You can now edit state A separately from state B without any merge issues.

11-64

Tutorial: Generating Reusable Code for Unit Testing

Tutorial: Generating Reusable Code for Unit Testing

In this section...

“Goal of the Tutorial” on page 11-65

“Converting a State to an Atomic Subchart” on page 11-67

“Specifying Code Generation Parameters” on page 11-67

“Generating Code for Only the Atomic Subchart” on page 11-68

Goal of the Tutorial
Assume that you have the following model, and the chart has two states:

11-65

11 Making States Reusable with Atomic Subcharts

Suppose that you want to generate reusable code so that you can perform unit
testing on state A. You can convert that part of the chart to an atomic subchart
and then specify a separate file to store the Simulink Coder generated code.

11-66

Tutorial: Generating Reusable Code for Unit Testing

Converting a State to an Atomic Subchart
To convert state A to an atomic subchart, right-click the state and selectMake
Contents > Atomic Subcharted. State A changes to an atomic subchart:

Specifying Code Generation Parameters

Setting Up a Standalone C File for the Atomic Subchart

1 Open the properties dialog box for A.

2 Set Code generation function packaging to Reusable function.

3 Set Code generation file name options to User specified.

4 For Code generation file name, enter saturator as the name of the file.

5 Click OK.

Setting Up the Code Generation Report

1 Open the Configuration Parameters dialog box.

11-67

11 Making States Reusable with Atomic Subcharts

2 In the Code Generation pane, set System target file to ert.tlc.

3 In the Code Generation > Report pane, select Create code generation
report.

This step automatically selects Launch report automatically and
Code-to-model.

4 Select Model-to-code.

5 Click Apply.

Customizing the Generated Function Names

1 In the Configuration Parameters dialog box, go to the Code
Generation > Symbols pane.

2 Set Subsystem methods to the format string RNMF, where:

• $R is the root model name.

• $N is the block name.

• $M is the mangle string.

• $F is the type of interface function for the atomic subchart.

For more information, see “Subsystem methods” in the Simulink Coder
documentation.

3 Click Apply.

Generating Code for Only the Atomic Subchart
To generate code for your model, click Build on the Code Generation pane
of the Configuration Parameters dialog box. In the code generation report
that appears, you see a separate file that contains the generated code for
the atomic subchart.

To inspect the code for saturator.c, click the hyperlink in the report to see
the following code:

11-68

Tutorial: Generating Reusable Code for Unit Testing

11-69

11 Making States Reusable with Atomic Subcharts

Line 28 shows that the during function generated for the atomic subchart has
the name ex_reuse_states_A_during. This name follows the format string
RNMF specified for Subsystem methods:

• $R is the root model name, ex_reuse_states.

• $N is the block name, A.

• $M is the mangle string, which is empty.

• $F is the type of interface function for the atomic subchart, during.

Note The line numbers shown can differ from the numbers that appear in
your code generation report.

11-70

12

Saving and Restoring
Simulations with SimState

• “What Is a SimState?” on page 12-2

• “Benefits of Using a Snapshot of the Simulation State” on page 12-4

• “Tutorial: Dividing a Long Simulation into Segments” on page 12-5

• “Tutorial: Testing a Unique Chart Configuration” on page 12-10

• “Tutorial: Testing a Chart with Fault Detection Logic” on page 12-21

• “Methods for Interacting with the SimState of a Chart” on page 12-35

• “Rules for Using the SimState of a Chart” on page 12-38

• “Best Practices for Using the SimState of a Chart” on page 12-41

12 Saving and Restoring Simulations with SimState

What Is a SimState?
A SimState is the snapshot of the state of a model at a specific time during
simulation. For a Stateflow chart, a SimState includes the following
information:

• Activity of chart states

• Values of chart local data

• Values of chart output data

• Values of persistent data in MATLAB functions and Truth Table blocks

A SimState lists chart objects in hierarchical order:

• Graphical objects grouped by type (box, function, or state) and in
alphabetical order within each group

• Chart data grouped by scope (block output or local) and in alphabetical
order within each group

For example, the following SimState illustrates the hierarchical structure
of chart objects.

c =

Block: "shift_logic" (handle) (active)
Path: sf_car/shift_logic

Contains:

+ gear_state "State (AND)" (active)
+ selection_state "State (AND)" (active)

gear "Block output data" double [1, 1]
down_th "Local scope data" double [1, 1]
up_th "Local scope data" double [1, 1]

The tree structure maps graphical and nongraphical objects to their
respective locations in the chart hierarchy. If name conflicts exist, one or
more underscores appear at the end of a name so that all objects have unique
identifiers in the SimState hierarchy.

12-2

What Is a SimState?

Note Stateless flow charts have an empty SimState, because they do not
contain states or persistent data.

For information about using a SimState for other blocks in a Simulink model,
see “Saving and Restoring the Simulation State as the SimState” in the
Simulink User’s Guide.

12-3

12 Saving and Restoring Simulations with SimState

Benefits of Using a Snapshot of the Simulation State

In this section...

“Division of a Long Simulation into Segments” on page 12-4

“Test of a Chart Response to Different Settings” on page 12-4

Division of a Long Simulation into Segments
You can save the complete simulation state of a model at any time during a
long simulation. Then you can load that simulation state and run specific
segments of that simulation without starting from time t = 0, which saves
time.

For directions, see “Tutorial: Dividing a Long Simulation into Segments”
on page 12-5.

Test of a Chart Response to Different Settings
You can load and modify the simulation state of a chart to test the response
to different settings. You can change the value of chart local or output data
midway through a simulation or change state activity and then test how a
chart responds.

Loading and modifying the simulation state provides these benefits:

• Enables testing of a hard-to-reach chart configuration by loading a specific
simulation state, which promotes thorough testing

• Enables testing of the same chart configuration with different settings,
which promotes reuse of a simulation state

For directions, see:

• “Tutorial: Testing a Unique Chart Configuration” on page 12-10

• “Tutorial: Testing a Chart with Fault Detection Logic” on page 12-21

12-4

Tutorial: Dividing a Long Simulation into Segments

Tutorial: Dividing a Long Simulation into Segments

In this section...

“Goal of the Tutorial” on page 12-5

“Defining the SimState” on page 12-6

“Loading the SimState” on page 12-7

“Simulating the Specific Segment” on page 12-9

Goal of the Tutorial
Suppose that you want to simulate the sf_boiler model without starting
from t = 0.

This model simulates for 1400 seconds, but the output that interests you
occurs sometime between t = 400 and 600. You can simulate the model, save
the SimState at time t = 400, and then load that SimState for simulation
between t = 400 and 600.

12-5

12 Saving and Restoring Simulations with SimState

Step Task Reference

1 Define the SimState for your
chart.

“Defining the SimState” on page
12-6

2 Load the SimState for your chart. “Loading the SimState” on page
12-7

3 Simulate the specific segment. “Simulating the Specific
Segment” on page 12-9

Defining the SimState

1 Open the model.

Type sf_boiler at the command prompt.

2 Enable saving of a SimState.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Final states check box.

c Enter a name, such as sf_boiler_ctx01.

You can choose any alphanumeric string for the name.

d Select the Save complete SimState in final state check box.

e Click Apply.

Programmatic equivalent

You can programmatically enable saving of a SimState:

set_param('sf_boiler','SaveFinalState','on', ...
'FinalStateName', ['sf_boiler_ctx01'], ...
'SaveCompleteFinalSimState','on');

For details about setting model parameters, see set_param in the Simulink
Reference.

3 Define the start and stop times for this simulation segment.

12-6

Tutorial: Dividing a Long Simulation into Segments

a In the Configuration Parameters dialog box, go to the Solver pane.

b For Start time, enter 0.

c For Stop time, enter 400.

d Click OK.

Programmatic equivalent

You can programmatically set the start and stop times:

set_param('sf_boiler','StartTime','0', ...
'StopTime','400');

4 Start simulation.

When you simulate the model, you save the complete simulation state at t
= 400 in the variable sf_boiler_ctx01 in the MATLAB base workspace.

5 Disable saving of a SimState.

This step prevents you from overwriting the SimState you saved in the
previous step.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Clear the Save complete SimState in final state check box.

c Clear the Final states check box.

d Click OK.

Programmatic equivalent

You can programmatically disable saving of a SimState:

set_param('sf_boiler','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

Loading the SimState

1 Enable loading of a SimState.

12-7

12 Saving and Restoring Simulations with SimState

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Initial state check box.

c Enter the variable that contains the SimState of your chart:
sf_boiler_ctx01.

d Click Apply.

Programmatic equivalent

You can programmatically enable loading of a SimState:

set_param('sf_boiler','LoadInitialState','on', ...
'InitialState', ['sf_boiler_ctx01']);

2 Define the new stop time for this simulation segment.

a In the Configuration Parameters dialog box, go to the Solver pane.

b For Stop time, enter 600.

c Click OK.

You do not need to enter a new start time because the simulation continues
from where it left off.

Programmatic equivalent

You can programmatically set the new stop time:

set_param('sf_boiler','StopTime','600');

12-8

Tutorial: Dividing a Long Simulation into Segments

Simulating the Specific Segment
When you simulate the model, the following output appears in the Scope block.

12-9

12 Saving and Restoring Simulations with SimState

Tutorial: Testing a Unique Chart Configuration

In this section...

“Goal of the Tutorial” on page 12-10

“Defining the SimState” on page 12-11

“Loading the SimState and Modifying Values” on page 12-14

“Testing the Modified SimState” on page 12-19

Goal of the Tutorial
Suppose that you want to test the response of the sf_car model to a sudden
change in value for gear.

This model simulates for 30 seconds, but you want to see what happens when
the value of gear changes at t = 10. You can simulate the model, save the
SimState at t = 10, load and modify the SimState, and then simulate again
between t = 10 and 20.

12-10

Tutorial: Testing a Unique Chart Configuration

Step Task Reference

1 Define the SimState for your
chart.

“Defining the SimState” on page
12-11

2 Load the SimState and modify
values.

“Loading the SimState and
Modifying Values” on page 12-14

3 Test the modified SimState by
running the model.

“Testing the Modified SimState”
on page 12-19

Defining the SimState

1 Open the model.

Type sf_car at the command prompt.

2 Enable saving of a SimState.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Final states check box.

c Enter a name, such as sf_car_ctx01.

You can choose any alphanumeric string for the name.

d Select the Save complete SimState in final state check box.

e Click Apply.

Programmatic equivalent

You can programmatically enable saving of a SimState:

set_param('sf_car','SaveFinalState','on', ...
'FinalStateName', ['sf_car_ctx01'], ...
'SaveCompleteFinalSimState','on');

For details about setting model parameters, see set_param in the Simulink
Reference.

3 Define the start and stop times for this simulation segment.

12-11

12 Saving and Restoring Simulations with SimState

a In the Configuration Parameters dialog box, go to the Solver pane.

b For Start time, enter 0.

c For Stop time, enter 10.

d Click OK.

Programmatic equivalent

You can programmatically set the start and stop times:

set_param('sf_car','StartTime','0', ...
'StopTime','10');

4 Start simulation.

When you simulate the model, you save the complete simulation state at t
= 10 in the variable sf_car_ctx01 in the MATLAB base workspace.

12-12

Tutorial: Testing a Unique Chart Configuration

At t = 10, the engine is operating at a steady-state value of 2500 RPM.

5 Disable saving of a SimState.

This step prevents you from overwriting the SimState you saved in the
previous step.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Clear the Save complete SimState in final state check box.

c Clear the Final states check box.

d Click OK.

12-13

12 Saving and Restoring Simulations with SimState

Programmatic equivalent

You can programmatically disable saving of a SimState:

set_param('sf_car','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

Loading the SimState and Modifying Values

1 Enable loading of a SimState.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Initial state check box.

c Enter the variable that contains the SimState of your chart:
sf_car_ctx01.

d Click OK.

Programmatic equivalent

You can programmatically enable loading of a SimState:

set_param('sf_car','LoadInitialState','on', ...
'InitialState', ['sf_car_ctx01']);

2 Define an object handle for the SimState values of the shift_logic chart.

At the command prompt, type:

blockpath = 'sf_car/shift_logic';
c = sf_car_ctx01.getBlockSimState(blockpath);

Tip If the chart appears highlighted in the model window, you can specify
the block path using gcb:

c = sf_car_ctx01.getBlockSimState(gcb);

12-14

Tutorial: Testing a Unique Chart Configuration

What does the getBlockSimState method do?

The getBlockSimState method:

• Makes a copy of the SimState of your chart, which is stored in the final
state data of the model.

• Provides a root-level handle or reference to the copy of the SimState,
which is a hierarchical tree of graphical and nongraphical chart objects.

Each node in this tree is also a handle to a state, data, or other chart
object.

Note Because the entire tree consists of object handles, the following
assignment statements do not work:

• stateCopy = c.state

• dataCopy = c.data

• simstateCopy = c

These assignments create copies of the object handles, not SimState values.
The only way to copy SimState values is to use the clone method. For
details, see “Methods for Interacting with the SimState of a Chart” on page
12-35 and “Rules for Using the SimState of a Chart” on page 12-38.

3 Look at the contents of the SimState.

c =

Block: "shift_logic" (handle) (active)
Path: sf_car/shift_logic

Contains:

+ gear_state "State (AND)" (active)
+ selection_state "State (AND)" (active)

gear "Block output data" double [1, 1]
down_th "Local scope data" double [1, 1]
up_th "Local scope data" double [1, 1]

12-15

12 Saving and Restoring Simulations with SimState

The SimState of your chart contains a list of states and data in hierarchical
order.

4 Highlight the states that are active in your chart at t = 10.

At the command prompt, type:

c.highlightActiveStates;

In the chart, all active states appear highlighted.

To highlight active states automatically at the end of a simulation, enable
chart animation and select Maintain Highlighting in the debugger. For
details, see “Animating Stateflow Charts” on page 26-3.

12-16

Tutorial: Testing a Unique Chart Configuration

Tip To check if a single state is active, you can use the isActive method.
For example, type:

c.gear_state.second.isActive

This command returns true (1) when a state is active and false (0)
otherwise. For information on other methods, see “Methods for Interacting
with the SimState of a Chart” on page 12-35.

5 Change the active substate of selection_state to downshifting.

Use this command:

c.selection_state.downshifting.setActive;

12-17

12 Saving and Restoring Simulations with SimState

The newly active substate appears highlighted in the chart.

6 Change the value of output data gear.

12-18

Tutorial: Testing a Unique Chart Configuration

When you type c.gear at the command prompt, you see a list of data
properties similar to this:

>> c.gear

ans =

Description: 'Block output data'
DataType: 'double'

Size: '[1, 1]'
Range: [1x1 struct]

InitialValue: [1x0 double]
Value: 2

You can change the value of gear from 2 to 1 by typing:

c.gear.Value = 1;

However, you cannot change the data type or size of gear. Also, you cannot
specify a new value that falls outside the range set by the Minimum and
Maximum parameters. For details, see “Rules for Modifying Data Values”
on page 12-38.

7 Save the modified SimState.

Use this command:

sf_car_ctx01 = sf_car_ctx01.setBlockSimState(blockpath, c);

Testing the Modified SimState

1 Define the new stop time for the simulation segment to test.

a In the Configuration Parameters dialog box, go to the Solver pane.

b For Stop time, enter 20.

c Click OK.

You do not need to enter a new start time because the simulation continues
from where it left off.

12-19

12 Saving and Restoring Simulations with SimState

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_car','StopTime','20');

2 Start simulation.

The engine reacts as follows:

12-20

Tutorial: Testing a Chart with Fault Detection Logic

Tutorial: Testing a Chart with Fault Detection Logic

In this section...

“Goal of the Tutorial” on page 12-21

“Defining the SimState” on page 12-24

“Modifying SimState Values for One Actuator Failure” on page 12-25

“Testing the SimState for One Failure” on page 12-31

“Modifying SimState Values for Two Actuator Failures” on page 12-33

“Testing the SimState for Two Failures” on page 12-34

Goal of the Tutorial
Suppose that you want to test the response of the sf_aircraft model to one
or more actuator failures in an elevator system. (For details of how this model
works, see the demo description for Modeling Fault Management Control
Logic in an Aircraft Elevator Control System.)

12-21

12 Saving and Restoring Simulations with SimState

The Mode Logic chart monitors the status of actuators for two elevators. Each
elevator has an outer (primary) actuator and an inner (secondary) actuator.
In normal operation, the outer actuators are active and the inner actuators
are on standby.

12-22

Tutorial: Testing a Chart with Fault Detection Logic

When the four actuators are working correctly, the left and right elevators
reach steady-state positions in 3 seconds.

Suppose that you want to see what happens at t = 3 when at least one actuator
fails. You can simulate the model, save the SimState at t = 3, load and modify
the SimState, and then simulate again between t = 3 and 10.

Step Task Reference

1 Define the SimState for your
chart.

“Defining the SimState” on page
12-24

2 Load the SimState and modify
values for one actuator failure.

“Modifying SimState Values for
One Actuator Failure” on page
12-25

3 Test the modified SimState by
running the model.

“Testing the SimState for One
Failure” on page 12-31

12-23

12 Saving and Restoring Simulations with SimState

Step Task Reference

4 Modify SimState values for two
actuator failures.

“Modifying SimState Values for
Two Actuator Failures” on page
12-33

5 Test the modified SimState by
running the model again.

“Testing the SimState for Two
Failures” on page 12-34

Defining the SimState

1 Open the model.

Type sf_aircraft at the command prompt.

2 Enable saving of a SimState.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Final states check box.

c Enter a name, such as xFinal.

You can choose any alphanumeric string for the name.

d Select the Save complete SimState in final state check box.

e Click Apply.

Programmatic equivalent

You can programmatically enable saving of a SimState:

set_param('sf_aircraft','SaveFinalState','on', ...
'FinalStateName', ['xFinal'], ...
'SaveCompleteFinalSimState','on');

For details about setting model parameters, see set_param in the Simulink
Reference.

3 Define the stop time for this simulation segment.

a In the Configuration Parameters dialog box, go to the Solver pane.

12-24

Tutorial: Testing a Chart with Fault Detection Logic

b For Stop time, enter 3.

c Click OK.

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_aircraft','StopTime','3');

4 Start simulation.

When you simulate the model, you save the complete simulation state at t
= 3 in the variable xFinal in the MATLAB base workspace.

5 Disable saving of a SimState.

This step prevents you from overwriting the SimState you saved in the
previous step.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Clear the Save complete SimState in final state check box.

c Clear the Final states check box.

d Click OK.

Programmatic equivalent

You can programmatically disable saving of a SimState:

set_param('sf_aircraft','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

Modifying SimState Values for One Actuator Failure

1 Enable loading of a SimState.

a Open the Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Initial state check box.

12-25

12 Saving and Restoring Simulations with SimState

c Enter the variable that contains the SimState of your chart: xFinal.

d Click OK.

Programmatic equivalent

You can programmatically enable loading of a SimState:

set_param('sf_aircraft','LoadInitialState','on', ...
'InitialState', ['xFinal']);

2 Define an object handle for the SimState values of the Mode Logic chart.

At the command prompt, type:

blockpath = 'sf_aircraft/Mode Logic';
c = xFinal.getBlockSimState(blockpath);

Tip If the chart appears highlighted in the model window, you can specify
the block path using gcb:

c = xFinal.getBlockSimState(gcb);

What does the getBlockSimState method do?

The getBlockSimState method:

• Makes a copy of the SimState of your chart, which is stored in the final
state data of the model.

• Provides a root-level handle or reference to the copy of the SimState,
which is a hierarchical tree of graphical and nongraphical chart objects.

Each node in this tree is also a handle to a state, data, or other chart
object.

12-26

Tutorial: Testing a Chart with Fault Detection Logic

Note Because the entire tree consists of object handles, the following
assignment statements do not work:

• stateCopy = c.state

• dataCopy = c.data

• simstateCopy = c

These assignments create copies of the object handles, not SimState values.
The only way to copy SimState values is to use the clone method. For
details, see “Methods for Interacting with the SimState of a Chart” on page
12-35 and “Rules for Using the SimState of a Chart” on page 12-38.

3 Look at the contents of the SimState.

c =

Block: "Mode Logic" (handle) (active)
Path: sf_aircraft/Mode Logic

Contains:

+ Actuators "State (OR)" (active)
+ LI_act "Function"
+ LO_act "Function"
+ L_switch "Function"
+ RI_act "Function"
+ RO_act "Function"
+ R_switch "Function"

y "Block output data" ModeBus [1, 1]

The SimState of your chart contains a list of states, functions, and data
in hierarchical order.

4 Highlight the states that are active in your chart at t = 3.

At the command prompt, type:

c.highlightActiveStates;

12-27

12 Saving and Restoring Simulations with SimState

Active states appear highlighted. By default, the two outer actuators are
active and the two inner actuators are on standby.

To highlight active states automatically at the end of a simulation, enable
chart animation and select Maintain Highlighting in the debugger. For
details, see “Animating Stateflow Charts” on page 26-3.

12-28

Tutorial: Testing a Chart with Fault Detection Logic

Tip To check if a single state is active, you can use the isActive method.
For example, type:

c.Actuators.LI.L1.standby.isActive

This command returns true (1) when a state is active and false (0)
otherwise. For information on other methods, see “Methods for Interacting
with the SimState of a Chart” on page 12-35.

5 Change the state activity in the chart to reflect one actuator failure.

Assume that the left outer (LO) actuator fails. To change the state, use
this command:

c.Actuators.LO.isolated.setActive;

12-29

12 Saving and Restoring Simulations with SimState

The newly active substate appears highlighted in the chart.

The setActive method ensures that the chart exits and enters the
appropriate states to maintain state consistency. However, the method
does not perform entry actions for the newly active substate. Similarly, the
method does not perform exit actions for the previously active substate.

6 Change the value of output bus element y.LO_mode.

You can change the value of y.LO_mode to Isolated by typing:

c.y.Value.LO_mode = sf_aircraft_ModeType.Isolated;

12-30

Tutorial: Testing a Chart with Fault Detection Logic

This value belongs to the list of enumerated values for the
sf_aircraft_ModeType definition. For more information, see “Rules for
Modifying Data Values” on page 12-38.

7 Save the modified SimState by using this command:

xFinal = xFinal.setBlockSimState(blockpath, c);

Testing the SimState for One Failure

1 Define the new stop time for the simulation segment to test.

a Go to the Solver pane of the Configuration Parameters dialog box.

b For Stop time, enter 10.

c Click OK.

You do not need to enter a new start time because the simulation continues
from where it left off.

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_aircraft','StopTime','10');

2 Start simulation.

Chart animation shows that the other three actuators react appropriately
to the failure of the left outer (LO) actuator.

12-31

12 Saving and Restoring Simulations with SimState

This actuator... Switches from... Because...

Left inner (LI) Standby to active The left elevator must
compensate for the left outer
(LO) actuator failure.

Right inner (RI) Standby to active The same hydraulic line
connects to both inner
actuators.

Right outer (RO) Active to standby Only one actuator per elevator
can be active.

12-32

Tutorial: Testing a Chart with Fault Detection Logic

Both elevators continue to maintain steady-state positions.

Modifying SimState Values for Two Actuator Failures

1 Change the state activity in the chart to reflect two actuator failures.

Assume that the left inner (LI) actuator also fails. To change the state,
use this command:

c.Actuators.LI.isolated.setActive;

2 Change the value of output bus element y.LI_mode.

You can change the value of y.LI_mode to Isolated by typing:

c.y.Value.LI_mode = sf_aircraft_ModeType.Isolated;

3 Save the modified SimState by using this command:

xFinal = xFinal.setBlockSimState(blockpath, c);

12-33

12 Saving and Restoring Simulations with SimState

Testing the SimState for Two Failures

1 In the Configuration Parameters dialog box, verify that the stop time is 10.

2 Restart simulation.

Because of failures in both actuators, the left elevator stops working. The
right elevator maintains a steady-state position.

If you modify the SimState of your chart to test the response of the right
elevator to actuator failures, you get similar results.

12-34

Methods for Interacting with the SimState of a Chart

Methods for Interacting with the SimState of a Chart
You can use the following methods to interact with the SimState of a chart.
Assume that ch is a handle to the SimState of your chart, which you obtain
using the getBlockSimState method.

Type of
Object

Method Description Example

All chart
objects

open For graphical
objects,
highlights the
object in the
Stateflow Editor.

For
nongraphical
objects,
highlights the
object in the
Model Explorer.

Note For
persistent data
in MATLAB
functions, this
method opens
the function
editor and
highlights the
persistent data
at the exact line
in the script.

ch.data.open

Chart checkStateConsistency Verifies that all
states in a chart
are consistent.

ch.checkStateConsistency

12-35

12 Saving and Restoring Simulations with SimState

Type of
Object

Method Description Example

• If a state is
inactive, no
substates are
active.

• If a state
with parallel
decomposition
is active, all
substates are
active.

• If a state
with exclusive
decomposition
is active, only
one substate
is active.

Chart clone Copies the entire
chart simulation
state to a new
variable.

newSimState = ch.clone

Chart highlightActiveStates Highlights all
active states in
the Stateflow
Editor.

ch.highlightActiveStates

Chart isStateConsistent Returns true (1)
if all states pass
a consistency
check and false
(0) otherwise.

ch.isStateConsistent

Chart removeHighlighting Removes all
highlighting in
the Stateflow
Editor.

ch.removeHighlighting

12-36

Methods for Interacting with the SimState of a Chart

Type of
Object

Method Description Example

State isActive Returns true
(1) if a state is
active and false
(0) otherwise.

ch.state.isActive

State

Must
be an
exclusive
leaf
state

setActive Sets a state to be
active.

This method
ensures that no
other exclusive
states at that
level are active.

ch.state.substate.setActive

State

Must
have a
history
junction
and
exclusive
substates

getPrevActiveChild Returns the
previously active
substate.

ch.state.getPrevActiveChild

State

Must be
inactive;
must
have a
history
junction
and
exclusive
substates

setPrevActiveChild Sets the
previously active
substate.

ch.state.setPrevActiveChild('B')

Note The argument must be the
name of a substate (in quotes), or
the full SimState path to a substate
(without quotes).

12-37

12 Saving and Restoring Simulations with SimState

Rules for Using the SimState of a Chart

In this section...

“Limitations on Values You Can Modify” on page 12-38

“Rules for Modifying Data Values” on page 12-38

“Rules for Modifying State Activity” on page 12-39

“Restriction on Continuous-Time Charts” on page 12-39

“No Partial Loading of a SimState” on page 12-40

“Restriction on Copying SimState Values” on page 12-40

“SimState Limitations That Apply to All Blocks in a Model” on page 12-40

Limitations on Values You Can Modify
A SimState does not include information about these elements:

• Machine-parented data

• Persistent data in custom C code

• Persistent data in external MATLAB code

Therefore, you cannot modify the values of those elements.

Rules for Modifying Data Values
These rules apply when you modify data values:

• You cannot change the data type or size. Scalar data must remain
scalar. Vector and matrix data must keep the same dimensions. The only
exception to this rule is Stateflow data of ml type (see “ml Data Type” on
page 10-47 for details).

• For enumerated data types, you can choose only enumerated values from
the type definition. For other data types, new values must fall within the
range that you specify in theMinimum andMaximum parameters.

• Use one-based indexing to define rows and columns of a matrix.

12-38

Rules for Using the SimState of a Chart

Suppose that you want to change the value of an element in a 21-by-12
matrix. To modify the element in the first row and second column, type:

c.state_name.data_name.Value(1,2) = newValue;

Rules for Modifying State Activity
These rules apply when you use the setActive method on an exclusive (OR)
leaf state:

• State-parented local data does not reinitialize.

• The newly active state does not execute any entry actions. Similarly, the
previously active state does not execute any exit actions.

If you want these state actions to occur, you must execute them separately.
For example, if your state actions assign values to data, you must assign
the values explicitly.

• The setActive method tries to maintain state consistency by:

- Updating state activity for parent, grandparent, and sibling states

- Resetting temporal counters for newly active states

- Updating values of state output data (read-only)

- Enabling or disabling function-call subsystems and Simulink functions
that bind to states

• The highlightActiveStates method also executes when these conditions
are true:

- The model is open.

- The chart is visible.

- The highlightActiveStates method has executed at least once, but not
the removeHighlighting method.

Restriction on Continuous-Time Charts
After you load a SimState for a continuous-time chart, you can restart
simulation from a nonzero time. However, you cannot modify the state
activity or any data values, because the SimState for a continuous-time
chart is read-only. For more information, see “Summary of Rules for
Continuous-Time Modeling” on page 16-26.

12-39

12 Saving and Restoring Simulations with SimState

No Partial Loading of a SimState
When you load a SimState, the complete simulation state is available as a
variable in the MATLAB base workspace. You cannot perform partial loading
of a SimState for a subset of chart objects.

Restriction on Copying SimState Values
Use the clone method to copy an entire SimState to a new variable (see
“Methods for Interacting with the SimState of a Chart” on page 12-35). You
cannot copy a subset of SimState values, because the clone method works
only at the chart level.

Suppose that you obtain a handle to the SimState of your chart using these
commands:

blockpath = 'model/chart';
c = xFinal.getBlockSimState(blockpath);

Assignment statements such as stateCopy = c.state, dataCopy = c.data,
and simstateCopy = c do not work. These assignments create copies of
object handles, not SimState values.

SimState Limitations That Apply to All Blocks in a
Model
For a list of SimState limitations that apply to all blocks in a Simulink model,
see “Limitations of the SimState ” in the Simulink User’s Guide.

12-40

Best Practices for Using the SimState of a Chart

Best Practices for Using the SimState of a Chart

In this section...

“Use MAT-Files to Save a SimState for Future Use” on page 12-41

“Use Scripts to Save SimState Commands for Future Use” on page 12-41

Use MAT-Files to Save a SimState for Future Use
To save a SimState from the MATLAB base workspace, save the variable
with final state data in a MAT-file.

For example, type at the command prompt:

save('sf_car_ctx01.mat', 'sf_car_ctx01')

For more information, see save in the MATLAB documentation.

Use Scripts to Save SimState Commands for Future
Use
To save a list of SimState commands for future use, copy them from a
procedure and paste them in a MATLAB script.

12-41

12 Saving and Restoring Simulations with SimState

For example, to reuse the commands in “Tutorial: Dividing a Long Simulation
into Segments” on page 12-5, you can store them in a script named
sf_boiler_simstate_commands.m:

% Load the model.
sf_boiler;

% Set parameters to save the SimState at the desired time.
set_param('sf_boiler','SaveFinalState','on','FinalStateName',...
['sf_boiler_ctx01'],'SaveCompleteFinalSimState','on');

% Specify the start and stop times for the simulation segment.
set_param('sf_boiler','StartTime','0','StopTime','400');

% Simulate the model.
sim('sf_boiler');

% Disable saving of the SimState to avoid overwriting.
set_param('sf_boiler','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

% Load the SimState.
set_param('sf_boiler', 'LoadInitialState', 'on', ...
'InitialState', ['sf_boiler_ctx01']);

% Specify the new stop time for the simulation segment.
set_param('sf_boiler','StopTime','600');

% Simulate the model.
sim('sf_boiler');

12-42

13

Using Vectors and Matrices
in Stateflow Charts

• “How Vectors and Matrices Work in Stateflow Charts” on page 13-2

• “How to Define Vectors and Matrices” on page 13-4

• “Scalar Expansion for Converting Scalars to Nonscalars” on page 13-6

• “How to Assign and Access Values of Vectors and Matrices” on page 13-8

• “Operations That Work with Vectors and Matrices in Stateflow Action
Language” on page 13-11

• “Rules for Using Vectors and Matrices in Stateflow Charts” on page 13-13

• “Best Practices for Vectors and Matrices in Stateflow Charts” on page 13-14

• “Examples of Vectors and Matrices in Stateflow Charts” on page 13-17

13 Using Vectors and Matrices in Stateflow® Charts

How Vectors and Matrices Work in Stateflow Charts

In this section...

“When to Use Vectors and Matrices” on page 13-2

“Where You Can Use Vectors and Matrices” on page 13-2

When to Use Vectors and Matrices
Use vectors and matrices when you want to:

• Process multidimensional input and output signals

• Combine separate scalar data into one signal

For more information, see “Examples of Vectors and Matrices in Stateflow
Charts” on page 13-17.

Where You Can Use Vectors and Matrices
You can define vectors and matrices at these levels of the Stateflow hierarchy:

• Charts

• Subcharts

• States

• Functions

You can use vectors and matrices to define:

• Input data

• Output data

• Local data

• Function inputs

• Function outputs

You can also use vectors and matrices as arguments for:

13-2

How Vectors and Matrices Work in Stateflow® Charts

• State actions

• Transition actions

• MATLAB functions (see Chapter 23, “Using MATLAB Functions in
Stateflow Charts”)

• Truth table functions (see Chapter 22, “Truth Table Functions”)

• Graphical functions (see “Using Graphical Functions to Extend Actions”
on page 7-30)

• Simulink functions (see Chapter 24, “Using Simulink Functions in
Stateflow Charts”)

• Change detection operators

For more information, see “Operations That Work with Vectors and Matrices
in Stateflow Action Language” on page 13-11 and “Rules for Using Vectors
and Matrices in Stateflow Charts” on page 13-13.

13-3

13 Using Vectors and Matrices in Stateflow® Charts

How to Define Vectors and Matrices

In this section...

“Defining a Vector” on page 13-4

“Defining a Matrix” on page 13-5

Defining a Vector
Define a vector in a Stateflow chart as follows:

1 In the Stateflow Editor, select Add > Data and choose a scope.

The Data properties dialog box appears.

2 In the General pane, enter the dimensions of the vector in the Size field.

For example, enter [4 1] to specify a 4-by-1 vector.

3 Specify the name, base type, and other properties for the new data object.

Note Vectors cannot have the base type ml. See “Rules for Using Vectors
and Matrices in Stateflow Charts” on page 13-13.

4 Set initial values for the vector.

• If initial values of all elements are the same, enter a real number in
the Initial value field. This value applies to all elements of a vector
of any size.

• If initial values differ, enter real numbers in the Initial value field.
For example, you can enter:

[1; 3; 5; 7]

Tip If you want to initialize all elements of a vector to 0, do nothing. When
no values are explicitly defined, all elements initialize to 0.

13-4

How to Define Vectors and Matrices

5 Click Apply.

Defining a Matrix
Define a matrix in a Stateflow chart as follows:

1 In the Stateflow Editor, select Add > Data and choose a scope.

The Data properties dialog box appears.

2 In the General pane, enter the dimensions of the matrix in the Size field.

For example, enter [3 3] to specify a 3-by-3 matrix.

3 Specify the name, base type, and other properties for the new data object.

Note Matrices cannot have the base type ml. See “Rules for Using Vectors
and Matrices in Stateflow Charts” on page 13-13.

4 Set initial values for the matrix.

• If initial values of all elements are the same, enter a real number in
the Initial value field. This value applies to all elements of a matrix
of any size.

• If initial values differ, enter real numbers in the Initial value field.
For example, you can enter:

[1 2 3; 4 5 6; 7 8 9]

Tip If you want to initialize all elements of a matrix to 0, do nothing. When
no values are explicitly defined, all elements initialize to 0.

5 Click Apply.

13-5

13 Using Vectors and Matrices in Stateflow® Charts

Scalar Expansion for Converting Scalars to Nonscalars

In this section...

“What Is Scalar Expansion?” on page 13-6

“How Scalar Expansion Works for Functions” on page 13-6

What Is Scalar Expansion?
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. For example, scalar expansion can
convert a value of 1 to a vector or matrix where all the elements are 1.

How Scalar Expansion Works for Functions
Suppose that you have a function signature yy = example(uu), where the
formal arguments yy and uu are scalars. Assume that you have a function
call y = example(u). The rules of scalar expansion for function calls with a
single output follow.

If the output y is a... And the input u is a... Then...

Scalar Scalar No scalar expansion
occurs.

Vector or matrix Scalar Scalar expansion occurs
for example(u) to
match the dimensions
of y.

Vector or matrix Vector or matrix Scalar expansion
occurs so that y[i]
= example(u[i]).

Scalar Vector or matrix An error message alerts
you to a size mismatch.

For functions with multiple outputs, the same rules apply except for the case
where the outputs and inputs of the function call are all vectors or matrices.
In this case, scalar expansion does not occur, and an error message alerts
you to a size mismatch.

13-6

Scalar Expansion for Converting Scalars to Nonscalars

The rules of scalar expansion apply to all functions that you use in Stateflow
charts:

• MATLAB functions (see Chapter 23, “Using MATLAB Functions in
Stateflow Charts”)

• Graphical functions (see “Using Graphical Functions to Extend Actions”
on page 7-30)

• Simulink functions (see Chapter 24, “Using Simulink Functions in
Stateflow Charts”)

• Truth table functions (see Chapter 22, “Truth Table Functions”)

13-7

13 Using Vectors and Matrices in Stateflow® Charts

How to Assign and Access Values of Vectors and Matrices

In this section...

“Notation for Vectors and Matrices” on page 13-8

“Assigning and Accessing Values of Vectors” on page 13-9

“Assigning and Accessing Values of Matrices” on page 13-9

“Using Scalar Expansion to Assign Values of a Vector or Matrix” on page
13-10

Notation for Vectors and Matrices
Index notation for vectors and matrices in a Stateflow chart differs from the
notation you use in a MATLAB script. You use zero-based indexing for each
dimension of a vector or matrix in Stateflow action language. However, you
use one-based indexing in a MATLAB script.

To refer to... In Stateflow action
language, use...

In a MATLAB script,
use...

The first element of a
vector test

test[0] test(1)

The ith element of a
vector test

test[i-1] test(i)

The element in row
4 and column 5 of a
matrix test

test[3][4] test(4,5)

The element in row
i and column j of a
matrix test

test[i-1][j-1] test(i,j)

13-8

How to Assign and Access Values of Vectors and Matrices

Assigning and Accessing Values of Vectors
The following examples show how to assign the value of an element in a vector
in Stateflow action language.

If you enter... You assign the value... To...

test[0] = 10; 10 The first element

test[i] = 77; 77 The (i+1)th element

The following examples show how to access the value of an element in a vector
in Stateflow action language.

If you enter... You access the value of...

old = test[1]; The second element of a vector test

new = test[i+5]; The (i+6)th element of a vector test

Assigning and Accessing Values of Matrices
The following examples show how to assign the value of an element in a
matrix in Stateflow action language.

If you enter... You assign the value... To the element in...

test[0][8] = 10; 10 Row 1, column 9

test[i][j] = 77; 77 Row i+1, column j+1

The following examples show how to access the value of an element in a
matrix in Stateflow action language.

If you enter... You access the value of...

old = test[1][8]; The matrix test in row 2, column 9

new = test[i][j]; The matrix test in row i+1, column j+1

13-9

13 Using Vectors and Matrices in Stateflow® Charts

Using Scalar Expansion to Assign Values of a Vector
or Matrix
You can use scalar expansion in Stateflow action language to set all elements
of a vector or matrix to the same value. This method works for a vector
or matrix of any size.

This action sets all elements of a vector to 10.

test_vector = 10;

This action sets all elements of a matrix to 20.

test_matrix = 20;

Note You cannot use scalar expansion on a vector or matrix in the MATLAB
base workspace. If you try to use scalar expansion, the vector or matrix in the
base workspace converts to a scalar.

13-10

Operations That Work with Vectors and Matrices in Stateflow® Action Language

Operations That Work with Vectors and Matrices in
Stateflow Action Language

In this section...

“Binary Operations” on page 13-11

“Unary Operations and Actions” on page 13-11

“Assignment Operations” on page 13-12

Binary Operations
You can perform element-wise binary operations on vector and matrix
operands of equal dimensions in the following order of precedence (1 =
highest, 3 = lowest). For operations with equal precedence, they evaluate in
order from left to right.

Example Precedence Description

a * b 1 Multiplication

a / b 1 Division

a + b 2 Addition

a - b 2 Subtraction

a == b 3 Comparison, equality

a != b 3 Comparison, inequality

The multiplication and division operators in Stateflow action language
perform element-wise operations, not standard matrix multiplication and
division. For more information, see “Using MATLAB Functions to Perform
Matrix Multiplication and Division” on page 13-14.

Unary Operations and Actions
You can perform element-wise unary operations and actions on vector and
matrix operands.

13-11

13 Using Vectors and Matrices in Stateflow® Charts

Example Description

~a Unary minus

!a Logical NOT

a++ Increments all elements of the vector or matrix by 1

a-- Decrements all elements of the vector or matrix by 1

Assignment Operations
You can perform element-wise assignment operations on vector and matrix
operands.

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

13-12

Rules for Using Vectors and Matrices in Stateflow® Charts

Rules for Using Vectors and Matrices in Stateflow Charts
These rules apply when you use vectors and matrices in Stateflow charts.

Use only operands of equal dimensions for element-wise operations

If you try to perform element-wise operations on vectors or matrices with
unequal dimensions, a size mismatch error appears when you simulate your
model. See “Operations That Work with Vectors and Matrices in Stateflow
Action Language” on page 13-11.

Do not define vectors and matrices with ml base type

If you define a vector or matrix with ml base type, an error message appears
when you try to simulate your model. This base type supports only scalar data.

For more information about this type, see “ml Data Type” on page 10-47.

Use only real numbers to set initial values of vectors and matrices

When you set the initial value for an element of a vector or matrix, use a real
number. If you use a complex number, an error message appears when you
try to simulate your model.

Note You can set values of vectors and matrices to complex numbers after
initialization.

Do not use vectors and matrices with temporal logic operators

You cannot use a vector or matrix as an argument for temporal logic operators,
because time is a scalar quantity.

13-13

13 Using Vectors and Matrices in Stateflow® Charts

Best Practices for Vectors and Matrices in Stateflow Charts

In this section...

“Using MATLAB Functions to Perform Matrix Multiplication and Division”
on page 13-14

“Using the temporalCount Operator to Index a Vector” on page 13-15

Using MATLAB Functions to Perform Matrix
Multiplication and Division
In Stateflow action language, the multiplication and division operators
perform element-wise multiplication and division. Use a MATLAB function to
perform standard matrix multiplication and division.

For example, suppose that you want to perform standard matrix operations
on two square matrices during simulation. Follow these steps:

1 In your chart, add a MATLAB function with the following signature:

[y1, y2, y3] = my_matrix_ops(u1, u2)

2 Double-click the function box to open the editor.

3 In the editor, enter the code below.

function [y1, y2, y3] = my_matrix_ops(u1, u2)
%#codegen

y1 = u1 * u2; % matrix multiplication
y2 = u1 \ u2; % matrix division from the right
y3 = u1 / u2; % matrix division from the left

This function computes three values:

• y1 is the product of two input matrices u1 and u2.

• y2 is the matrix that solves the equation u1 * y2 = u2.

• y3 is the matrix that solves the equation y3 * u1 = u2.

4 Set properties for the input and output data.

13-14

Best Practices for Vectors and Matrices in Stateflow® Charts

a In the Stateflow Editor, select View > Model Explorer.

The Model Explorer appears.

b In the Model Hierarchy pane, navigate to the level of the MATLAB
function.

c In the Contents pane, set properties for each data object.

Note To initialize a matrix, see “Defining a Matrix” on page 13-5.

Using the temporalCount Operator to Index a Vector
When you index a vector, you can use the temporalCount operator to avoid
using an extra variable for the index counter. This indexing method works for
vectors that contain real or complex data.

For example, suppose that you want to collect input data in a buffer during
simulation. Follow these steps:

1 Add this state to your chart.

The state Collect_Data stores data in the vector y, which is of size 10. The
entry action assigns the value of input data u to the first element of y.
The during action assigns the next nine values of input data to successive
elements of the vector y until you store ten elements.

2 Add the input data u to the chart.

a In the Stateflow Editor, select Add > Data and the scope Input from
Simulink.

13-15

13 Using Vectors and Matrices in Stateflow® Charts

b In the Data properties dialog box, enter u in the Name field.

c Click OK.

3 Add the output data y to the chart.

a In the Stateflow Editor, select Add > Data and the scope Output to
Simulink.

b In the Data properties dialog box, enter y in the Name field.

c Enter 10 in the Size field.

d Click OK.

Note You do not need to set initial values for this output vector. By
default, all elements initialize to 0.

For information about the temporalCount operator, see “Using Temporal
Logic in State Actions and Transitions” on page 10-63.

13-16

Examples of Vectors and Matrices in Stateflow® Charts

Examples of Vectors and Matrices in Stateflow Charts

In this section...

“Communications Example” on page 13-17

“Physics Example” on page 13-19

Communications Example
The demo model sf_frame_sync_controller is an example of using a vector
in a Stateflow chart to find a fixed pattern in a data transmission.

13-17

13 Using Vectors and Matrices in Stateflow® Charts

For details of how the chart works, see “Implementing a Frame
Synchronization Controller Using a Stateflow Chart” on page 18-19.

Storage of Complex Data in a Vector
The state get_payload stores complex data in the vector frame, which is of
size 221. The entry action assigns the value of (IQ * phasor) to the first
element of frame. The during action assigns the next 220 values of (IQ *
phasor) to successive elements of frame until you store 221 elements. (For

13-18

Examples of Vectors and Matrices in Stateflow® Charts

more information, see “Using the temporalCount Operator to Index a Vector”
on page 13-15.)

Scalar Expansion of a Vector
In the second outgoing transition of the state look_for_sync, the transition
action frame = 0 resets all elements of the vector frame to 0 via scalar
expansion. (For more information, see “Using Scalar Expansion to Assign
Values of a Vector or Matrix” on page 13-10.)

Physics Example
The demo model sf_pool is an example of using matrices in a Stateflow chart
to simulate the opening shot on a pool table.

How the Model Works
The model consists of the following blocks.

Model Component Description

Init chart Initializes the position and velocity
of the cue ball.

Pool chart Calculates the two-dimensional
dynamics of each ball on the pool
table.

13-19

13 Using Vectors and Matrices in Stateflow® Charts

Model Component Description

Plot block Animates the motion of each ball
during the opening shot.

Vel scope Displays the velocity of each ball
during the opening shot.

Clock Provides the instantaneous
simulation time to the Plot block.

Storage of Two-Dimensional Data in Matrices
To simulate the opening shot, the Pool chart stores two-dimensional data
in matrices.

To store values for... The Pool chart uses...

The instantaneous position of each
ball

The 15-by-2 matrix p

The instantaneous velocity of each
ball

The 15-by-2 matrix v

Friction and interaction forces acting
on each ball

The 15-by-2 matrix v_dot

Boolean data on whether any two
balls are in contact

The 15-by-15 matrix
ball_interaction

13-20

Examples of Vectors and Matrices in Stateflow® Charts

Calculation of Two-Dimensional Dynamics of Each Ball
The Pool chart calculates the motion of each ball on the pool table using
MATLAB functions that perform matrix calculations.

13-21

13 Using Vectors and Matrices in Stateflow® Charts

MATLAB Function Description

frictionForce Calculates the friction force acting
on each ball.

getBallInteraction Returns a matrix of Boolean data on
whether any two balls are in contact.

hasBallInteractionChanged Returns 1 if ball interactions have
changed and 0 otherwise.

initBalls Initializes the position and velocity
of every ball on the pool table.

interactionForce Calculates the interaction force
acting on each ball.

isAnyBallGoingToStop Returns 1 if any ball has stopped
moving and 0 otherwise.

isAnyBallNewlyPocketed Returns 1 if any ball has been newly
pocketed and 0 otherwise.

isAnyBallOutOfBounds Returns true if any ball is out of
bounds and false otherwise.

nearHole Returns true if a ball is near a pocket
on the pool table and false otherwise.

pocketNewBalls Sets the velocity of a ball to 0 if it
has been pocketed.

resetBallsPosAndVel Resets the position and velocity of
any ball that is out of bounds.

updateStopFlags Keeps track of which balls have
stopped moving.

Running the Demo Model
To run the demo model, follow these steps:

1 Type sf_pool at the MATLAB command prompt.

2 Select Simulation > Start in the model window.

13-22

Examples of Vectors and Matrices in Stateflow® Charts

3 Click anywhere in the animated pool table to specify the initial position
of the cue ball.

4 Click a different spot to specify the initial velocity of the cue ball.

13-23

13 Using Vectors and Matrices in Stateflow® Charts

5 Watch the balls move across the pool table.

13-24

14

Using Variable-Size Data in
Stateflow Charts

• “What Is Variable-Size Data?” on page 14-2

• “How Charts Implement Variable-Size Data” on page 14-3

• “Enabling Support for Variable-Size Data” on page 14-4

• “Declaring Variable-Size Inputs and Outputs” on page 14-5

• “Example: Computing Output Based on Size of Input Signal” on page 14-7

• “Rules for Using Variable-Size Data in Stateflow Charts” on page 14-16

14 Using Variable-Size Data in Stateflow Charts

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

14-2

How Charts Implement Variable-Size Data

How Charts Implement Variable-Size Data
Stateflow charts exchange variable-size data with other charts and blocks in
their models through MATLAB functions, Simulink functions, and MATLAB
truth tables.

You pass variable-size data to these functions as chart-level inputs and
outputs from state actions and transition logic. However, you must perform
all computations with variable-size data inside the functions, not directly in
states or transitions.

For more information about the functions that interact with variable-size,
chart-level inputs and outputs, see:

• Chapter 23, “Using MATLAB Functions in Stateflow Charts”

• Chapter 24, “Using Simulink Functions in Stateflow Charts”

• “MATLAB Truth Tables” on page 22-4

14-3

14 Using Variable-Size Data in Stateflow Charts

Enabling Support for Variable-Size Data
Support for variable-size data is enabled by default. To modify this option
for individual charts:

1 Right-click an open area of the chart and select Properties.

The Chart properties dialog box opens.

2 Select or clear the Support variable-size arrays check box.

After enabling support at the chart level, declare your variable-size inputs
and outputs.

14-4

Declaring Variable-Size Inputs and Outputs

Declaring Variable-Size Inputs and Outputs
1 In the Stateflow Editor, select Add > Data > Input from Simulink or
Add > Data > Output to Simulink.

The Data properties dialog box opens.

2 Select the Variable size check box.

3 Set Scope as Input or Output.

4 Enter size:

Data What to Specify

Input Enter -1 to inherit size from Simulink or specify the explicit
size and upper bound. For example, enter [2 4] to specify
a 2-D matrix where the upper bounds are 2 for the first
dimension and 4 for the second.

Output Specify the explicit size and upper bound.

For example:

14-5

14 Using Variable-Size Data in Stateflow Charts

14-6

Example: Computing Output Based on Size of Input Signal

Example: Computing Output Based on Size of Input Signal

In this section...

“About the Model” on page 14-7

“Chart: VarSizeSignalSource” on page 14-8

“Chart: size_based_processing” on page 14-11

“Simulating the Model” on page 14-15

About the Model
The model sf_varsize_example shows how MATLAB functions in Stateflow
charts exchange variable-size data with other charts and blocks in the model.
To open the model, type sf_varsize_example at the MATLAB command
prompt.

In this model, one Stateflow chart, VarSizeSignalSource, uses temporal logic
to generate a variable-size signal. A second chart, size_based_processing,
computes the output based on the size of the signal generated by the first
chart:

14-7

14 Using Variable-Size Data in Stateflow Charts

Chart: VarSizeSignalSource
The VarSizeSignalSource chart works like a source block. It has no input
and one variable-size output y:

14-8

Example: Computing Output Based on Size of Input Signal

For variable-size outputs, you must explicitly specify the size and upper
bound for each dimension. In this case, y is a vector where the first dimension
is assumed to be fixed at size 1 and the second dimension is variable with
an upper bound of 16.

This chart uses temporal logic to transition between three states, each
generating a different size output:

14-9

14 Using Variable-Size Data in Stateflow Charts

How the Chart Works with the Variable-Size Output
No states or transitions can read from or write to variable-size data.
Therefore, y does not appear in any state actions or transition logic. All
computations involving variable-size data must occur in MATLAB functions
in the chart.

How the MATLAB Function Works with the Variable-Size Output
MATLAB functions access variable-size, chart-level data directly. You
do not pass the data as inputs or outputs to the functions. In this chart,
the generateOutput function adds a different number of elements to the
variable-size output y, based on how the active state calls it. The function
constructs the variable-size vector from a number sequence, then outputs
the transpose of the result:

function generateOutput(len)
%#codegen
assert(len<=16);
y = (1:len)';

MATLAB functions must be able to determine the upper bounds of
variable-size data at compile time. In this case, however, the upper bound is

14-10

Example: Computing Output Based on Size of Input Signal

len, an input for which the model computes the value at run time. To provide
this information, the assert function specifies an explicit upper bound for
len, one that matches the upper bound for chart output y.

If you do not include the assert statement, you get a compilation error:

Computed maximum size is not bounded.
Static memory allocation requires all sizes to be bounded.
The computed size is [1 x :?].

To learn more about how to declare and use variable-size data for MATLAB
functions in Stateflow charts, see “How Working with Variable-Size Data
is Different for Code Generation” in the Code Generation from MATLAB
documentation.

Chart: size_based_processing
The size_based_processing chart computes a variable-size output based
on the value of a variable-size input:

• Input u is the variable-size signal generated by the VarSizeSignalSource
chart:

14-11

14 Using Variable-Size Data in Stateflow Charts

• Output y is a variable-size signal whose size depends on whether u is a
scalar or vector:

14-12

Example: Computing Output Based on Size of Input Signal

The chart uses three MATLAB functions to evaluate the size of input u
and generate an associated output y:

14-13

14 Using Variable-Size Data in Stateflow Charts

As in the chart VarSizeSignalSource, variable-size data does not appear
in state actions or transition logic. Instead, states call MATLAB functions
to compute the variable-size output. Transitions call a MATLAB function
in a conditional statement to evaluate the variable-size input.

MATLAB Function: is_scalar_input
This function tests whether chart input u, the signal generated by chart
VarSizeSignalSource, is a scalar or vector value:

function isScalar = is_scalar_input
%#codegen
isScalar = length(u)==1;

MATLAB Function: compute_input
If input u is a vector, this function outputs the sine of each of its values:

function compute_output
%#codegen
y = sin(u);

MATLAB Function: reset_output
If input u is a scalar, this function outputs a value of zero:

function reset_output
%#codegen
y = 0;

14-14

Example: Computing Output Based on Size of Input Signal

Simulating the Model

1 Open the model:

sf_varsize_example

2 Open the chart VarSizeSignalSource, but keep the Simulink display
blocks in view.

3 Start simulation from the chart.

The display blocks periodically show 1, 8, and 16 values from the
variable-size vector.

14-15

14 Using Variable-Size Data in Stateflow Charts

Rules for Using Variable-Size Data in Stateflow Charts
• Declare variable-size data as chart inputs and outputs only, not as local
data.

See “Declaring Variable-Size Inputs and Outputs” on page 14-5.

• Perform all computations with variable-size data in MATLAB functions,
Simulink functions, and truth tables that use MATLAB action language.

• Do not perform computations with variable-size data directly in states or
transitions.

You can pass the data as inputs and outputs to MATLAB and Simulink
functions in your chart from state actions and transition logic. MATLAB
functions can also access the chart-level, variable-size data directly (see
“Example: Computing Output Based on Size of Input Signal” on page 14-7).

14-16

15

Using Enumerated Data in
Stateflow Charts

• “What Is Enumerated Data?” on page 15-2

• “Benefits of Using Enumerated Data in a Chart” on page 15-3

• “Where to Use Enumerated Data” on page 15-4

• “Elements of an Enumerated Data Type Definition” on page 15-5

• “How to Define Enumerated Data in a Stateflow Chart” on page 15-8

• “Ensuring That Changes in Data Type Definition Take Effect” on page
15-11

• “Notation for Referring to Enumerated Values in a Chart” on page 15-12

• “Operations on Enumerated Data in Stateflow Action Language” on page
15-14

• “How to View Enumerated Values in a Stateflow Chart” on page 15-15

• “Rules for Using Enumerated Data in a Stateflow Chart” on page 15-17

• “Best Practices for Using Enumerated Data in a Chart” on page 15-20

• “CD Player Model That Uses Enumerated Data” on page 15-22

• “Tutorial: Using Enumerated Values for Assignment” on page 15-34

15 Using Enumerated Data in Stateflow® Charts

What Is Enumerated Data?
Enumerated data has a finite set of values. An enumerated data type
consists of values that you allow for that type, or enumerated values. For
integer-based enumerated types, each enumerated value consists of a name
and an underlying numeric value.

For example, the following MATLAB file restricts an integer-based
enumerated data type named BasicColors to three enumerated values.

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Green(2)

end
end

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(0) Red 0

Yellow(1) Yellow 1

Green(2) Green 2

For information on defining an enumerated data type, see “How to Define
Enumerated Data in a Stateflow Chart” on page 15-8.

For information on using enumerated data in other blocks of a Simulink
model, see “Enumerations and Modeling” in the Simulink User’s Guide.

15-2

Benefits of Using Enumerated Data in a Chart

Benefits of Using Enumerated Data in a Chart
Use enumerated data in a Stateflow chart to:

• Model a physical system with a finite number of states

• Restrict data to a finite set of values

• Refer to these values by name

For example, this chart uses enumerated data to refer to a set of colors.

• The chart models a system with two discrete states: Slow and Fast.

• The enumerated data output is restricted to a finite set of values: 0, 1,
and 2.

• You can refer to these values by their enumerated names: Red, Yellow,
and Green.

In large-scale models, use enumerated data for these benefits:

• Enhance readability of data in a chart.

• Avoid defining a long list of constants.

For example, you can group related values into separate data types.

15-3

15 Using Enumerated Data in Stateflow® Charts

Where to Use Enumerated Data
You can use enumerated data at these levels of the Stateflow hierarchy:

• Chart

• Subchart

• State

You can use enumerated data as arguments for:

• State actions

• Condition and transition actions

• Vector and matrix indexing

• MATLAB functions (see Chapter 23, “Using MATLAB Functions in
Stateflow Charts”)

• Graphical functions (see “Using Graphical Functions to Extend Actions”
on page 7-30)

• Simulink functions (see Chapter 24, “Using Simulink Functions in
Stateflow Charts”)

• Truth Table blocks and truth table functions (see Chapter 22, “Truth Table
Functions”)

You can use enumerated data for simulation and Simulink Coder code
generation. However, custom targets do not support enumerated data. For
more information, see “Rules for Using Enumerated Data in a Stateflow
Chart” on page 15-17.

15-4

Elements of an Enumerated Data Type Definition

Elements of an Enumerated Data Type Definition
The elements of an enumerated data type definition appear as follows:

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Green(2)

end

methods (Static = true)
function retVal = getDefaultValue()

% GETDEFAULTVALUE Returns the default enumerated value.
% This value must be an instance of the enumerated type.
% Used by Simulink when an instance of this class is
% needed but the value is not known (e.g., initializing
% ground values or casting an invalid numeric value to
% an enumerated type). If this method is not defined,
% the first value is used.
retVal = BasicColors.Green;

end

function retVal = getDescription()
% GETDESCRIPTION Optional string to describe data type.
retVal = 'This defines an enumerated type for colors';

end

function retVal = getHeaderFile()
% GETHEADERFILE File where type is defined for generated
% code. If specified, this file is #included as needed
% in the code. Otherwise, the type is written out in
% the generated code.
retVal = 'imported_enum_type.h';

end

function retVal = addClassNameToEnumNames()
% ADDCLASSNAMETOENUMNAMES Specify if class name is added
% as a prefix to enumerated names in the generated code.
% By default we do not add the prefix.

15-5

15 Using Enumerated Data in Stateflow® Charts

retVal = true;
end

end
end

The data type definition consists of three sections of code.

Section of
Code

Required? Purpose Reference

classdef Yes Gives the name of the enumerated data type “Defining an
Enumerated Data
Type in a File” on
page 15-8

enumeration Yes Lists the enumerated values that the data
type allows

“Defining an
Enumerated Data
Type in a File” on
page 15-8

methods No Provides methods that customize the data
type:

• getDefaultValue

Specifies a default enumerated value other
than the first one in the list of allowed
values

• getDescription

Gives a description of the data type for
Simulink Coder generated code

• getHeaderFile

Enables importing of custom header files
that contain enumerated type definitions
for Simulink Coder generated code

• addClassNameToEnumNames

Prevents name conflicts with identifiers
in Simulink Coder generated code and
enhances readability

“Enumerations and
Modeling” in the
Simulink User’s
Guide

“Enumerated
Data Type
Considerations” in
the Simulink Coder
User’s Guide

15-6

Elements of an Enumerated Data Type Definition

In the example, the methods section of code customizes the data type as
follows:

• Specifies that the default enumerated value is the last one in the list of
allowed values

• Includes a short description of the data type for Simulink Coder generated
code

• Uses a custom header file to prevent the data type from being written out
in Simulink Coder generated code

• Adds the name of the data type as a prefix to each enumerated name in
Simulink Coder generated code

15-7

15 Using Enumerated Data in Stateflow® Charts

How to Define Enumerated Data in a Stateflow Chart

In this section...

“Tasks for Defining Enumerated Data in a Chart” on page 15-8

“Defining an Enumerated Data Type in a File” on page 15-8

“Adding Enumerated Data to a Chart” on page 15-9

Tasks for Defining Enumerated Data in a Chart
To use enumerated data in a chart:

1 Define an enumerated data type in a file on the MATLAB path.

This data type is a MATLAB class definition. For details, see
Object-Oriented Programming in the MATLAB documentation.

Note For each enumerated type, you must create a new file.

2 Add data of the enumerated type to a chart.

Defining an Enumerated Data Type in a File
To define an enumerated data type:

1 Create a new file to store the data type definition.

In the MATLAB Command Window, select File > New > Enumeration.

2 Define enumerated values in an enumeration section.

classdef(Enumeration) EnumTypeName < Simulink.IntEnumType
enumeration

EnumName(N)
...

end
end

15-8

How to Define Enumerated Data in a Stateflow® Chart

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. An enumerated type can
define any number of values. Each enumerated value consists of a string
EnumName and an integer N. Each EnumName must be unique within its type,
but can also appear in other enumerated types.

For example, you can enter the following lines in the MATLAB Editor:

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Green(2)

end
end

The classdef section defines an integer-based enumerated data type
with the name BasicColors and derives it from the built-in type
Simulink.IntEnumType. The enumeration section is the set of values that
this data type allows. The default value is the first one in the list, unless
you specify otherwise in the next step.

3 (Optional) Customize the data type using a methods section.

For details, see “Elements of an Enumerated Data Type Definition” on
page 15-5 or “Customizing a Simulink Enumeration” in the Simulink
User’s Guide.

4 Save this file on the MATLAB path.

The name of your file must match exactly the name of your data type.
For example, the data type BasicColors must reside in a file named
BasicColors.m.

Tip To add a folder to the MATLAB search path, type addpath pathname
at the command prompt.

Adding Enumerated Data to a Chart
To add enumerated data to a chart:

15-9

15 Using Enumerated Data in Stateflow® Charts

1 In the Stateflow Editor, select Add > Data and choose a scope other than
Constant.

The Data properties dialog box appears.

2 In the General pane, enter a name and data type for the enumerated data.

a In the Name field, enter a name.

b In the Type field, select Enum: <class name>.

Note The Complexity field disappears when you select Enum: <class
name> because enumerated data does not support complex values.

c Replace <class name> with the name of the data type that you defined
in a file on the MATLAB path.

For example, you can enter Enum: BasicColors in the Type field. (See
“Defining an Enumerated Data Type in a File” on page 15-8.)

d Click Apply.

3 (Optional) Enter an initial value for the enumerated data.

a In the Initial value field, enter a prefixed identifier that refers to an
enumerated value for this data type. (For details, see “Rules for Using
Enumerated Data in a Stateflow Chart” on page 15-17.)

For example, BasicColors.Red is an identifier that uses prefixed
notation. (See “Prefixed Notation for Enumerated Values” on page
15-13.)

Note If you leave this field empty, the default enumerated value
applies — that is, the first value in the data type definition. To specify
the default value explicitly, see “Elements of an Enumerated Data Type
Definition” on page 15-5 or “Customizing a Simulink Enumeration” in
the Simulink User’s Guide.

b Click OK.

15-10

Ensuring That Changes in Data Type Definition Take Effect

Ensuring That Changes in Data Type Definition Take Effect
When you update an enumerated data type definition for an open model,
the changes do not take effect right away. To see the effects of updating a
data type definition:

1 Save the model.

2 Close the model.

3 Delete instances of the data type from the MATLAB base workspace.

Tip To find these instances, type whos at the command prompt.

4 Open the model.

5 Start simulation or generate Simulink Coder code.

15-11

15 Using Enumerated Data in Stateflow® Charts

Notation for Referring to Enumerated Values in a Chart

In this section...

“Nonprefixed Notation for Enumerated Values” on page 15-12

“Prefixed Notation for Enumerated Values” on page 15-13

Nonprefixed Notation for Enumerated Values
To minimize identifier length when referring to enumerated values, use
nonprefixed notation. This notation is a string of the form Name, where Name
is the name of an enumerated value.

If your chart uses data types that contain identical enumerated names (such
as Colors.Red and Temp.Red), consider using prefixed notation to prevent
name conflicts among identifiers. For details, see “Prefixed Notation for
Enumerated Values” on page 15-13.

Requirements for Using Nonprefixed Notation
The requirements for using nonprefixed notation are:

• The enumerated data type definition is in a file on the MATLAB search
path.

• One of the following is true:

- Enumerated data of this type exists in the chart.

- A prefixed identifier for this data type exists in the chart.

Example of Nonprefixed Notation in Stateflow Action
Language
Suppose that you have an identifier with nonprefixed notation: Red. The
enumerated name Red belongs to the data type TrafficColors.

You can meet the requirements for nonprefixed notation as follows:

• Define TrafficColors as an enumerated data type in a file on the
MATLAB search path.

15-12

Notation for Referring to Enumerated Values in a Chart

• Verify that one of the following is true:

- Enumerated data of this type exists in the chart.

- A prefixed identifier for this data type exists in the chart, such as
TrafficColors.Yellow or TrafficColors.Green.

Prefixed Notation for Enumerated Values
To prevent name conflicts when referring to enumerated values, use prefixed
notation. This notation is a string of the form Type.Name, where Type is an
enumerated data type and Name is the name of an enumerated value.

Suppose that you have three data types (Colors, Temp, and Code) that contain
the enumerated name Red. By using prefixed notation, you can distinguish
Colors.Red from Temp.Red and Code.Red.

Requirement for Using Prefixed Notation
The only requirement for using prefixed notation is that the enumerated data
type definition is in a file on the MATLAB search path.

Example of Prefixed Notation in Stateflow Action Language
Suppose that you have an identifier with prefixed notation:
TrafficColors.Red. The enumerated name Red belongs to the data type
TrafficColors.

You can meet the requirement for prefixed notation by defining
TrafficColors as an enumerated data type in a file on the MATLAB search
path.

15-13

15 Using Enumerated Data in Stateflow® Charts

Operations on Enumerated Data in Stateflow Action
Language

These operations work with enumerated operands.

Example Description

a = exp Assignment of exp, which must evaluate to an enumerated
value

a == b Comparison, equality

a != b Comparison, inequality

15-14

How to View Enumerated Values in a Stateflow® Chart

How to View Enumerated Values in a Stateflow Chart

In this section...

“Viewing Values of Enumerated Data During Simulation” on page 15-15

“Viewing Values of Enumerated Data After Simulation” on page 15-15

Viewing Values of Enumerated Data During
Simulation
To view the values of enumerated data during simulation:

1 Open the Stateflow Debugger.

2 In the Stateflow Debugger, select breakpoints.

3 Click Start to simulate the model.

4 During simulation, select Browse Data.

In the Stateflow Debugger, the values of enumerated data appear by name.
(For more information, see “Watching Data in the Stateflow Debugger”
on page 26-42.)

Viewing Values of Enumerated Data After Simulation
To view the values of enumerated data after simulation:

1 Open the Model Explorer.

2 In theModel Hierarchy pane, select a chart with enumerated data.

3 In the Contents pane, right-click an enumerated data and select
Properties.

The Data properties dialog box appears.

4 In the Description pane, select Save final value to base workspace.

5 Click OK to close the Data properties dialog box.

15-15

15 Using Enumerated Data in Stateflow® Charts

6 Repeat steps 2 through 5 if you want to save the final value of another
enumerated data.

7 Simulate the model.

8 After simulation ends, view enumerated data in the base workspace.

In the MATLAB Command Window, the final values of enumerated data
appear by underlying numeric value.

15-16

Rules for Using Enumerated Data in a Stateflow® Chart

Rules for Using Enumerated Data in a Stateflow Chart
These rules apply when you use enumerated data in a chart.

Use the name of the enumerated data type as the name of the
MATLAB file that contains the type definition

This rule enables resolution of enumerated data types for Simulink models.

Use a unique name for an enumerated data type

The name of an enumerated data type cannot match the name of another
data type or a variable in the MATLAB base workspace. Otherwise, a name
conflict occurs.

Do not define enumerated data at the machine level of the hierarchy

Machine-parented data is not supported for enumerated types.

Do not use enumerated data for inputs and outputs of exported
functions

This rule applies to graphical functions, truth table functions, and Simulink
functions.

Do not assign enumerated values to constant data

Since enumerated values are constants by nature, assigning these values to
constant data is redundant and unnecessary. If you try to assign enumerated
values to constant data, an error message appears.

Ensure unique name resolution for nonprefixed identifiers

If you use nonprefixed identifiers to refer to enumerated values in a
chart, ensure unique name resolution in each case. For requirements, see
“Nonprefixed Notation for Enumerated Values” on page 15-12.

15-17

15 Using Enumerated Data in Stateflow® Charts

Assign to enumerated data only expressions that evaluate to
enumerated values

Examples of valid assignments to enumerated data include:

• y = BasicColors(3)

• y = BasicColors.Red

Use a prefixed identifier to set the initial value of enumerated data

If you choose to set an initial value for enumerated data, you must use a
prefixed identifier in the Initial value field of the Data properties dialog box.
For example, BasicColors.Red is a valid identifier, but not Red. This rule
applies because the initial value must evaluate to a valid MATLAB expression.

For information about prefixed notation, see “Prefixed Notation for
Enumerated Values” on page 15-13.

Note This rule also applies if you use the Model Explorer to define
enumerated data.

Do not define minimum or maximum values for enumerated data

How the Minimum and Maximum fields appear in the Data properties
dialog box depends on which option you use to define enumerated data.

If you select this option in the
Type field...

The Minimum and Maximum
fields are...

Enum: <class name> Not available

<data type expression> or
Inherit from Simulink

Available

Leave theMinimum andMaximum fields empty for enumerated data. Any
values you enter in these fields are ignored.

15-18

Rules for Using Enumerated Data in a Stateflow® Chart

Do not use the ml namespace operator to access enumerated data
from the MATLAB base workspace

This operator does not support enumerated data. For more information, see
“ml Namespace Operator” on page 10-42.

15-19

15 Using Enumerated Data in Stateflow® Charts

Best Practices for Using Enumerated Data in a Chart
Add prefixes to enumerated names to enhance readability of
generated code

If you add prefixes to enumerated names in the generated code, you
enhance readability and avoid name conflicts with global symbols. For
details, see “Enumerated Data Type Considerations” in the Simulink Coder
documentation.

Use unique identifiers to refer to enumerated values in Stateflow
action language

This guideline prevents name conflicts with other objects in a chart. If an
enumerated value uses the same identifier as a data object in a state or a bus
field in a chart, the chart does not resolve the identifier as an enumerated
value.

For example, the following diagram shows the stages in which a chart tries
to resolve the identifier Colors.Red.

15-20

Best Practices for Using Enumerated Data in a Chart

���������
�
������
��	
������
��	
5�������������
�
����:�	�

;���������
%�

���
��������
9
%�����
0����

���������
���
��
�
��	�5�����
����
�	
�

�&<�����
��	

:�	�

��

�����
�
	������
5������:�	

���������
�&��
�
��	

5��������
�
����
������
���	�:�	�

���

���

��

���

����������
�
������������
����	������
5������:�	

��

15-21

15 Using Enumerated Data in Stateflow® Charts

CD Player Model That Uses Enumerated Data

In this section...

“Overview of CD Player Model” on page 15-22

“Benefits of Using Enumerated Types in This Model” on page 15-24

“Running the CD Player Model” on page 15-24

“How the UserRequest Chart Works” on page 15-27

“How the CdPlayerModeManager Chart Works” on page 15-27

“How the CdPlayerBehaviorModel Chart Works” on page 15-31

Overview of CD Player Model
This Simulink model implements a basic CD player using enumerated data in
three Stateflow charts.

15-22

CD Player Model That Uses Enumerated Data

Model Component Description Details

UserRequest chart Reads and stores user
inputs

“How the UserRequest
Chart Works” on page
15-27

CdPlayerModeManager
chart

Determines whether
the CD player operates
in CD or radio mode

“How the
CdPlayerModeManager
Chart Works” on page
15-27

CdPlayerBehaviorModel
chart

Describes behavior
of the CD player
mechanism

“How the
CdPlayerBehaviorModel
Chart Works” on page
15-31

15-23

15 Using Enumerated Data in Stateflow® Charts

Benefits of Using Enumerated Types in This Model
This model uses two enumerated data types: RadioRequestMode and
CdRequestMode.

Enumerated Data Type Enumerated Values

RadioRequestMode • OFF(0)

• CD(1)

• FM(2)

• AM(3)

CdRequestMode • EMPTY(-2)

• DISCINSERT(-1)

• STOP(0)

• PLAY(1)

• REW(3)

• FF(4)

• EJECT(5)

By grouping related values into separate data types, you get these benefits:

• Enhance readability of data values in each chart.

• Avoid defining a long list of constants, which reduces the amount of data in
your model.

Running the CD Player Model
Follow these steps to run the model:

1 Type sf_cdplayer at the MATLAB command prompt.

2 Start simulation of the model.

15-24

CD Player Model That Uses Enumerated Data

The CD Player Helper GUI appears.

15-25

15 Using Enumerated Data in Stateflow® Charts

The Display blocks in the model show the default settings of the CD player.

3 In the CD Player Helper GUI, click CD in the Radio Request section.

The Display blocks for enumerated data RR and CurrentRadioMode change
from OFF to CD.

4 In the CD Player Helper GUI, click Insert Disc.

The Display block for enumerated data CdStatus changes from EMPTY to
DISCINSERT to STOP.

5 In the CD Player Helper GUI, click PLAY in the CD Request section.

The Display blocks for enumerated data CR, MechCmd, and CdStatus change
from STOP to PLAY.

15-26

CD Player Model That Uses Enumerated Data

Note To see other changes in the Display blocks, you can select other
operating modes for the CD player, such as FM or AM radio.

How the UserRequest Chart Works
Key features of the UserRequest chart include:

• Enumerated data

• ml namespace operator (see “ml Namespace Operator” on page 10-42)

This chart reads user inputs from the CD Player Helper GUI and stores the
information as output data.

Output Data Name Data Type Description

RR Enumerated Operating mode of the
radio component

CR Enumerated Operating mode of the
CD component

DiscInsert Boolean Setting for CD insertion

DiscEject Boolean Setting for CD ejection

How the CdPlayerModeManager Chart Works
Key features of the CdPlayerModeManager chart include:

15-27

15 Using Enumerated Data in Stateflow® Charts

• Enumerated data

• Subcharts (see “Using Subcharts to Extend Charts” on page 7-6)

• Change detection (see “Using Change Detection in Actions” on page 10-83)

15-28

CD Player Model That Uses Enumerated Data

15-29

15 Using Enumerated Data in Stateflow® Charts

Behavior of the CdPlayerModeManager Chart

1 When the chart wakes up, the ModeManager state is entered.

2 The previously active substate recorded by the history junction becomes
active: Standby or ON.

Note Transitions between the Standby and ON substates occur as follows.

• If the enumerated data RadioReq is OFF, the Standby substate is entered.

• If the enumerated data RadioReq is not OFF, the ON substate is entered.
(For details, see “Control of CD Player Operating Mode” on page 15-30.)

3 If the Boolean data DiscEject is 1 (or true), a transition to the Eject state
occurs, followed by a transition back to the ModeManager state.

4 Steps 2 and 3 repeat until the chart goes to sleep.

Control of CD Player Operating Mode
In the ON substate, three subcharts represent the operating modes of a CD
player: CD, AM radio, and FM radio. Each subchart corresponds to a different
value of enumerated data RadioReq.

Value of Enumerated
Data RadioReq

Active Subchart Purpose of Subchart

CD CDMode Outputs play, rewind,
fast forward, and stop
commands to the
CdPlayerBehaviorModel
chart

AM AMMode Sets the CD player to
AM radio mode

FM FMMode Sets the CD player to
FM radio mode

15-30

CD Player Model That Uses Enumerated Data

Note The hasChanged operator detects changes in the value of RadioReq
via an inner transition.

How the CdPlayerBehaviorModel Chart Works
Key features of the CdPlayerBehaviorModel chart include:

• Enumerated data

• Temporal logic (see “Using Temporal Logic in State Actions and
Transitions” on page 10-63)

15-31

15 Using Enumerated Data in Stateflow® Charts

15-32

CD Player Model That Uses Enumerated Data

Behavior of the CdPlayerBehaviorModel Chart

1 When the chart wakes up, the Empty state is entered.

2 If the Boolean data DiscInsert is 1 (or true), a transition to the Inserting
state occurs.

3 After a short time delay, a transition to the DiscPresent state occurs.

4 The DiscPresent state remains active until the data CMD becomes EJECT.

5 If the enumerated data CMD is EJECT, a transition to the Ejecting state
occurs.

6 After a short time delay, a transition to the Empty state occurs.

7 Steps 2 through 6 repeat until the chart goes to sleep.

Update of CD Player Behavior
Whenever a state transition occurs, the enumerated data CdStatus changes
value to reflect the behavior of the CD player.

Active State Value of Enumerated
Data CdStatus

Behavior of CD
Player

Empty EMPTY CD player is empty.

Inserting DISCINSERT CD is being inserted
into the player.

DiscPresent.STOP STOP CD is present and
stopped.

DiscPresent.PLAY PLAY CD is present and
playing.

DiscPresent.REW REW CD is present and
rewinding.

DiscPresent.FF FF CD is present and fast
forwarding.

Ejecting EJECT CD is being ejected
from the player.

15-33

15 Using Enumerated Data in Stateflow® Charts

Tutorial: Using Enumerated Values for Assignment

In this section...

“Goal of the Tutorial” on page 15-34

“Building the Chart” on page 15-34

“Viewing Results for Simulation” on page 15-38

“How the Chart Works” on page 15-41

Goal of the Tutorial
The goal of this tutorial is to build a chart that uses enumerated values in
assignment statements.

Building the Chart
To build the chart, follow these steps.

15-34

Tutorial: Using Enumerated Values for Assignment

Adding States and Transitions to the Chart
You can add states and transitions to the chart as follows.

1 Type sfnew at the command prompt to create a new model with a chart
inside.

2 In the chart, add states A and B to the chart.

Note You will define the data color and y in the sections that follow.

15-35

15 Using Enumerated Data in Stateflow® Charts

3 Add transitions between states A and B.

4 Add a default transition to state A.

15-36

Tutorial: Using Enumerated Values for Assignment

Defining an Enumerated Data Type for the Chart
To define an enumerated data type for the chart:

1 Create a new file to store the data type definition.

In the MATLAB Command Window, select File > New > Enumeration.

2 Enter these lines in the MATLAB Editor:

classdef(Enumeration) TrafficColors < Simulink.IntEnumType
enumeration

RED(0)
GREEN(10)

end
end

The classdef section defines an integer-based enumerated data
type named TrafficColors that is derived from the built-in type
Simulink.IntEnumType. The enumeration section is the set of enumerated
values that this data type allows. Each enumerated name is followed by
the underlying numeric value.

3 Save your file as TrafficColors.m in a folder on the MATLAB search path.

The name of your file must match exactly the name of your data type.
Therefore, you must use TrafficColors.m as the name of your file.

Tip To add a folder to the MATLAB search path, type addpath pathname
at the command prompt.

Adding Enumerated Data to the Chart
To add the enumerated data color to the chart:

1 In the Stateflow Editor, select Add > Data > Output to Simulink.

The Data properties dialog box appears.

2 In the General pane, enter color in the Name field.

15-37

15 Using Enumerated Data in Stateflow® Charts

3 In the Type field, select Enum: <class name>.

4 Replace <class name> with TrafficColors, the name of the data type
that you defined in a file in “Defining an Enumerated Data Type for the
Chart” on page 15-37.

5 Click OK.

Adding Integer Data to the Chart
To add the integer data y to the chart:

1 In the Stateflow Editor, select Add > Data > Output to Simulink.

The Data properties dialog box appears.

2 In the General pane, enter y in the Name field.

3 In the Type field, select uint8.

4 Click OK.

Viewing Results for Simulation
To view results for simulation, follow these steps.

Adding Scopes to View Output
You can add two scopes to your model as follows.

1 Open the Simulink Library Browser.

2 In the Simulink/Sinks library, select the Scope block.

15-38

Tutorial: Using Enumerated Values for Assignment

3 Add two scopes to your model as shown.

Setting the Sample Time for Simulation
You can set a discrete sample time for simulation using a fixed-step solver.
(For details, see “Solvers” in the Simulink User’s Guide.)

1 Open the Configuration Parameters dialog box (for example, by selecting
Simulation > Configuration Parameters in the Stateflow Editor).

2 In the Solver pane, select Fixed-step in the Type field.

3 Select Discrete (no continuous states) in the Solver field.

4 Enter 0.2 in the Fixed-step size (fundamental sample time) field.

5 Click OK.

Simulating the Model
Open the Scope blocks. When you simulate the model, you get the following
results:

15-39

15 Using Enumerated Data in Stateflow® Charts

15-40

Tutorial: Using Enumerated Values for Assignment

How the Chart Works
During simulation, the chart works as follows.

Stage 1: Execution of State A

1 After the chart wakes up, state A is entered.

2 State A executes the entry action by assigning the value RED to the
enumerated data color.

3 The data y increments once per time step (every 0.2 seconds) until the
condition [y > 6] is true.

4 The chart takes the transition from state A to state B.

Stage 2: Execution of State B

1 After the transition from state A occurs, state B is entered.

2 State B executes the entry action by assigning the value GREEN to the
enumerated data color.

3 The data y decrements once per time step (every 0.2 seconds) until the
condition [y < 3] is true.

4 The chart takes the transition from state B to state A.

Stage 3: Repeat of State Execution
States A and B take turns executing until the simulation ends.

15-41

15 Using Enumerated Data in Stateflow® Charts

15-42

16

Modeling Continuous-Time
Systems in Stateflow Charts

• “About Continuous-Time Modeling” on page 16-2

• “Workflow for Creating Continuous-Time Charts” on page 16-6

• “Configuring a Stateflow Chart to Update in Continuous-Time” on page
16-7

• “When to Enable Zero-Crossing Detection” on page 16-10

• “Defining Continuous-Time Variables” on page 16-11

• “Modeling a Bouncing Ball in Continuous-Time” on page 16-13

• “Design Considerations for Continuous-Time Modeling in Stateflow Charts”
on page 16-26

16 Modeling Continuous-Time Systems in Stateflow® Charts

About Continuous-Time Modeling

In this section...

“What Is Continuous-Time Modeling?” on page 16-2

“When To Use Stateflow Charts for Continuous-Time Modeling” on page
16-3

“Running Models That Demonstrate Continuous-Time Modeling” on page
16-4

What Is Continuous-Time Modeling?
Continuous-time modeling allows you to simulate hybrid systems that use
mode logic — that is, systems that respond to both continuous and discrete
mode changes. A simple example of this type of hybrid system is a bouncing
ball. The ball moves continuously through the air until it hits the ground, at
which point a mode change — or discontinuity — occurs. As a result, the ball
changes direction and velocity due to a sudden loss of energy. A later exercise
shows you how to model a bouncing ball in continuous-time using a Stateflow
chart (see “Modeling a Bouncing Ball in Continuous-Time” on page 16-13).

When you configure Stateflow charts for continuous-time simulation, they
interact with the Simulink solver in the same way as other continuous blocks,
as follows:

• Maintain mode in minor time steps.

Stateflow charts do not update mode in minor time steps. This behavior
ensures that outputs computed in a minor time step are based on the state
of the chart during the last major time step.

• Compute the state of the chart at each time step and expose the state
derivative to the Simulink solver.

You can define local continuous variables to hold state information.
Stateflow charts automatically provide programmatic access to the
derivatives of state variables. Continuous solvers in Simulink models use
this data to compute the chart’s continuous states at the current time step,
based on values from the previous time steps and the state derivatives.

16-2

About Continuous-Time Modeling

Note For more information on how solvers work, see “Solvers” in the
Simulink User’s Guide.

• Can register zero crossings on state transitions.

Stateflow charts can register a zero-crossings function with a Simulink
model to help determine when a state transition occurs. When the Simulink
solver detects a change of mode, it searches forward from the previous
major time step to detect when the zero crossing — or state transition
— occurred.

Note For more information about how a Simulink model uses
zero-crossing detection to simulate discontinuities in continuous states, see
“Zero-Crossing Detection” in the Simulink User’s Guide.

When To Use Stateflow Charts for Continuous-Time
Modeling
Use Stateflow charts for modeling hybrid systems with modal behavior — that
is, systems that transition from one mode to another in response to physical
events and conditions, where each mode is governed by continuous-time
dynamics.

In Stateflow charts, you can represent mode logic succinctly and intuitively as
a series of states, transitions, and flow graphs. You can also easily represent
state information as continuous local variables with automatic access to time
derivatives, as described in “About Continuous-Time Variables” on page 16-11.

If your continuous or hybrid system does not contain mode logic, consider
using a Simulink model (see “Modeling a Continuous System” in the Simulink
User’s Guide).

16-3

16 Modeling Continuous-Time Systems in Stateflow® Charts

Running Models That Demonstrate Continuous-Time
Modeling
You can run the following continuous-time models with zero-crossing
detection.

Model Description

Modeling a Rectifier with Zero
Crossings

Rectifier takes a single (scalar) input
and converts it to its absolute value.
Illustrates how Stateflow charts
register zero-crossing variables
with Simulink models for accurate
detection of mode changes.

Modeling a Bouncing Ball Demonstrates how to model the
dynamics of a bouncing ball by
defining continuous-time state
variables and their derivatives in
Stateflow charts.

To try it yourself, see “Modeling a
Bouncing Ball in Continuous-Time”
on page 16-13.

Modeling Newton’s Cradle Demonstrates how to model elastic
collisions between balls in Newton’s
Cradle, a device that demonstrates
conservation of momentum and
energy. Uses vector assignment to
continuous-time state variables.

Modeling a Clutch Implements the Simulink clutch
demo model purely in a Stateflow
chart. Represents the modal nature
of the clutch using two states,
Locked and Slipping.

Modeling the Opening Shot in Pool Demonstrates how to model
continuous systems that have a large
number of discontinuous events,
which rapidly (and unpredictably)
change the dynamics.

16-4

About Continuous-Time Modeling

To run these continuous-time models:

1 At the MATLAB prompt, type:

demo simulink stateflow

2 In the Help browser, go to the section titled Continuous Time Modeling.

3 Select the model of interest and follow the instructions.

16-5

16 Modeling Continuous-Time Systems in Stateflow® Charts

Workflow for Creating Continuous-Time Charts
Here are the tasks for modeling hybrid systems containing mode logic in
continuous-time using Stateflow charts:

Step Task Example in Bouncing Ball
Model

1
Configure the chart to update in
continuous-time.

“Task 1: Configure the Bouncing
Ball Chart for Continuous
Updating” on page 16-14

2
Decide whether to detect zero
crossings.

“Task 2: Decide Whether to
Enable Zero-Crossing Detection
for the Bouncing Ball” on page
16-14

3
Define continuous-time
variables.

“Task 3: Define Continuous-Time
Variables for Position and
Velocity” on page 16-14

4
Choose a solver that supports
continuous states (see “Choosing
a Solver” in the Simulink User’s
Guide documentation).

“Task 4: Choose a Solver for the
Bouncing Ball Chart” on page
16-16

5
Add system dynamics. “Task 5: Add Dynamics for a

Free-Falling Ball” on page 16-16

6
Expose continuous states to a
Simulink model.

“Task 6: Expose Ball Position
and Velocity to the Simulink
Model” on page 16-18

7
Validate semantics, based
on design considerations for
continuous-time simulation.

“Task 7: Validate Semantics of
Bouncing Ball Chart” on page
16-19

8
Simulate the chart. “Task 8: Simulate Bouncing Ball

Chart” on page 16-19

9
Debug and revise. “Task 9: Check for the Bounce”

on page 16-21

16-6

Configuring a Stateflow® Chart to Update in Continuous-Time

Configuring a Stateflow Chart to Update in
Continuous-Time

Continuous updating is a Stateflow chart property. To set this property:

1 Right-click inside a chart and select Properties from the context menu.

The Chart properties dialog box appears.

2 In this dialog box, set the Update method to Continuous.

When you set the Update method to Continuous, the chart:

• Enables zero-crossing detection

16-7

16 Modeling Continuous-Time Systems in Stateflow® Charts

16-8

Configuring a Stateflow® Chart to Update in Continuous-Time

• Disables super step semantics

3 Decide whether or not to enable zero-crossing detection, based on
considerations described in “When to Enable Zero-Crossing Detection” on
page 16-10.

Note You can choose from different zero-crossing detection algorithms
in the Solver pane of the Configuration Parameters dialog box. See
“Zero-Crossing Algorithms” in the Simulink User’s Guide for details.

4 Click OK.

16-9

16 Modeling Continuous-Time Systems in Stateflow® Charts

When to Enable Zero-Crossing Detection
Whether or not to enable zero-crossing detection on state transitions can be
a trade-off between accuracy and performance. Generally when detecting
zero crossings, a Simulink model accurately simulates mode changes without
unduly reducing step size. However, for systems that exhibit chattering —
frequent fluctuations between two modes of continuous operation — enabling
zero-crossing detection may impact simulation time. Chattering requires a
Simulink model to check for zero crossings in rapid succession, resulting in
excessively small step sizes which can slow simulation. In these situations,
you can disable zero-crossing detection, choose a different zero-crossing
detection algorithm for your chart, or modify parameters that control
the frequency of zero crossings in your Simulink model. See “Preventing
Excessive Zero Crossings” in the Simulink User’s Guide.

16-10

Defining Continuous-Time Variables

Defining Continuous-Time Variables

In this section...

“About Continuous-Time Variables” on page 16-11

“Implicit Time Derivatives” on page 16-11

“Rules for Using Continuous-Time Variables” on page 16-11

“How to Define Continuous-Time Variables” on page 16-12

“Exposing Continuous States to a Simulink Model” on page 16-12

About Continuous-Time Variables
To compute a continuous state, you must determine its rate of change, or
derivative. You can represent this information using local variables that
update in continuous-time. In a Stateflow chart, continuous-time variables
are always double type. You cannot change the type, but you can change
the size.

Implicit Time Derivatives
For each continuous variable you define, a Stateflow chart implicitly creates
a variable to represent its time derivative. A chart denotes time derivative
variables as variable_name_dot. For example, the time derivative of
continuous variable x is x_dot. You can write to the time derivative variable
in the during action of a state. The time derivative variable does not appear
in the Model Explorer.

Note You should not explicitly define variables with the suffix _dot in a
Stateflow chart.

Rules for Using Continuous-Time Variables
Follow these rules when defining and using continuous-time variables:

• Scope must be local.

16-11

16 Modeling Continuous-Time Systems in Stateflow® Charts

• Define continuous-time variables at the chart level or below in the
Stateflow object hierarchy.

• Expose continuous state by assigning the local variable to a Stateflow
output (see “Exposing Continuous States to a Simulink Model” on page
16-12).

How to Define Continuous-Time Variables
To define continuous-time variables, follow these steps:

1 Configure your chart to update in continuous-time, as described in
“Configuring a Stateflow Chart to Update in Continuous-Time” on page
16-7.

2 Add local data to your chart in the Stateflow Editor or Model Explorer.

3 In the properties dialog box for your local data, set Update Method to
Continuous.

In this example, the chart automatically creates the variable mydata_dot
to represent the time derivative of this data.

Note When you set a variable to update in continuous-time, you cannot
bind that data to a Simulink signal.

Exposing Continuous States to a Simulink Model
In a Stateflow chart, you represent continuous state using local variables, not
inputs or outputs (see “About Continuous-Time Variables” on page 16-11). To
expose the continuous states to a Simulink model, you must explicitly assign
the local variables to Stateflow outputs in the during action of the state. For
examples, see “Modeling a Bouncing Ball in Continuous-Time” on page 16-13.

16-12

Modeling a Bouncing Ball in Continuous-Time

Modeling a Bouncing Ball in Continuous-Time

In this section...

“Try It” on page 16-13

“Dynamics of a Bouncing Ball” on page 16-13

“Modeling the Bouncing Ball” on page 16-14

Try It
The following topics give you step-by-step instructions for modeling a
bouncing ball as a Stateflow chart in continuous-time using the workflow
described in “Workflow for Creating Continuous-Time Charts” on page 16-6.

Dynamics of a Bouncing Ball
The dynamics of a bouncing ball describes the ball as it falls, when it hits the
ground, and when it bounces back up.

You can specify how the ball falls freely under gravity using the following
second-order differential equation:

p g= −

In this equation, p describes the position of the ball as a function of time, and

g m s= 9 81 2. / , which is the acceleration due to gravity.

A Stateflow chart requires that you specify system dynamics as first-order
differential equations. You can describe the dynamics of the free-falling ball
in terms of position p and velocity v using the following first-order differential
equations:

Equation Description

p v=
Derivative of position is velocity

v = −9 81. Derivative of velocity is acceleration

16-13

16 Modeling Continuous-Time Systems in Stateflow® Charts

The bounce occurs after the ball hits the ground at position p <= 0. At this
point in time, you can model the bounce by updating position and velocity as
follows:

• Reset position to 0

• Reset velocity to the negative of its value just before the ball hit the ground

• Multiply the new velocity by a coefficient of distribution (-0.8) that reduces
the speed just after the bounce

Modeling the Bouncing Ball
The following steps take you through the workflow for modeling a bouncing
ball in continuous-time. To view the completed model, open the bouncing
ball demo.

Task 1: Configure the Bouncing Ball Chart for Continuous
Updating

1 Create an empty Stateflow chart and open its properties dialog box.

If you need instructions, see “Creating a Stateflow Chart” on page 4-2.

2 In the General pane of the properties dialog box, set the update method
to Continuous.

Task 2: Decide Whether to Enable Zero-Crossing Detection for
the Bouncing Ball
For this example, enable zero-crossing detection (the default) so that the
Simulink model can determine exactly when the ball hits the ground at p <=
0. Otherwise, the Simulink model may not be able to simulate the physics
accurately. For example, the ball may appear to descend below ground.

Task 3: Define Continuous-Time Variables for Position and
Velocity

1 Define two continuous-time variables, p for position and v for velocity. For
each variable, follow these steps:

16-14

Modeling a Bouncing Ball in Continuous-Time

a In the Stateflow Editor, select Add > Data > Local.

b Enter the name for the local data.

c Set the update method to Continuous.

d Leave all other properties at their default values and click OK.

Note For each continuous local variable that you define, the chart
implicitly creates its time derivative as a variable of the same name
with the suffix _dot. In this example, the chart defines p_dot as the
derivative of position p and v_dot as the derivative of velocity v.

2 Define two outputs, p_out and v_out for exposing continuous state to the
Simulink model. For each variable, follow these steps:

a In the Stateflow Editor, select Add > Data > Output to Simulink.

b Enter the name for the output data.

c Leave all other properties at their default values and click OK.

Your chart should contain the following data, as viewed in the Model Explorer:

16-15

16 Modeling Continuous-Time Systems in Stateflow® Charts

Task 4: Choose a Solver for the Bouncing Ball Chart
For this example, you can use ode45 (Dormand-Prince), the default
variable-step solver used by Simulink models with continuous states.

Task 5: Add Dynamics for a Free-Falling Ball

1 Add a state named Falling with a default transition. In the default
transition, set initial position to 10 meters and initial velocity to 15
meters/second.

16-16

Modeling a Bouncing Ball in Continuous-Time

2 Add a during action to the Falling state that defines the derivatives of
position and velocity, as follows.

16-17

16 Modeling Continuous-Time Systems in Stateflow® Charts

The derivative of position is velocity and the derivative of velocity is
acceleration due to gravity (-g).

Task 6: Expose Ball Position and Velocity to the Simulink Model
In the during action, assign position to the output p_out and assign velocity
to the output v_out, as follows.

16-18

Modeling a Bouncing Ball in Continuous-Time

Task 7: Validate Semantics of Bouncing Ball Chart
Check semantics against the requirements defined in “Design Considerations
for Continuous-Time Modeling in Stateflow Charts” on page 16-26.

This chart meets design requirements:

• Assigns values to derivatives p_dot and v_dot in a during action

• Writes to local variables p and v in a transition action

• Initializes local variables on the default transition

• Does not contain events, inner transitions, event-based temporal logic, or
change detection operators

Task 8: Simulate Bouncing Ball Chart

1 Attach each output to a scope.

16-19

16 Modeling Continuous-Time Systems in Stateflow® Charts

2 Simulate the chart and view the outputs in the scope.

16-20

Modeling a Bouncing Ball in Continuous-Time

Note that the ball appears to fall below the ground (below position p = 0)
because the chart does not yet include a check for the bounce.

Task 9: Check for the Bounce

1 Add a self-loop transition to state Falling.

16-21

16 Modeling Continuous-Time Systems in Stateflow® Charts

Note The chart uses a self-loop transition so it can model the bounce as an
instantaneous mode change — where the ball suddenly reverses direction
— rather than as a finite time collision.

2 Add a condition on the transition that indicates when the ball hits the
ground.

The condition should check for position p <= 0 and velocity v < 0, as follows.

16-22

Modeling a Bouncing Ball in Continuous-Time

Why not just check for p == 0?

Physically, the ball hits the ground when position p is exactly zero.
However, by relaxing the condition, you increase the tolerance within
which the Simulink model can detect when the continuous variable changes
sign (see “How Blocks Work with Zero-Crossing Detection” in the Simulink
User’s Guide documentation).

Why add the second check for v < 0?

The second check helps maintain the efficiency of the Simulink solver by
minimizing the frequency of zero crossings. Without the second check,
the condition becomes true immediately following the state transition,
resulting in two successive zero crossings.

3 When the ball hits the ground, reset position and velocity in a condition
action, as follows.

16-23

16 Modeling Continuous-Time Systems in Stateflow® Charts

4 Simulate the chart again. This time, the scope shows the expected bounce
pattern.

16-24

Modeling a Bouncing Ball in Continuous-Time

16-25

16 Modeling Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26

“Summary of Rules for Continuous-Time Modeling” on page 16-26

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects— such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:

16-26

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink

16-27

16 Modeling Continuous-Time Systems in Stateflow® Charts

functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see Chapter 24, “Using Simulink Functions in
Stateflow Charts”.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
following model generates an error if the chart uses a continuous update
method.

16-28

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

To model the equivalent of an input event, pass the input signal through a Hit
Crossing block as an input to the continuous chart, as in this example.

Do not use inner transitions

When a mode change occurs during continuous-time simulation, the entry
action of the destination state indicates to the Simulink model that a state
transition occurred. If inner transitions are taken, the entry action is never
executed.

Limit use of temporal logic

Do not use event-based temporal logic. Use only absolute-time temporal logic
for continuous-time simulation. See “Operators for Absolute-Time Temporal
Logic” on page 10-70 for details.

Event-based temporal logic has no meaning because there is no concept of a
tick during a continuous-time simulation.

16-29

16 Modeling Continuous-Time Systems in Stateflow® Charts

The chart must have at least one substate

In continuous-time simulation, the during action of a state updates the
outputs. A chart with no state produces no output. To simulate the behavior
of a stateless chart in continuous-time, create a single state which calls a
graphical function in its during action.

Do not use change detection operators in continuous charts

To implement change detection, Stateflow software buffers variables in a way
that affects the behavior of charts between a minor time step and the next
major time step.

Do not modify any SimState values for continuous-time charts

If you load the SimState for a continuous-time chart, you cannot modify the
activity of states or any values of chart local or output data. Modifying the
SimState of a continuous-time chart is not supported. For more information,
see “Rules for Using the SimState of a Chart” on page 12-38.

16-30

17

Using Fixed-Point Data in
Stateflow Charts

• “What Is Fixed-Point Data?” on page 17-2

• “How Fixed-Point Data Works in Stateflow Charts” on page 17-6

• “Tutorial: Using Fixed-Point Chart Inputs” on page 17-14

• “Tutorial: Using Fixed-Point Parameters and Local Data” on page 17-19

• “Operations with Fixed-Point Data” on page 17-26

17 Using Fixed-Point Data in Stateflow® Charts

What Is Fixed-Point Data?

In this section...

“Before You Begin” on page 17-2

“Fixed-Point Numbers” on page 17-2

“Fixed-Point Operations” on page 17-3

Before You Begin
Fixed-point numbers use integers and integer arithmetic to approximate real
numbers. They are an efficient means for performing computations involving
real numbers without requiring floating-point support in underlying system
hardware.

See “Tips for Using Fixed-Point Data” on page 17-10.

Fixed-Point Numbers
Fixed-point numbers use integers and integer arithmetic to represent real
numbers and arithmetic with the following encoding scheme:

V V SQ B= = +
∼

where

• V is a precise real-world value that you want to approximate with a
fixed-point number.

• V
∼
is the approximate real-world value that results from fixed-point

representation.

• Q is an integer that encodes V.
∼
This value is the quantized integer.

Q is the actual stored integer value used in representing the fixed-point
number. If a fixed-point number changes, its quantized integer, Q, changes
but S and B remain unchanged.

17-2

What Is Fixed-Point Data?

• S is a coefficient of Q, or the slope.

• B is an additive correction, or the bias.

Fixed-point numbers encode real quantities (for example, 15.375) using the
stored integer Q. You set the value of Q by solving the equation

V SQ B
∼

= +

for Q and rounding the result to an integer value as follows:

Q = round((V – B)/S)

For example, suppose you want to represent the number 15.375 in a
fixed-point type with the slope S = 0.5 and the bias B = 0.1. This means that

Q = round((15.375 – 0.1)/0.5) = 30

However, because Q is rounded to an integer, you lose some precision in
representing the number 15.375. If you calculate the number that Q actually
represents, you now get a slightly different answer.

V V SQ B= = + = + =
∼

× 0 5 30 0 1 15 1. . .

Using fixed-point numbers to represent real numbers with integers involves
the loss of some precision. However, if you choose S and B correctly, you can
minimize this loss to acceptable levels.

Fixed-Point Operations

Now that you can express fixed-point numbers as V SQ B
∼

= + , you can define
operations between two fixed-point numbers.

The general equation for an operation between fixed-point operands is as
follows:

c = a <op> b

17-3

17 Using Fixed-Point Data in Stateflow® Charts

where a, b, and c are all fixed-point numbers, and <op> refers to a binary
operation: addition, subtraction, multiplication, or division.

The general form for a fixed-point number x is SxQx + Bx (see “Fixed-Point
Numbers” on page 17-2). Substituting this form for the result and operands
in the preceding equation yields this expression:

(ScQc + Bc) = (SaQa + Ba) <op> (SbQb + Bb)

The values for Sc and Bc are chosen by Stateflow software for each operation
(see “Promotion Rules for Fixed-Point Operations” on page 17-28) and are
based on the values for Sa, Sb, Ba and Bb that you enter for each fixed-point
data (see “Specifying Fixed-Point Data” on page 17-7).

Note You can be more precise in choosing the values for Sc and Bc when you
use the := assignment operator (that is, c := a <op> b). See “Assignment (=,
:=) Operations” on page 17-34.

Using the values for Sa, Sb, Sc, Ba, Bb, and Bc, you can solve the preceding
equation for Qc for each binary operation as follows:

• The operation c=a+b implies that

Qc = ((Sa/Sc)Qa + (Sb/Sc)Qb + (Ba + Bb – Bc)/Sc)

• The operation c=a-b implies that

Qc = ((Sa/Sc)Qa – (Sb/Sc)Qb – (Ba – Bb – Bc)/Sc)

• The operation c=a*b implies that

Qc = ((SaSb/Sc)QaQb + (BaSb/Sc)Qa + (BbSa/Sc)Qb + (BaBb – Bc)/Sc)

• The operation c=a/b implies that

Qc = ((SaQa + Ba)/(Sc(SbQb + Bb)) – (Bc/Sc))

17-4

What Is Fixed-Point Data?

The fixed-point approximations of the real number result of the operation c =
a <op> b are given by the preceding solutions for the value Qc. In this way,
all fixed-point operations are performed using only the stored integer Q for
each fixed-point number and integer operation.

17-5

17 Using Fixed-Point Data in Stateflow® Charts

How Fixed-Point Data Works in Stateflow Charts

In this section...

“How Stateflow Software Defines Fixed-Point Data” on page 17-6

“Specifying Fixed-Point Data” on page 17-7

“Rules for Specifying Fixed-Point Word Length” on page 17-8

“Fixed-Point Context-Sensitive Constants” on page 17-9

“Tips for Using Fixed-Point Data” on page 17-10

“Detecting Overflow for Fixed-Point Types” on page 17-11

“Sharing Fixed-Point Data with Simulink Models” on page 17-12

How Stateflow Software Defines Fixed-Point Data
The preceding example in “What Is Fixed-Point Data?” on page 17-2 does
not answer the question of how the values for the slope, S, the quantized
integer, Q, and the bias, B, are implemented as integers. These values are
implemented as follows:

• Stateflow software defines a fixed-point data type from values that you
specify.

You specify values for S, B, and the base integer type for Q. The available
base types for Q are the unsigned integer types uint8, uint16, and
uint32, and the signed integer types int8, int16, and int32. For specific
instructions on how to enter fixed-point data, see “Specifying Fixed-Point
Data” on page 17-7.

Notice that if a fixed-point number has a slope S = 1 and a bias B = 0, it
is equivalent to its quantized integer Q, and behaves exactly as its base
integer type.

• Stateflow software implements an integer variable for the Q value of each
fixed-point data in generated code.

This is the only part of a fixed-point number that varies in value. The
quantities S and B are constant and appear only as literal numbers or
expressions in generated code.

17-6

How Fixed-Point Data Works in Stateflow® Charts

• The slope, S, is factored into an integer power of two, E, and a coefficient,
F, such that S = F × 2E and 1 ≤ F < 2.

The powers of 2 are implemented as bit shifts, which are more efficient
than multiply instructions. Setting F = 1 avoids the computationally
expensive multiply instructions for values of F > 1. This binary-point-only
scaling is implemented with bit shifts only and is recommended.

• Operations for fixed-point types are implemented with solutions for the
quantized integer as described in “Fixed-Point Operations” on page 17-3.

To generate efficient code, the fixed-point promotion rules choose values
for Sc and Bc that conveniently cancel out difficult terms in the solutions.
See “Addition (+) and Subtraction (-)” on page 17-32 and “Multiplication
(*) and Division (/)” on page 17-32.

You can use a special assignment operator (:=) and context-sensitive
constants to maintain as much precision as possible in your fixed-point
operations. See “Assignment (=, :=) Operations” on page 17-34 and
“Fixed-Point Context-Sensitive Constants” on page 17-9.

• Any remaining numbers, such as the fractional slope, F, that cannot be
expressed as a pure integer or a power of 2, are converted into fixed-point
numbers.

These remaining numbers can be computationally expensive in
multiplication and division operations. Therefore, using binary-point-only
scaling in which F = 1 and B = 0 is recommended.

• Simulation can detect when the result of a fixed-point operation overflows
the capacity of its fixed-point type. See “Detecting Overflow for Fixed-Point
Types” on page 17-11.

Specifying Fixed-Point Data
You can specify fixed-point data in a chart as follows:

1 From the Stateflow Editor, select Add > Data, and then select the scope
for the new data object. (See “Scope” on page 8-9 for a description of each
type of scope.)

Doing so adds a default definition of the new data object to the Stateflow
hierarchy, and the Data properties dialog box appears.

17-7

17 Using Fixed-Point Data in Stateflow® Charts

2 Click the Show data type assistant button to display the Data
Type Assistant.

3 In theMode field of the Data Type Assistant, select Fixed point.

4 Specify the fixed-point data properties as described in “Fixed-Point Data
Properties” on page 8-15.

5 Specify the name, size, and other properties for the new data object as
described in “Setting Data Properties in the Data Dialog Box” on page 8-5.

Note You can also specify a fixed-point constant indirectly in action
language by using a fixed-point context-sensitive constant. See “Fixed-Point
Context-Sensitive Constants” on page 17-9.

Rules for Specifying Fixed-Point Word Length

• For chart-level data of the following scopes, word length can be any integer
between 0 and 128.

- Input

- Output

- Parameter

- Data Store Memory

• For other Stateflow data, word length can be any integer between 0 and 32.

• You can explicitly pass chart-level data with word lengths up to 128 bits
as inputs and outputs of the following functions:

- MATLAB functions

- Simulink functions

- Truth table functions that use MATLAB action language

17-8

How Fixed-Point Data Works in Stateflow® Charts

Fixed-Point Context-Sensitive Constants
You can use fixed-point constants without using the Data properties dialog
box or Model Explorer, by using context-sensitive constants. These constants
infer their types from the context in which they occur. They are written like
ordinary constants, but have the suffix C or c. For example, the numbers 4.3C
and 123.4c are valid fixed-point context-sensitive constants you can use in
action language operations.

These rules apply to context-sensitive constants:

• If any type in the context is a double, then the context-sensitive constant is
cast to type double.

• In an addition or subtraction operation, the type of the context-sensitive
constant is the type of the other operand.

• In a multiplication or division operation with a fixed-point number, they
obtain the best possible precision for a fixed-point result.

The Simulink Fixed Point function fixptbestexp provides this
functionality.

• In a cast, the context is the type to which the constant is being cast.

• As an argument in a function call, the context is the type of the formal
argument. In an assignment, the context is the type of the left-hand
operand.

• You cannot use context-sensitive constants on the left-hand side of an
assignment.

• You cannot use context-sensitive constants as both operands of a binary
operation.

While you can use fixed-point context-sensitive constants in context with
any types (for example, int32 or double), their main use is with fixed-point
numbers. The algorithm that computes the type to assign to a fixed-point
context-sensitive constant depends on these factors:

• The operator

• The data types in the context

• The value of the constant

17-9

17 Using Fixed-Point Data in Stateflow® Charts

The algorithm computes a type that provides maximum accuracy without
overflow.

Tips for Using Fixed-Point Data
When you use fixed-point numbers, follow these guidelines:

1 Develop and test your application using double- or single-precision
floating-point numbers.

Using double- or single-precision floating-point numbers does not limit
the range or precision of your computations. You need this while you are
building your application.

2 Once your application works well, start substituting fixed-point data for
double-precision data during the simulation phase, as follows:

a Set the integer word size for the simulation environment to the integer
size of the intended target environment.

Stateflow generated code uses this integer size to select result types for
your fixed-point operations. See “Setting the Integer Word Size for a
Target” on page 17-29.

b Add the suffix C to literal numeric constants.

This suffix casts a literal numeric constant in the type of its context.
For example, if x is fixed-point data, the expression y = x/3.2C first
converts the numerical constant 3.2 to the fixed-point type of x and
then performs the division with a fixed-point result. See “Fixed-Point
Context-Sensitive Constants” on page 17-9 for more information.

Note If you do not use context-sensitive constants with fixed-point
types, noninteger numeric constants (for example, constants that have a
decimal point) can force fixed-point operations to produce floating-point
results.

3 When you simulate, use overflow detection.

17-10

How Fixed-Point Data Works in Stateflow® Charts

See “Detecting Overflow for Fixed-Point Types” on page 17-11 for
instructions on how to set overflow detection in simulation.

4 If you encounter overflow errors in fixed-point data, you can do one of the
following to add range to your data.

• Increase the number of bits in the overflowing fixed-point data.

For example, change the base type for Q from int16 to int32.

• Increase the range of your fixed-point data by increasing the power of
2 value, E.

For example, you can increase E from –2 to –1. This action decreases
the available precision in your fixed-point data.

5 If you encounter problems with model behavior stemming from inadequate
precision in your fixed-point data, you can do one of the following to add
precision to your data:

• Increase the precision of your fixed-point data by decreasing the value
of the power of 2 binary point E.

For example, you can decrease E from –2 to –3. This action decreases
the available range in your fixed-point data.

• If you decrease the value of E, you can prevent overflow by increasing
the number of bits in the base data type for Q.

For example, you can change the base type for Q from int16 to int32.

6 If you cannot avoid overflow for lack of precision, try using the :=
assignment operator in place of the = operator for assigning the results of
multiplication and division operations.

You can use the := operator to increase the range and precision of the
result of fixed-point multiplication and division operations at the expense
of computational efficiency. See “Assignment Operator :=” on page 17-35.

Detecting Overflow for Fixed-Point Types
Overflow occurs when the magnitude of a result assigned to a data exceeds
the numeric capacity of that data. You can detect overflow of integer and
fixed-point operations during simulation with these steps:

17-11

17 Using Fixed-Point Data in Stateflow® Charts

1 Open the Configuration Parameters dialog box and go to the Simulation
Target pane.

2 Select Enable debugging/animation and Enable overflow detection
(with debugging).

For descriptions of these check boxes, see “Speeding Up Simulation” on
page 25-17.

3 Click Execute to build the simulation target.

4 Open the Stateflow debugger.

For more information, see “Using the Stateflow Debugger” on page 26-2.

5 In the Debugging window, select Data Range.

See “Options for Error Checking in the Debugger” on page 26-21 for a
description of this option.

6 In the Debugging window, click Start to begin simulating the model.

Simulation stops when an overflow occurs.

Sharing Fixed-Point Data with Simulink Models
To share fixed-point data with Simulink models, use one of these methods:

• Define identically in both Stateflow charts and Simulink models the data
that you input from or output to Simulink blocks.

The values that you enter for the Stored Integer and Scaling fields in
the shared data’s properties dialog box in a Stateflow chart (see “Specifying
Fixed-Point Data” on page 17-7) must match similar fields that you enter
for fixed-point data in a Simulink model. See “Tutorial: Using Fixed-Point
Chart Inputs” on page 17-14 for an example of this method of sharing input
data from a Simulink model using a Gateway In block.

For some Simulink blocks, you can specify the type of input or output data
directly. For example, you can set fixed-point output data directly in the
block dialog box of the Constant block by using the Output data type
parameter.

17-12

How Fixed-Point Data Works in Stateflow® Charts

• Define the data as Input or Output in the Data properties dialog box
in the Stateflow chart and instruct the sending or receiving block in the
Simulink model to inherit its type from the chart data.

Many blocks allow you to set their data types and scaling through
inheritance from the driving block, or through back propagation from the
next block. You can set the data type of a Simulink block to match the data
type of the Stateflow port to which it connects.

For example, you can set the Constant block to inherit its type from
the Stateflow Input to Simulink port that it supplies. To do so, select
Inherit via back propagation for the Output data type parameter in
the block dialog box.

17-13

17 Using Fixed-Point Data in Stateflow® Charts

Tutorial: Using Fixed-Point Chart Inputs

In this section...

“Running the Fixed-Point "Bang-Bang Control" Model” on page 17-14

“Exploring the Fixed-Point "Bang-Bang Control" Model” on page 17-15

Running the Fixed-Point "Bang-Bang Control" Model
Stateflow software includes demo models with applications of fixed-point
data. For this example, load the model by typing sf_boiler at the MATLAB
command prompt.

17-14

Tutorial: Using Fixed-Point Chart Inputs

When you simulate the model, you get these results:

Exploring the Fixed-Point "Bang-Bang Control" Model
To explore the model, follow these steps:

1 Double-click the Boiler Plant model subsystem block.

The subsystem appears.

17-15

17 Using Fixed-Point Data in Stateflow® Charts

The Boiler Plant model subsystem simulates the temperature reaction of
the boiler to periods of heating or cooling dictated by the Stateflow block.
Depending on the Boolean value coming from the Controller, a temperature
increment (+1 for heating, –0.1 for cooling) is added to the previous boiler
temperature. The resulting boiler temperature is sent to the digital
thermometer subsystem block.

2 In the Boiler Plant model subsystem, double-click the digital thermometer
subsystem block.

The subsystem appears.

The digital thermometer subsystem produces an 8-bit fixed-point
representation of the input temperature with the blocks described in the
sections that follow.

sensor Block
The sensor block converts input boiler temperature (T) to an intermediate
analog voltage output V with a first-order polynomial that gives this output:

V = 0.05 × T + 0.75

ADC Block
Double-click the ADC block to reveal these contents:

17-16

Tutorial: Using Fixed-Point Chart Inputs

The ADC subsystem digitizes the analog voltage from the sensor block by
multiplying the analog voltage by 256/5, rounding it to its integer floor, and
limiting it to a maximum of 255 (the largest unsigned 8-bit integer value).
Using the value for the output V from the sensor block, the new digital coded
temperature output by the ADC block, Tdigital, is given by this equation:

Tdigital = (256/5) × V = (256 × 0.05/5) × T + (256/5) × 0.75

Linear fixed point conversion Block
The Linear fixed point conversion block informs the rest of the model that
Tdigital is a fixed-point number with a slope value of 5/256/0.05 and an intercept
value of –0.75/0.05. The Stateflow block Bang-Bang Controller receives this
output and interprets it as a fixed-point number through the Stateflow data
temp, which is scoped as Input from Simulink and set as an unsigned 8-bit
fixed-point data with the same values for S and B set in the Linear fixed
point conversion block.

The values for S and B are determined from the general expression for a
fixed-point number:

V = SQ + B

Therefore,

Q = (V – B)/S = (1/S) × V + (–1/S) × B

Since Tdigital is now a fixed-point number, it is now the quantized integer Q of
a fixed-point type. This means that Tdigital = Q of its fixed-point type, which
gives this relation:

(1/S) × V + (–1/S) × B = (256 × 0.05/5) × T + (256/5) × 0.75

17-17

17 Using Fixed-Point Data in Stateflow® Charts

Since T is the real-world value for the environment temperature, the above
equation implies these relations:

V = T

and

1/S = (256 × 0.05)/5

S = 5/(256 × 0.05) = 0.390625

and

(–1/S) × B = (256/5) × 0.75

B = –(256/5) × 0.75 × 5/(256 × 0.05) = –0.75/0.05 = 15

By setting Tdigital to be a fixed-point data as the output of the Linear fixed point
conversion block and the input of the Stateflow block Bang-Bang Controller,
the Stateflow chart interprets and processes this data automatically in an
8-bit environment with no need for any explicit conversions.

17-18

Tutorial: Using Fixed-Point Parameters and Local Data

Tutorial: Using Fixed-Point Parameters and Local Data

In this section...

“Goal of the Tutorial” on page 17-19

“Building the Fixed-Point Butterworth Filter” on page 17-19

“Defining the Model Callback Function” on page 17-20

“Adding Other Blocks to the Model” on page 17-21

“Setting Configuration Parameters for the Model” on page 17-23

“Running the Model” on page 17-25

Goal of the Tutorial
In the sections that follow, you build a model that uses fixed-point parameters
and local data in a Stateflow chart. In this model, the chart acts as a low-pass
Butterworth filter:

Building this model requires a Signal Processing Toolbox™ license.

Building the Fixed-Point Butterworth Filter
In this section, you create a stateless flow chart that accepts one input and
provides one output.

1 At the MATLAB prompt, type sfnew to create a new model with an empty
chart.

17-19

17 Using Fixed-Point Data in Stateflow® Charts

2 In your chart, add a flow graph with a single branch:

The values b0, b1, and a1 are the coefficients of the low-pass Butterworth
filter. For more information about the filter coefficients, see “Defining the
Model Callback Function” on page 17-20.

3 Add the following data to your chart:

Data Name Scope Type

x Input Inherit:Same as
Simulink

y Output fixdt(1,16,10)

x_n1 Local fixdt(1,16,12)

y_n1 Local fixdt(1,16,10)

b0 Parameter fixdt(1,16,15)

b1 Parameter fixdt(1,16,15)

a1 Parameter fixdt(1,16,15)

4 Save your model.

Defining the Model Callback Function
In this section, you define a preload callback for the model. This callback
function computes the values for b0, b1, and a1 in the chart.

17-20

Tutorial: Using Fixed-Point Parameters and Local Data

1 Open the Model Properties dialog box by selecting File > Model
Properties in the model window.

2 In the Callbacks tab, select PreLoadFcn.

3 Enter the following MATLAB code for the preload function:

Fs = 1000;
Fc = 50;
[B,A] = butter(1,2*pi*Fc/(Fs/2));
b0 = B(1);
b1 = B(2);
a1 = A(2);

In the code:

• The sampling frequency Fs is 1000 Hz.

• The cutoff frequency Fc is 50 Hz.

• The butter function constructs a first-order low-pass Butterworth filter
with a normalized cutoff frequency of (2*pi*Fc/(Fs/2)) radians per
second. The function output B contains the numerator coefficients of
the filter in descending powers of z. The function output A contains the
denominator coefficients of the filter in descending powers of z.

4 Click OK to close the dialog box.

5 Save your model.

Adding Other Blocks to the Model
In this section, you add the remaining blocks to the model.

1 Open the Simulink Library Browser.

2 From the Simulink/Sources library, add a Sine Wave block with the
following parameter settings to the model:

Parameter Setting

Sine type Time based

Time Use simulation time

17-21

17 Using Fixed-Point Data in Stateflow® Charts

Parameter Setting

Amplitude 1

Bias 0

Frequency 2*pi*Fc

Phase 0

Sample time 1/Fs

Interpret vector parameters as
1-D

On

The Sine Wave block provides the signal that you want to filter using the
Stateflow chart. This block outputs a floating-point signal.

3 From the Simulink/Signal Attributes library, add a Data Type Conversion
block with the following parameter settings to the model:

Parameter Setting

Output minimum []

Output maximum []

Output data type fixdt(1,16,14)

Lock output data type
setting against changes by
the fixed-point tools

Off

Input and output to have equal Real World Value (RWV)

Integer rounding mode Floor

Saturate on integer overflow Off

Sample time -1

The Data Type Conversion block converts the floating-point signal from
the Sine Wave block to a fixed-point signal. By converting the signal to a
fixed-point type, the model can simulate using less memory.

4 From the Simulink/Sinks library, add a Scope block to the model.

17-22

Tutorial: Using Fixed-Point Parameters and Local Data

5 Connect and label the blocks as follows:

6 Close the Library Browser and save your model.

Setting Configuration Parameters for the Model
In this section, you specify solver and diagnostic options for simulation.

1 Open the Configuration Parameters dialog box.

2 In the Solver pane, set the following parameters:

Parameter Setting

Stop time 0.1

Type Fixed-step

Solver discrete (no continuous
states)

Fixed-step size (fundamental
sample time)

1/Fs

Because none of the blocks in your model have a continuous sample time, a
discrete solver is appropriate. For more information, see “Solver Pane” in
the Simulink Graphical User Interface documentation.

17-23

17 Using Fixed-Point Data in Stateflow® Charts

3 In the Diagnostics > Data Validity pane, set the following parameters:

Parameter Setting

Signals > Signal resolution Explicit and warn implicit

Parameters > Detect precision
loss

none

By setting the diagnostic settings for data validity, you control what types
of warnings or errors appear during simulation. For more information,
see “Diagnostics Pane: Data Validity” in the Simulink Graphical User
Interface documentation.

4 Click OK to close the dialog box.

5 Save and close your model.

17-24

Tutorial: Using Fixed-Point Parameters and Local Data

Running the Model
When you reopen and simulate the model, you see these results in the scope:

The top signal shows the fixed-point version of the sine wave input to
the chart. The bottom signal corresponds to the filtered output from the
chart. The filter removes high-frequency values from the signal but allows
low-frequency values to pass through the chart unchanged.

17-25

17 Using Fixed-Point Data in Stateflow® Charts

Operations with Fixed-Point Data

In this section...

“Supported Operations with Fixed-Point Operands” on page 17-26

“Promotion Rules for Fixed-Point Operations” on page 17-28

“Assignment (=, :=) Operations” on page 17-34

“Fixed-Point Conversion Operations” on page 17-42

“Automatic Scaling of Stateflow Fixed-Point Data” on page 17-43

Supported Operations with Fixed-Point Operands

Binary Operations
These binary operations work with fixed-point operands in the following order
of precedence (1 = highest, 8 = lowest). For operations with equal precedence,
they evaluate in order from left to right:

Example Precedence Description

a * b 1 Multiplication

a / b 1 Division

a + b 2 Addition

a - b 2 Subtraction

a > b 3 Comparison, greater than

a < b 3 Comparison, less than

a >= b 3 Comparison, greater than or equal to

a <= b 3 Comparison, less than or equal to

a == b 4 Comparison, equality

a ~= b 4 Comparison, inequality

a != b 4 Comparison, inequality

a <> b 4 Comparison, inequality

17-26

Operations with Fixed-Point Data

Example Precedence Description

a & b 5 One of the following:

• Bitwise AND

Enabled when Enable C-bit operations is
selected in the Chart properties dialog box.
See “Specifying Chart Properties” on page
19-4. Operands are cast to integers before
the operation is performed.

• Logical AND

Enabled when Enable C-bit operations is
cleared in the Chart properties dialog box.

a | b 6 One of the following:

• Bitwise OR

Enabled when Enable C-bit operations is
selected in the Chart properties dialog box.
See “Specifying Chart Properties” on page
19-4. Operands are cast to integers before
the operation is performed.

• Logical OR

Enabled when Enable C-bit operations is
cleared in the Chart properties dialog box.

a && b 7 Logical AND

a || b 8 Logical OR

Unary Operations and Actions
These unary operations and actions work with fixed-point operands:

Example Description

~a Unary minus

!a Logical NOT

17-27

17 Using Fixed-Point Data in Stateflow® Charts

Example Description

a++ Increment

a-- Decrement

Assignment Operations
These assignment operations work with fixed-point operands:

Example Description

a = expression Simple assignment

a := expression See “Assignment Operator :=” on page 17-35.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

a |= expression Equivalent to a = a | expression (bit
operation). See operation a | b in “Binary
Operations” on page 17-26.

a &= expression Equivalent to a = a & expression (bit
operation). See operation a & b in “Binary
Operations” on page 17-26.

Promotion Rules for Fixed-Point Operations
Operations with at least one fixed-point operand require rules for selecting
the type of the intermediate result for that operation. For example, in
the action statement c = a + b, where a or b is a fixed-point number, an
intermediate result type for a + b must first be chosen before the result is
calculated and assigned to c.

The rules for selecting the numeric types used to hold the results of operations
with a fixed-point number are called fixed-point promotion rules. The goal of
these rules is to maintain computational efficiency and usability.

17-28

Operations with Fixed-Point Data

Note You can use the := assignment operator to override the fixed-point
promotion rules and obtain greater accuracy. However, in this case, greater
accuracy can require more computational steps. See “Assignment Operator
:=” on page 17-35.

The following topics describe the process of selecting an intermediate result
type for binary operations with at least one fixed-point operand.

Default Selection of the Number of Bits of the Result Type
A fixed-point number with S = 1 and B = 0 is treated as an integer. In
operations with integers, the C language promotes any integer input with
fewer bits than the type int to the type int and then performs the operation.

The type int is the integer word size for C on a given platform. Result word
size is increased to the integer word size because processors can perform
operations at this size efficiently.

To maintain consistency with the C language, this default rule applies
to assigning the number of bits for the result type of an operation with
fixed-point numbers:

When both operands are fixed-point numbers, the number of bits in the result
type is the maximum number of bits in the input types or the number of bits
in the integer word size for the target machine, whichever is larger.

Note The preceding rule is a default rule for selecting the bit size of the
result for operations with fixed-point numbers. This rule is overruled for
specific operations as described in the sections that follow.

Setting the Integer Word Size for a Target. The preceding default rule
for selecting the bit size of the result for operations with fixed-point numbers
relies on the definition of the integer word size for your target. You can set
the integer word size for the targets that you build in Simulink models with
these steps:

17-29

17 Using Fixed-Point Data in Stateflow® Charts

1 Right-click inside the root Simulink model and select Configuration
Parameters.

The Configuration Parameters dialog box opens.

2 Select Hardware Implementation in the left navigation panel.

The right panel displays configuration parameters for embedded hardware
(simulation and code generation) and emulation hardware (code generation
only).

3 To set integer word size for embedded hardware, follow these steps:

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

4 To set integer word size for emulation hardware, follow these steps:

• If no configuration fields appear, clear the None check box.

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

5 Click OK to accept the changes.

When you build any target after making this change, the generated code uses
this integer size to select result types for your fixed-point operations.

Note It is recommended that you set all the available sizes because they
affect code generation, although they do not affect the implementation of the
fixed-point promotion rules in generated code.

Unary Promotions
Only the unary minus (-) operation requires a promotion of its result type.
The word size of the result is given by the default procedure for selecting the
bit size of the result type for an operation involving fixed-point data. See
“Default Selection of the Number of Bits of the Result Type” on page 17-29.
The bias, B, of the result type is the negative of the bias of the operand.

17-30

Operations with Fixed-Point Data

Binary Operation Promotion for Integer Operand with
Fixed-Point Operand
Integers as operands in binary operations with fixed-point numbers are
treated as fixed-point numbers of the same word size with slope, S, equal to
1, and a bias, B, equal to 0. The operation now becomes a binary operation
between two fixed-point operands. See “Binary Operation Promotion for Two
Fixed-Point Operands” on page 17-31.

Binary Operation Promotion for Double Operand with
Fixed-Point Operand
When one operand is of type double in a binary operation with a fixed-point
type, the result type is double. In this case, the fixed-point operand is cast to
type double, and the operation is performed.

Binary Operation Promotion for Single Operand with
Fixed-Point Operand
When one operand is of type single in a binary operation with a fixed-point
type, the result type is single. In this case, the fixed-point operand is cast to
type single, and the operation is performed.

Binary Operation Promotion for Two Fixed-Point Operands
Operations with both operands of fixed-point type produce an intermediate
result of fixed-point type. The resulting fixed-point type is chosen through
the application of a set of operator-specific rules. The procedure for producing
an intermediate result type from an operation with operands of different
fixed-point types is summarized in these topics:

• “Addition (+) and Subtraction (-)” on page 17-32

• “Multiplication (*) and Division (/)” on page 17-32

• “Relational Operations (>, <, >=, <=, ==, -=, !=, <>)” on page 17-32

• “Logical Operations (&, |, &&, ||)” on page 17-33

17-31

17 Using Fixed-Point Data in Stateflow® Charts

Addition (+) and Subtraction (-). The output type for addition and
subtraction is chosen so that the maximum positive range of either input can
be represented in the output while preserving maximum precision. The base
word type of the output follows the rule in “Default Selection of the Number
of Bits of the Result Type” on page 17-29. To simplify calculations and yield
efficient code, the biases of the two inputs are added for an addition operation
and subtracted for a subtraction operation.

Note Mixing signed and unsigned operands can yield unexpected results and
is not recommended.

Multiplication (*) and Division (/). The output type for multiplication
and division is chosen to yield the most efficient code implementation. You
cannot use nonzero biases for multiplication and division in Stateflow charts
(see note).

The slope for the result type of the product of the multiplication of two
fixed-point numbers is the product of the slopes of the operands. Similarly,
the slope of the result type of the quotient of the division of two fixed-point
numbers is the quotient of the slopes. The base word type is chosen to conform
to the rule in “Default Selection of the Number of Bits of the Result Type” on
page 17-29.

Note Because nonzero biases are computationally very expensive, those
biases are not supported for multiplication and division.

Relational Operations (>, <, >=, <=, ==, -=, !=, <>). You can use the
following relational (comparison) operations on all fixed-point types: >, <, >=,
<=, ==, -=, !=, <>. See “Supported Operations with Fixed-Point Operands” on
page 17-26 for an example and description of these operations. Both operands
in a comparison must have equal biases (see note).

Comparing fixed-point values of different types can yield unexpected results
because each operand must convert to a common type for comparison. Because
of rounding or overflow errors during the conversion, values that do not appear
equal might be equal and values that appear to be equal might not be equal.

17-32

Operations with Fixed-Point Data

Note To preserve precision and minimize unexpected results, both operands
in a comparison operation must have equal biases.

For example, compare these two unsigned 8-bit fixed-point numbers, a and b,
in an 8-bit target environment:

Fixed-Point Number a Fixed-Point Number b

Sa = 2
–4 Sb = 2

–2

Ba = 0 Bb = 0

Va = 43.8125 Vb = 43.75

Qa = 701 Qb = 175

By rule, the result type for comparison is 8-bit. Converting b, the least precise
operand, to the type of a, the most precise operand, could result in overflow.
Consequently, a is converted to the type of b. Because the bias values for both
operands are 0, the conversion occurs as follows:

Sb (newQa) = SaQa

newQa = (SaSb) Qa = (2
–4/2–2) 701 = 701/4 = 175

Although they represent different values, a and b are considered equal as
fixed-point numbers.

Logical Operations (&, |, &&, ||). If a is a fixed-point number used in
a logical operation, it is interpreted with the equivalent substitution a !=
0.0C where 0.0C is an expression for zero in the fixed-point type of a (see
“Fixed-Point Context-Sensitive Constants” on page 17-9). For example, if
a is a fixed-point number in the logical operation a && b, this operation is
equivalent to the following:

(a != 0.0C) && b

The preceding operation is not a check to see whether the quantized integer
for a, Qa, is not 0. If the real-world value for a fixed-point number a is 0,

17-33

17 Using Fixed-Point Data in Stateflow® Charts

this implies that Va = SaQa + Ba = 0.0. Therefore, the expression a != 0, for
fixed-point number a, is equivalent to this expression:

Qa ! = –Ba / Sa

For example, if a fixed-point number, a, has a slope of 2–2, and a bias of 5, the
test a != 0 is equivalent to the test if Qa ! = –20.

Assignment (=, :=) Operations
You can use the assignment operations LHS = RHS and LHS := RHS between a
left-hand side (LHS) and a right-hand side (RHS). See these topics for examples
that contrast the two assignment operations:

• “Assignment Operator =” on page 17-34.

• “Assignment Operator :=” on page 17-35

• “When to Use the := Operator Instead of the = Operator” on page 17-35

• “Example of Using the := Operator for Addition and Subtraction” on page
17-35

• “Example of Using the := Operator for Multiplication” on page 17-39

• “Example of Using the := Operator for Division” on page 17-40

• “:= Assignment and Context-Sensitive Constants” on page 17-41

Assignment Operator =
An assignment statement of the type LHS = RHS is equivalent to casting the
right-hand side to the type of the left-hand side. You can use any assignment
between fixed-point types and therefore, implicitly, any cast.

A cast converts the stored integer Q from its original fixed-point type while
preserving its value as accurately as possible using the online conversions
(see “Fixed-Point Conversion Operations” on page 17-42). Assignments are
most efficient when both types have the same bias, and slopes that are equal
or both powers of 2.

17-34

Operations with Fixed-Point Data

Assignment Operator :=
Ordinarily, the fixed-point promotion rules determine the result type for an
operation. Using the := assignment operator overrides this behavior by using
the type of the LHS as the result type of the RHS operation.

These rules apply to the := assignment operator:

• The RHS can contain at most one binary operator.

• If the RHS contains anything other than an addition (+), subtraction (-),
multiplication (*), or division (/) operation, or a constant, then the :=
assignment behaves like regular assignment (=).

• Constants on the RHS of an LHS := RHS assignment are converted to
the type of the left-hand side using offline conversion (see “Fixed-Point
Conversion Operations” on page 17-42). Ordinary assignment always casts
the RHS using online conversions.

When to Use the := Operator Instead of the = Operator
Use the := assignment operator instead of the = assignment operator in
these cases:

• Arithmetic operations where you want to avoid overflow

• Multiplication and division operations where you want to retain precision

Caution Using the := assignment operator to produce a more accurate result
can generate code that is less efficient than the code you generate using the
normal fixed-point promotion rules.

Example of Using the := Operator for Addition and Subtraction
This Simulink model contains a Stateflow chart with two inputs and eight
outputs.

17-35

17 Using Fixed-Point Data in Stateflow® Charts

The chart contains a graphical function that compares the use of the = and :=
assignment operators.

17-36

Operations with Fixed-Point Data

If you generate code for this model, you see code similar to this.

/* Exported block signals */
int16_T x1; /* '<Root>/Input' */
int16_T x2; /* '<Root>/Input1' */
int32_T y1; /* '<Root>/Chart' */
int32_T y2; /* '<Root>/Chart' */
int32_T z1; /* '<Root>/Chart' */
int32_T z2; /* '<Root>/Chart' */
int16_T y3; /* '<Root>/Chart' */
int16_T y4; /* '<Root>/Chart' */
int16_T z3; /* '<Root>/Chart' */
int16_T z4; /* '<Root>/Chart' */

...

/* Model step function */
void doc_sf_colon_equal_step(void)

17-37

17 Using Fixed-Point Data in Stateflow® Charts

{
/* Case "=" - general */
y1 = x1 + x2;
y2 = x1 - x2;
y3 = x1 * x2 >> 3;
y4 = div_s16_floor(x1, x2) << 3U;

/* Case ":=" - better computation of the expression */
z1 = (int32_T)x1 + (int32_T)x2;
z2 = (int32_T)x1 - (int32_T)x2;
z3 = (int16_T)((int32_T)x1 * (int32_T)x2 >> 3);
z4 = (int16_T)(((int32_T)x1 << 3) / (int32_T)x2);

}

The inputs x1 and x2 are signed 16-bit integers with 3 fraction bits. For
addition and subtraction, the outputs are signed 32-bit integers with 3
fraction bits.

You can avoid overflow if you use the := operator instead of the = operator.
For example, assume that the inputs have these values:

• x1 = 215 – 1

• x2 = 1

The operator... Performs
addition by...

And produces
the result...

Because the
sum...

= Adding the
inputs in 16 bits
before casting
the sum to 32
bits

y1 = –215 Overflows

:= Casting the
inputs to 32 bits
before adding
them

z1 = +215 Does not
overflow

Similarly, you can avoid overflow for subtraction if you use the := operator
instead of the = operator.

17-38

Operations with Fixed-Point Data

Example of Using the := Operator for Multiplication
The following example contrasts the := and = assignment operators for
multiplication. You can use the := operator to avoid overflow in the
multiplication c = a * b, where a and b are two fixed-point operands. The
operands and result for this operation are 16-bit unsigned integers with these
assignments:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa = 2
–4 Sb = 2

–4 Sc = 2
–5

Ba = 0 Bb = 0 Bc = 0

Va = 20.1875 Vb = 15.3125 Vc = ?

Qa = 323 Qb = 245 Qc = ?

where S is the slope, B is the bias, V is the real-world value, and Q is the
quantized integer.

c = a*b. In this case, first calculate an intermediate result for a*b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 17-3. Then cast that result to the type for c.

The calculation of intermediate value occurs as follows:

Q Q Qiv a b= = =323 245 79135×

Because the maximum value of a 16-bit unsigned integer is 216 – 1 = 65535,
the preceding result overflows its word size. An operation that overflows its
type produces an undefined result.

You can capture overflow errors like the preceding example during simulation
with the Debugger window. See “Detecting Overflow for Fixed-Point Types”
on page 17-11.

c := a*b. In this case, calculate a*b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 17-3 with the requirement of
zero bias, which occurs as follows:

17-39

17 Using Fixed-Point Data in Stateflow® Charts

Q S S S Q Qc a b c a b= = = =− − −((/)) (/)() /2 2 2 323 245 79135 8 98924 4 5× ×

No overflow occurs in this case, and the approximate real-world value is as
follows:

V S Qc c c
∼

×= = = =−2 9892 9892 32 309 1255 / .

This value is very close to the actual result of 309.121.

Example of Using the := Operator for Division
The following example contrasts the := and = assignment operators for
division. You can use the := operator to obtain a more precise result for the
division of two fixed-point operands, a and b, in the statement c := a/b.

This example uses the following fixed-point numbers, where S is the slope, B
is the bias, V is the real-world value, and Q is the quantized integer:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa = 2
–4 Sb = 2

–3 Sc = 2
–6

Ba = 0 Bb = 0 Bc = 0

Va = 2 Vb = 3 Vc = ?

Qa = 32 Qb = 24 Qc = ?

c = a/b. In this case, first calculate an intermediate result for a/b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 17-3. Then cast that result to the type for c.

The calculation of intermediate value occurs as follows:

Q Q Qiv a b= = =/ /32 24 1

The intermediate value is then cast to the result type for c as follows:

ScQc = SivQiv

17-40

Operations with Fixed-Point Data

Qc = (Siv / Sc) Qiv

The calculation for slope of the intermediate value for a division operation
occurs as follows:

S S Siv a b= = =− − −/ /2 2 24 3 1

Substitution of this value into the preceding result yields the final result.

Qc = = =− −2 2 2 321 6 5/

In this case, the approximate real-world value is V c
∼

= =32 64 0 5/ . , which is
not a very good approximation of the actual result of 2/3.

c := a/b. In this case, calculate a/b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 17-3 with the simplification
of zero bias, which is as follows:

Q S Q S S Q S S S Q Qc a a c b b a b c a b= = = − − −() /(()) (/()) (/) (/()) (× × ×2 2 24 3 6 332 24 42/) =

In this case, the approximate real-world value is as follows:

V c
∼

= =42 64 0 6563/ .

This value is a much better approximation to the precise result of 2/3.

:= Assignment and Context-Sensitive Constants
In a := assignment operation, the type of the left-hand side (LHS) determines
part of the context used for inferring the type of a right-hand side (RHS)
context-sensitive constant.

These rules apply to RHS context-sensitive constants in assignments with
the := operator:

17-41

17 Using Fixed-Point Data in Stateflow® Charts

• If the LHS is a floating-point data (type double or single) , the RHS
context-sensitive constant becomes a floating-point constant.

• For addition and subtraction, the type of the LHS determines the type of the
context-sensitive constant on the RHS.

• For multiplication and division, the type of the context-sensitive constant
is chosen independently of the LHS.

Fixed-Point Conversion Operations
Real numbers are converted into fixed-point data during data initialization
and as part of casting operations in the application. These conversions
compute a quantized integer, Q, from a real number input. Offline conversions
initialize data, and online conversions perform casting operations in the
running application. The topics that follow describe each conversion type and
give examples of the results.

Offline Conversions for Initialized Data
Offline conversions are performed during code generation and are designed to
maximize accuracy. These conversions round the resulting quantized integer
to its nearest integer value. If the conversion overflows, the result saturates
the value for Q.

Offline conversions are performed for these operations:

• Initialization of data (both variables and constants) in the Stateflow
hierarchy

• Initialization of constants or variables from the MATLAB workspace

Online Conversions for Casting Operations
Online conversions are performed for casting operations that take place
during execution of the application. Designed to maximize computational
efficiency, they are faster and more efficient than offline conversions, but less
precise. Instead of rounding Q to its nearest integer, online conversions round
to the floor (with the exception of division, which can round to 0, depending
on the C compiler you have). If the conversion overflows the type to which
you convert, the result is undefined.

17-42

Operations with Fixed-Point Data

Offline and Online Conversion Examples
The following examples show the difference in the results of offline and online
conversions of real numbers to a fixed-point type defined by a 16-bit word size,
a slope (S) equal to 2–4, and a bias (B) equal to 0:

Offline Conversion
Online
Conversion

V V/S Q V
∼

Q V
∼

3.45 55.2 55 3.4375 55 3.4375

1.0375 16.6 17 1.0625 16 1

2.06 32.96 33 2.0625 32 2

In the preceding example,

• V is the real-world value represented as a fixed-point value.

• V/S is the floating-point computation for the quantized integer Q.

• Q is the rounded value of V/S.

• V
∼
is the approximate real-world value resulting from Q for each conversion.

Automatic Scaling of Stateflow Fixed-Point Data
Automatic scaling tools can change the settings of Stateflow fixed-point data.
You can prevent automatic scaling by selecting the Lock data type setting
against changes by the fixed-point tools check box in the Data properties
dialog box for fixed-point data (see “Setting Data Properties in the Data Dialog
Box” on page 8-5 for details). Selecting this check box prevents replacement
of the current fixed-point type with a type that the Fixed-Point Tool or
Fixed-Point Advisor chooses. See “Automatic Scaling Tools” in the Simulink
Fixed Point documentation for instructions on autoscaling fixed-point data.

17-43

17 Using Fixed-Point Data in Stateflow® Charts

17-44

18

Using Complex Data in
Stateflow Charts

• “How Complex Data Works in Stateflow Charts” on page 18-2

• “How to Define Complex Data” on page 18-4

• “Operations on Complex Data in Stateflow Action Language” on page 18-7

• “Using Operators to Handle Complex Numbers” on page 18-9

• “Rules for Using Complex Data in Stateflow Charts” on page 18-12

• “Best Practices for Using Complex Data in Stateflow Charts” on page 18-15

• “Implementing a Frame Synchronization Controller Using a Stateflow
Chart” on page 18-19

• “Implementing a Spectrum Analyzer Using a Stateflow Chart” on page
18-25

18 Using Complex Data in Stateflow® Charts

How Complex Data Works in Stateflow Charts

In this section...

“What Is Complex Data?” on page 18-2

“When to Use Complex Data” on page 18-2

“Where You Can Use Complex Data” on page 18-3

“How You Can Use Complex Data” on page 18-3

What Is Complex Data?
Complex data is data whose value is a complex number. For example, an
input signal with the value 3 + 5i is complex. See “Complex Signals” in the
Simulink documentation for details.

When to Use Complex Data
Use complex data when you model applications in communication systems
and digital signal processing. For example, you can use this design pattern to
model a frame synchronization algorithm in a communication system:

1 Use Simulink blocks (such as filters) to process complex signals.

2 Use Stateflow charts to implement mode logic for frame synchronization.

3 Let the charts access complex input and output data so that nested
MATLAB functions can drive the mode logic.

For an example of modeling a frame synchronization algorithm, see
“Implementing a Frame Synchronization Controller Using a Stateflow Chart”
on page 18-19.

Note Continuous-time variables of complex type are not supported. For more
information, see “Defining Continuous-Time Variables” on page 16-11.

18-2

How Complex Data Works in Stateflow® Charts

Where You Can Use Complex Data
You can define complex data at these levels of the Stateflow hierarchy:

• Charts

• Subcharts

• States

• Functions

How You Can Use Complex Data
You can use complex data to define:

• Complex vectors

• Complex matrices

You can also use complex data as arguments for:

• State actions

• Transition actions

• MATLAB functions (see Chapter 23, “Using MATLAB Functions in
Stateflow Charts”)

• Truth table functions (see Chapter 22, “Truth Table Functions”)

• Graphical functions (see “Using Graphical Functions to Extend Actions”
on page 7-30)

• Change detection operators (see “Using Change Detection in Actions” on
page 10-83)

Note Exported functions do not support complex data as arguments.

For more information, see “Operations on Complex Data in Stateflow Action
Language” on page 18-7 and “Rules for Using Complex Data in Stateflow
Charts” on page 18-12.

18-3

18 Using Complex Data in Stateflow® Charts

How to Define Complex Data
Define complex data in a chart as follows:

1 In the Stateflow Editor, select Add > Data, and then select the scope for
the new data object.

A default definition of the new data object appears in the Stateflow
hierarchy, and the Data properties dialog box appears.

18-4

How to Define Complex Data

Note Complex data does not support the scopes Constant and Data
Store Memory.

2 In the Complexity field of the Data properties dialog box, select On.

3 Specify the name, size, base type, and other properties for the new data
object as described in “Setting Data Properties in the Data Dialog Box”
on page 8-5.

18-5

18 Using Complex Data in Stateflow® Charts

Note Complex data does not support the base types ml, struct, and
boolean. See “Built-In Data Types” on page 8-47 for more information.

4 Click OK.

18-6

Operations on Complex Data in Stateflow® Action Language

Operations on Complex Data in Stateflow Action
Language

In this section...

“Binary Operations” on page 18-7

“Unary Operations and Actions” on page 18-7

“Assignment Operations” on page 18-8

Binary Operations
These binary operations work with complex operands in the following order of
precedence (1 = highest, 3 = lowest). For operations with equal precedence,
they evaluate in order from left to right.

Example Precedence Description

a * b 1 Multiplication

a + b 2 Addition

a - b 2 Subtraction

a == b 3 Comparison, equality

a != b 3 Comparison, inequality

Stateflow action language does not support division of complex operands
because this operation requires a numerically stable implementation,
especially when the base type of the complex data is fixed-point.

To perform complex division, use a MATLAB function, which provides a
numerically accurate and stable result. For details, see “Performing Complex
Division with a MATLAB Function” on page 18-17.

Unary Operations and Actions
These unary operations and actions work with complex operands.

18-7

18 Using Complex Data in Stateflow® Charts

Example Description

~a Unary minus

!a Logical NOT

a++ Increment

a-- Decrement

Assignment Operations
These assignment operations work with complex operands.

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

18-8

Using Operators to Handle Complex Numbers

Using Operators to Handle Complex Numbers

In this section...

“Why Use Operators for Complex Numbers?” on page 18-9

“Defining a Complex Number” on page 18-9

“Accessing Real and Imaginary Parts of a Complex Number” on page 18-10

“Working with Vector Arguments” on page 18-11

Why Use Operators for Complex Numbers?
Use operators to handle complex numbers because Stateflow action language
does not support complex number notation (a + bi), where a and b are real
numbers.

Defining a Complex Number
To define a complex number based on two real values, use the complex
operator described below.

complex Operator

Syntax.

complex(realExp, imagExp)

where realExp and imagExp are arguments that define the real and
imaginary parts of a complex number, respectively. The two arguments must
be real values or expressions that evaluate to real values, where the numeric
types of both arguments are identical.

Description. The complex operator returns a complex number based on
the input arguments.

Example.

complex(3.24*pi, -9.99)

This expression returns the complex number 10.1788 9.9900i.

18-9

18 Using Complex Data in Stateflow® Charts

Accessing Real and Imaginary Parts of a Complex
Number
To access the real and imaginary parts of a complex number, use the operators
real and imag described below.

real Operator

Syntax.

real(compExp)

where compExp is an expression that evaluates to a complex number.

Description. The real operator returns the value of the real part of a
complex number.

Note If the input argument is a purely imaginary number, the real operator
returns a value of 0.

Example.

real(frame(200))

If the expression frame(200) evaluates to the complex number 8.23 +
4.56i, the real operator returns a value of 8.2300.

imag Operator

Syntax.

imag(compExp)

where compExp is an expression that evaluates to a complex number.

Description. The imag operator returns the value of the imaginary part
of a complex number.

18-10

Using Operators to Handle Complex Numbers

Note If the input argument is a real number, the imag operator returns
a value of 0.

Example.

imag(frame(200))

If the expression frame(200) evaluates to the complex number 8.23 +
4.56i, the imag operator returns a value of 4.5600.

Working with Vector Arguments
The operators complex, real, and imag also work with vector arguments.

Example If the input x is... Then the output y is...

y = real(x) An n-dimensional
vector of complex values

An n-dimensional
vector of real values

y = imag(x) An n-dimensional
vector of real values

An n-dimensional
vector of zeros

y =
complex(real(x),
imag(x))

An n-dimensional
vector of complex or
real values

An n-dimensional
vector identical to the
input argument

18-11

18 Using Complex Data in Stateflow® Charts

Rules for Using Complex Data in Stateflow Charts
These rules apply when you use complex data in Stateflow charts.

Do not use complex number notation in actions

Stateflow action language does not support complex number notation (a +
bi), where a and b are real numbers. Therefore, you cannot use complex
number notation in state actions, transition conditions and actions, or any
Stateflow action language statements.

To define a complex number, use the complex operator described in “Using
Operators to Handle Complex Numbers” on page 18-9.

Do not perform math function operations on complex data in
Stateflow action language

Math operations such as sin, cos, min, max, and abs do not work with complex
data in Stateflow action language. However, you can use MATLAB functions
for these operations.

For more information, see “Performing Math Function Operations with a
MATLAB Function” on page 18-15.

Mix complex and real operands only for addition, subtraction, and
multiplication

If you mix operands for any other math operations in Stateflow action
language, an error message appears when you try to simulate your model.

To mix complex and real operands for division, you can use a MATLAB
function as described in “Performing Complex Division with a MATLAB
Function” on page 18-17.

18-12

Rules for Using Complex Data in Stateflow® Charts

Tip Another way to mix operands for division is to use the complex, real,
and imag operators in Stateflow action language.

Suppose that you want to calculate y = x1/x2, where x1 is complex and x2 is
real. You can rewrite this calculation as:

y = complex(real(x1)/x2, imag(x1)/x2)

For more information, see “Using Operators to Handle Complex Numbers”
on page 18-9.

Do not define complex data with constant or data store memory
scope

If you define complex data with Constant or Data Store Memory scope, an
error message appears when you try to simulate your model.

Do not define complex data with ml, struct, or boolean base type

If you define complex data with ml, struct, or boolean base type, an error
message appears when you try to simulate your model.

Use only real values to set initial values of complex data

When you define the initial value for data that is complex, use only a real
value. See “Properties You Can Set in the Description Pane” on page 8-25 for
instructions on setting an initial value in the Data properties dialog box.

Do not enter minimum or maximum values for complex data

In the Data properties dialog box, do not enter any values in theMinimum or
Maximum field when you define complex data. If you enter a value in either
field, an error message appears when you try to simulate your model.

Assign complex values only to data of complex type

If you assign complex values to real data types, an error appears when you
try to simulate your model.

18-13

18 Using Complex Data in Stateflow® Charts

Note You can assign both real and complex values to complex data types.

Do not pass real values to function inputs of complex type

This restriction applies to the following types of chart functions:

• Graphical functions

• Truth table functions

• MATLAB functions

• Simulink functions

If your chart passes real values to function inputs of complex type, an error
appears when you try to simulate your model.

Do not use complex data with temporal logic operators

You cannot use complex data as an argument for temporal logic operators,
because you cannot define time as a complex number.

18-14

Best Practices for Using Complex Data in Stateflow® Charts

Best Practices for Using Complex Data in Stateflow Charts

In this section...

“Performing Math Function Operations with a MATLAB Function” on
page 18-15

“Performing Complex Division with a MATLAB Function” on page 18-17

Performing Math Function Operations with a MATLAB
Function
Math functions such as sin, cos, min, max, and abs do not work with complex
data in Stateflow action language. However, you can use a MATLAB function
in your chart to perform math function operations on complex data.

A Simple Example
In the following chart, a MATLAB function calculates the absolute value
of a complex number:

18-15

18 Using Complex Data in Stateflow® Charts

The value of comp_num is 1+2i. Calculating the absolute value gives an
answer of 2.2361.

How to Calculate Absolute Value
Suppose that you want to find the absolute value of a complex number. Follow
these steps:

1 Add a MATLAB function to your chart with this signature:

y = myabs(u)

2 Double-click the function box to open the editor.

3 In the editor, enter the code below:

function y = myabs(u)
%#codegen
y = abs(u);

The function myabs takes a complex input u and returns the absolute value
as an output y.

4 Configure the input argument u to accept complex values.

a Open the Model Explorer.

b In the Model Hierarchy pane of the Model Explorer, navigate to the
MATLAB function myabs.

c In the Contents pane of the Model Explorer, right-click the input
argument u and select Properties from the context menu.

d In the Data properties dialog box, select On in the Complexity field
and click OK.

You cannot pass real values to function inputs of complex type. For details,
see “Rules for Using Complex Data in Stateflow Charts” on page 18-12.

18-16

Best Practices for Using Complex Data in Stateflow® Charts

Performing Complex Division with a MATLAB
Function
Division with complex operands is not available as a binary or assignment
operation in Stateflow action language. However, you can use a MATLAB
function in your chart to perform division on complex data.

A Simple Example
In the following chart, a MATLAB function performs division on two complex
operands:

The values of comp_num and comp_den are 1+2i and 3+4i, respectively.
Dividing these values gives an answer of 0.44+0.08i.

How to Perform Complex Division
To divide two complex numbers:

1 Add a MATLAB function to your chart with this function signature:

y = mydiv(u1, u2)

2 Double-click the function box to open the editor.

18-17

18 Using Complex Data in Stateflow® Charts

3 In the editor, enter the code below:

function y = mydiv(u1, u2)
%#codegen
y = u1 / u2;

The function mydiv takes two complex inputs, u1 and u2, and returns the
complex quotient of the two numbers as an output y.

4 Configure the input and output arguments to accept complex values.

a Open the Model Explorer.

b In the Model Hierarchy pane of the Model Explorer, navigate to the
MATLAB function mydiv.

c For each input and output argument, follow these steps:

i In the Contents pane of the Model Explorer, right-click the argument
and select Properties from the context menu.

ii In the Data properties dialog box, select On in the Complexity field
and click OK.

You cannot pass real values to function inputs of complex type. For details,
see “Rules for Using Complex Data in Stateflow Charts” on page 18-12.

18-18

Implementing a Frame Synchronization Controller Using a Stateflow® Chart

Implementing a Frame Synchronization Controller Using a
Stateflow Chart

In this section...

“What Is Frame Synchronization?” on page 18-19

“A Frame Synchronization Controller Chart” on page 18-19

“Key Features of the Chart” on page 18-21

“Opening the Model” on page 18-21

“How the Chart Works” on page 18-22

What Is Frame Synchronization?
In communication systems, frame synchronization is a method of finding
valid data in a transmission that consists of data frames. To aid frame
synchronization, the transmitter inserts a fixed data pattern at the start of
each data frame to mark the start of valid data. The receiver searches for the
fixed pattern in each data frame and achieves frame synchronization when
the correlation between the input data and the fixed pattern is high.

A Frame Synchronization Controller Chart
This Simulink subsystem is part of a larger model that illustrates the use
of Communications System Toolbox™ software to model a communication
system. The chart Frame Sync Controller models a frame synchronization
algorithm.

18-19

18 Using Complex Data in Stateflow® Charts

The chart contains these states, transitions, and MATLAB functions:

The chart calculates the correlation between the input signal I/Q and the
fixed data pattern trainSig. You define trainSig by writing and running
a MATLAB script before you simulate the model.

• If the correlation exceeds 50 percent, frame synchronization occurs. The
chart stores 220 valid data points in the complex vector frame.

18-20

Implementing a Frame Synchronization Controller Using a Stateflow® Chart

• If the correlation stays below 50 percent after the chart has evaluated 300
data points, the frame synchronization algorithm resets.

For more information, see “How the Chart Works” on page 18-22.

Key Features of the Chart
Key features of the chart include:

• Complex input and output signals

The chart accepts a complex input signal I/Q. After synchronizing the data
frame, the chart stores the valid data in a complex output signal frame.

• Complex multiplication

The output signal frame is a vector of complex products between each valid
data point and the phase angle of the carrier wave.

• Indexing into a complex vector

The chart uses the temporalCount operator to index into the complex
vector frame. (See “Using Temporal Logic in State Actions and Transitions”
on page 10-63 for information about the temporalCount operator.)

• MATLAB functions with complex arguments

The MATLAB functions correlate and get_carrier_phase have complex
input and output arguments.

Opening the Model
To open the model, type sf_frame_sync_controller at the MATLAB
command prompt.

Note You cannot simulate the model itself. This example is available only to
illustrate the use of complex data in a Stateflow chart.

18-21

18 Using Complex Data in Stateflow® Charts

How the Chart Works

Stage 1: Activation of the Frame Synchronization Algorithm
When the chart wakes up, the state look_for_sync activates to start the
frame synchronization algorithm.

Stage 2: Calculation of Correlation Between the Input Signal
and the Fixed Pattern
The MATLAB function correlate finds the correlation between the input
signal I/Q and the fixed data pattern trainSig. Then, the function stores the
complex correlation as corr.

Code for the function correlate appears below:

function [y, yabs] = correlate(u)

persistent zi;

B = conj(flipud(trainSig));
A = 1;

if(isempty(zi))
zi = zeros(max(length(A),length(B))-1,1) + complex(0,0);

end

[y,zi] = filter(B,A,u,zi);

yabs = abs(y);

18-22

Implementing a Frame Synchronization Controller Using a Stateflow® Chart

Stage 3: Calculation of Absolute Value of the Complex
Correlation
The MATLAB function correlate also finds the absolute value of corr
and stores the output as corrAbs. The value of corrAbs is the correlation
percentage, which can range from 0 to 100 percent. At 0 percent, there is no
correlation; at 100 percent, there is perfect correlation.

Stage 4: Identification of Valid Data in a Data Frame
If corrAbs exceeds 50 percent, the correlation is high and the chart has
identified the start of valid data in a data frame. The transition from the state
look_for_sync to get_payload occurs.

If corrAbs stays below 50 percent after the chart has evaluated 300 data
points, the frame synchronization algorithm restarts. See “Stage 7: Restart of
the Frame Synchronization Algorithm” on page 18-24.

Stage 5: Storage of Valid Data in a Complex Vector
When the correlation is high, the state get_payload activates.

The MATLAB function get_carrier_phase finds the phase angle of the
carrier wave and stores the value as phasor. Then, the state multiplies
the input signal I/Q with the phase angle phasor and stores each complex
product in successive elements of the vector frame.

Code for the function get_carrier_phase appears below:

function y = get_carrier_phase(u)

18-23

18 Using Complex Data in Stateflow® Charts

y = exp(-1i*angle(u));

Stage 6: Output of Valid Data from a Data Frame
After collecting 220 data points, the chart outputs the vector frame to the
next block in the model.

Stage 7: Restart of the Frame Synchronization Algorithm
The state look_for_sync reactivates, and the frame synchronization
algorithm restarts for the next data frame.

18-24

Implementing a Spectrum Analyzer Using a Stateflow® Chart

Implementing a Spectrum Analyzer Using a Stateflow
Chart

In this section...

“What Is a Spectrum Analyzer?” on page 18-25

“A Spectrum Analyzer Model” on page 18-25

“Running the Spectrum Analyzer Model” on page 18-27

“How the Sinusoid Generator Block Works” on page 18-28

“How the Analyzer Chart Works” on page 18-30

“How the Unwrap Chart Works” on page 18-32

What Is a Spectrum Analyzer?
A spectrum analyzer is a tool that measures the frequency response
(magnitude and phase angle) of a physical system over a range of frequencies.

A Spectrum Analyzer Model
This Simulink model measures the frequency response of a second-order
system driven by a complex sinusoidal signal. A scope displays the measured
frequency response as discrete Bode plots.

18-25

18 Using Complex Data in Stateflow® Charts

Model Component Description Details

Sinusoid Generator block Generates a complex
sinusoidal signal of increasing
frequency and supplies this
signal to other blocks.

“How the Sinusoid Generator
Block Works” on page 18-28

Complex to Imaginary block Extracts the imaginary part
of the complex signal from the
Sinusoid Generator block so
that a sine wave of increasing
frequency can drive the Plant
block.

None

Plant block Uses a transfer function to
describe a second-order system
with a natural frequency of
150 Hz (300π radians per
second) and a damping ratio
of 0.3. Since the ratio is
less than 1, this system is
underdamped and contains
two complex conjugate poles
in the denominator of the
transfer function.

Note Typical applications
implement the Plant block
using a D/A (digital-to-analog)
converter on the input signal
and an A/D (analog-to-digital)
converter on the output signal.

None

Analyzer chart Calculates the frequency
response of the second-order
system defined by the Plant
block.

“How the Analyzer Chart
Works” on page 18-30

Unwrap chart Processes the phase angle
output of the Analyzer chart.

“How the Unwrap Chart
Works” on page 18-32

18-26

Implementing a Spectrum Analyzer Using a Stateflow® Chart

Running the Spectrum Analyzer Model
Follow these steps to run the model:

1 Type sf_spectrum_analyzer at the MATLAB command prompt.

2 Double-click the Measured Frequency Response scope.

3 Select Simulation > Start in the Simulink model window and watch the
output in the scope.

4 In the scope display, right-click and select Autoscale from the context
menu.

The scope shows a set of discrete Bode plots.

18-27

18 Using Complex Data in Stateflow® Charts

• In the magnitude plot, the sharp peak is the response of the Plant block
to a resonant frequency.

• In the phase plot, the angle changes from 0 to –π radians (–180 degrees).
Each complex pole in the Plant block adds –π/2 radians to the phase
angle.

How the Sinusoid Generator Block Works
This block is a masked subsystem that contains a Stateflow chart. To access
the chart, right-click the Sinusoid Generator block and select Look Under
Mask from the context menu.

Key features of the signal generator chart include:

• Absolute-time temporal logic for controlling changes in frequency (see
“Operators for Absolute-Time Temporal Logic” on page 10-70)

• MATLAB function that generates a complex signal (see Chapter 23, “Using
MATLAB Functions in Stateflow Charts”)

• Transition condition that contains complex operands (see “Transition
Action Types” on page 10-7)

18-28

Implementing a Spectrum Analyzer Using a Stateflow® Chart

Stage 1: Definition of Signal Frequency
When the chart awakens, the default transition sets the signal frequency f to
fstart and activates state A.

Note To set fstart, double-click the Sinusoid Generator block and enter a
value (in Hz) in the Initial frequency field.

Stage 2: Generation of Complex Signal
While state A is active, the MATLAB function computey generates the
complex signal y based on frequency f and simulation time t.

Code for the function appears below:

18-29

18 Using Complex Data in Stateflow® Charts

function computey(t)
yprev = y;
y = exp(2*pi*f*t*1j);

Stage 3: Update of Frequency and Complex Signal
If delay seconds have elapsed since activation of state A, the frequency f
increases by an amount fstep and the MATLAB function computey generates
a new signal.

Updates occur until the frequency f reaches the value fstop.

Note To set delay, double-click the Sinusoid Generator block and enter a
value (in seconds) in the Delay at each frequency field. To set fstep, enter
a value (in Hz) in the Step frequency field.

Stage 4: Termination of Complex Signal
When the frequency f reaches the value fstop, the state Stopped becomes
active. The complex signal terminates and the simulation ends.

Note To set fstop, double-click the Sinusoid Generator block and enter a
value (in Hz) in the Stop frequency field.

How the Analyzer Chart Works
Key features of the Analyzer chart include:

• Change detection of input frequency (see “Using Change Detection in
Actions” on page 10-83)

• MATLAB function that processes complex data (see Chapter 23, “Using
MATLAB Functions in Stateflow Charts”)

• State during action that contains complex operands (see “State Action
Types” on page 10-2)

18-30

Implementing a Spectrum Analyzer Using a Stateflow® Chart

Stage 1: Activation of State A
When the chart awakens, the values of y and yn initialize to zero.

• The data y stores the second-order system response to a signal from the
Sinusoid Generator block.

• The data yn stores an input signal of a given frequency.

Stage 2: Calculation of Frequency Response
For a given frequency, the MATLAB function computeOutputs finds the
magnitude and phase angle of the system response.

Code for the function appears below:

function computeOutputs

mag = abs(y)/abs(yn);
ang = -angle(y) + pi/2;

18-31

18 Using Complex Data in Stateflow® Charts

Stage 3: Change Detection of Input Frequency
The hasChanged operator detects if the input frequency f has changed since
the previous time step. If so, the MATLAB function calculates the magnitude
and phase angle for the new frequency.

How the Unwrap Chart Works
This chart unwraps the phase angle output of the Analyzer chart.
Unwrapping means preventing the phase angle from jumping more than π
radians or dropping more than –π radians.

• If the phase angle jumps more than π radians, the chart subtracts 2π
radians from the angle.

• If the phase angle drops more than –π radians, the chart adds 2π radians
to the angle.

18-32

19

Defining Interfaces to
Simulink Models and the
MATLAB Workspace

• “Overview of Stateflow Block Interfaces” on page 19-2

• “Specifying Chart Properties” on page 19-4

• “Setting the Stateflow Block Update Method” on page 19-13

• “Implementing Update Interfaces to Simulink Models” on page 19-15

• “Creating Specialized Chart Libraries for Large-Scale Modeling” on page
19-20

• “MATLAB Workspace Interfaces” on page 19-23

• “Interface to External Sources” on page 19-25

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Overview of Stateflow Block Interfaces

In this section...

“Stateflow Block Interfaces” on page 19-2

“Typical Tasks to Define Stateflow Block Interfaces” on page 19-3

“Where to Find More Information on Events and Data” on page 19-3

Stateflow Block Interfaces
Each Stateflow block interfaces to its Simulink model. Each Stateflow block
can interface to sources external to the Simulink model (data, events, custom
code). Events and data are the Stateflow objects that define the interface from
the point of view of the Stateflow block.

Events can be local to the Stateflow block or can be propagated to and from
the Simulink model and sources external to it. Data can be local to the
Stateflow block or can be shared with and passed to the Simulink model and
to sources external to the Simulink model.

The Stateflow interfaces include:

• Physical connections between Simulink blocks and the Stateflow block

• Event and data information exchanged between the Stateflow block and
external sources

• The properties of a Stateflow chart

• Graphical functions exported from a chart

See “Exporting Chart-Level Graphical Functions” on page 7-39 for more
details.

• The MATLAB workspace

See “Using MATLAB Functions and Data in Actions” on page 10-42 for
more details.

• Definitions in external code sources

19-2

Overview of Stateflow® Block Interfaces

Typical Tasks to Define Stateflow Block Interfaces
Defining the interface for a Stateflow block in a Simulink model involves some
or all the tasks described in the following topics:

• Specify the update method for a Stateflow block in a Simulink model.

This task is described in “Setting the Stateflow Block Update Method” on
page 19-13.

• Define the input and output data and events that you need.

See the following topics for detailed information:

- “Using Input Events to Activate a Stateflow Chart” on page 9-11

- “Using Output Events to Activate a Simulink Block” on page 9-24

- “Sharing Input and Output Data with Simulink Models” on page 8-29

• Add and define any nonlocal data and events with which your Stateflow
chart must interact.

• Define relationships with any external sources.

See the topics “MATLAB Workspace Interfaces” on page 19-23 and
“Interface to External Sources” on page 19-25.

The preceding task list is a typical sequence. You might find that another
sequence better complements your model development.

See “Implementing Update Interfaces to Simulink Models” on page 19-15 for
examples of implemented interfaces to Simulink models.

Where to Find More Information on Events and Data
See the following references for defining the interface of a Stateflow Chart
block in a Simulink model:

• “Using Input Events to Activate a Stateflow Chart” on page 9-11

• “Using Output Events to Activate a Simulink Block” on page 9-24

• “Sharing Input and Output Data with Simulink Models” on page 8-29

• “Sharing Chart Data with External Modules” on page 8-40

19-3

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Specifying Chart Properties

In this section...

“About Chart Properties” on page 19-4

“Setting Properties for a Single Chart” on page 19-4

“Setting Properties for All Charts in the Model” on page 19-11

About Chart Properties
You set part of the interface for a Stateflow block to its Simulink model when
you specify the properties for the chart of a Stateflow block. You can specify
properties for single charts or all charts in a model.

Setting Properties for a Single Chart
To specify properties for a single chart:

1 Double-click a chart to open it.

2 Right-click an open area of the chart and select Properties.

The Chart properties dialog box appears.

19-4

Specifying Chart Properties

19-5

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

3 Specify properties for the chart.

Field Description

Name Stateflow chart name; read-only; click this
hypertext link to bring the chart to the
foreground.

Machine Simulink subsystem name; read-only; click this
hypertext link to bring the Machine properties
dialog box to the foreground.

State Machine Type Type of state machine to create. Choices
include:

• Classic: Default state machine. Provides
full set of Stateflow chart semantics (see
Chapter 3, “Stateflow Chart Semantics”) .

• Mealy: State machine in which output is a
function of inputs and state.

• Moore: State machine in which output is a
function only of state.

Mealy and Moore charts use a subset
of Stateflow chart semantics. For more
information, see Chapter 6, “Building Mealy
and Moore Charts”.

Update method Method by which a simulation updates (wakes
up) a chart in a Simulink model (see “Setting
the Stateflow Block Update Method” on page
19-13). You can select Inherited, Discrete,
or Continuous. For more information about
continuous updating, see Chapter 16, “Modeling
Continuous-Time Systems in Stateflow Charts”.

Sample Time IfUpdate method is Discrete, enter a sample
time.

19-6

Specifying Chart Properties

Field Description

Enable zero-crossing
detection

If Update method is Continuous,
zero-crossing detection is enabled by default.
See “When to Enable Zero-Crossing Detection”
on page 16-10 in Chapter 16, “Modeling
Continuous-Time Systems in Stateflow
Charts”.

Enable C-bit
operations

Select this check box to recognize C bitwise
operators (~, &, |, ^, >>, and so on) in action
language statements and encode them as C
bitwise operations.

If you clear this check box, the following occurs:

• & and | are interpreted as logical operators.

• ^ is interpreted as the power operator
(for example, 2^3 = 8).

• The remaining expressions (>>, <<, and so
on) result in parse errors.

User specified
state/transition
execution order

Select this check box to use explicit ordering
of parallel states and transitions. In this
mode, you have complete control of the order
in which parallel states are executed and
transitions originating from a source are
tested for execution. For more information,
see “Execution Order for Parallel States” on
page 3-75 and “Evaluation Order for Outgoing
Transitions” on page 3-55.

Export Chart Level
Graphical Functions

Select this check box to export graphical
functions defined at the chart’s root level. See
“Exporting Chart-Level Graphical Functions”
on page 7-39 for more information.

19-7

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Field Description

Use Strong Data
Typing with
Simulink I/O

If you select this check box, the Chart block for
this chart can accept input signals of any data
type supported by Simulink software, provided
that the type of the input signal matches the
type of the corresponding chart input data item
(see “Sharing Input and Output Data with
Simulink Models” on page 8-29). If the types do
not match, a type mismatch error occurs.

If this item is cleared, the chart accepts
and outputs only signals of type double.
In this case, Stateflow software converts
Simulink input signals to the data types of
the corresponding chart input data items.
Similarly, Stateflow software converts chart
output data (see “Sharing Input and Output
Data with Simulink Models” on page 8-29) to
type double if this option is not selected.

For fixed-point data, see the note following this
table.

Execute (enter)
Chart At
Initialization

Select this check box if you want a chart’s state
configuration to be initialized at time 0 instead
of at the first occurrence of an input event (see
“Execution of a Chart at Initialization” on page
3-49).

Initialize Outputs
Every Time Chart
Wakes Up

Interprets the initial value of outputs every
time a chart wakes up, not only at time 0.
When you set an initial value for an output data
object, the output will be reset to that value.

Outputs are reset whenever a chart is triggered,
whether by function call, edge trigger, or clock
tick.

Enable this option to:

• Ensure all outputs are defined in every chart
execution

19-8

Specifying Chart Properties

Field Description

• Prevent latching of outputs (carrying over
values of outputs computed in previous
executions)

• Give all chart outputs a meaningful initial
value

Enable Super Step
Semantics

Select to enable Stateflow charts to take
multiple transitions in each time step until it
reaches a stable state. For more information,
see “Execution of a Chart with Super Step
Semantics” on page 3-40.

Maximum Iterations
in Each Super Step

If you enable super step semantics, specify
the maximum number of transitions the chart
should take in each time step.

Behavior after too
many iterations

If you enable super step semantics, specify how
the chart behaves after reaching the maximum
number of transitions before taking all valid
transitions. Options include:

• Proceed— Chart execution continues to the
next time step

• Throw Error — Simulation stops and an
error message appears

Note The Throw Error option is valid only for
simulation. In generated code, chart execution
always proceeds.

Support
variable-size arrays

Select to support chart input and output data
that vary in dimension during simulation.
For more information, see Chapter 14, “Using
Variable-Size Data in Stateflow Charts”.

19-9

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Field Description

States When
Enabling

If your chart uses function-call input events,
specify how states behave when the event
reenables the chart. Options include:

• Held— Maintain most recent values of the
states.

• Reset — Revert to the initial conditions of
the states.

• Inherit — Inherit this setting from the
parent subsystem.

For more information, see “Controlling States
When Function-Call Inputs Reenable Charts”
on page 9-16.

Debugger
breakpoint: On
chart entry

Select to set a debugging breakpoint on entry
to this chart.

Lock Editor Select to mark the chart as read-only and
prevent any write operations.

Description Textual description/comment.

Document link Enter a Web URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

Note For fixed-point data, the Use Strong Data Typing with Simulink
I/O option is always on. If an input or output fixed-point data in a chart
does not match its counterpart data in a model, a mismatch error results.

4 Click one of these buttons:

• Apply to save the changes

• Cancel to cancel any changes since the last apply

19-10

Specifying Chart Properties

• OK to save the changes and close the dialog box

• Help to display the online help in an HTML browser window

Setting Properties for All Charts in the Model
You can set some properties for all charts in the model by setting properties
for the Stateflow machine for a model. The Stateflow machine represents
all the Stateflow blocks in a model.

To set properties for the Stateflow machine:

1 In the Chart properties dialog box for a particular chart, select the
Machine link at the top of the dialog box.

The Machine properties dialog box appears.

2 Enter information in the fields that appear.

Field Description

Simulink Model Name of the Simulink model that defines
this Stateflow machine, which is read-only.
You change the model name in the Simulink
window when you save the model under a
chosen file name.

Creation Date Date on which this machine was created, which
is read-only.

Creator Name of the person who created this Stateflow
machine.

Modified Time of the most recent modification of this
Stateflow machine.

Version Version number of this Stateflow machine.

19-11

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Field Description

Use C-like bit
operations in new
charts

If you select this check box, all new charts
recognize C bitwise operators (~, &, |, ^, >>,
and so on) in action language statements and
encode these operators as C bitwise operations.

You can enable or disable this option for
individual charts or all charts in the model in
an individual chart’s property dialog box. See
“Setting Properties for a Single Chart” on page
19-4 for a detailed explanation of this property.

Description Brief description of this Stateflow machine,
which is stored with the model that defines it.

Document link MATLAB expression that, when evaluated,
displays documentation for this Stateflow
machine.

3 Click one of these buttons:

• Apply saves the changes.

• Cancel closes the dialog box without making any changes.

• OK saves the changes and closes the dialog box.

• Help displays the online help in an HTML browser window.

19-12

Setting the Stateflow® Block Update Method

Setting the Stateflow Block Update Method
Stateflow blocks are Simulink subsystems. Simulink events wake up
subsystems for execution. To specify a wakeup method, set Update method
in the Chart properties dialog box (see “Specifying Chart Properties” on page
19-4). Select one of the following wakeup methods:

• Inherited

This is the default update method. Specifying this method causes input
from the Simulink model to determine when the chart wakes up during a
simulation.

If you define input events for the chart, the Stateflow block is explicitly
triggered by a signal on its trigger port originating from a connected
Simulink block. This trigger input event can be set in the Model Explorer
to occur in response to a Simulink signal that is Rising, Falling, or Either
(rising and falling), or in response to a Function Call. See “Using Input
Events to Activate a Stateflow Chart” on page 9-11.

If you do not define input events, the Stateflow block implicitly inherits
triggers from the Simulink model. These implicit events are the sample
times (discrete or continuous) of the Simulink signals providing inputs to
the chart. If you define data inputs (see “Sharing Input and Output Data
with Simulink Models” on page 8-29), the chart awakens at the rate of the
fastest data input. If you do not define any data input for the chart, the
chart wakes up as defined by its parent subsystem’s execution behavior.

• Discrete

The Simulink model awakens (samples) the Stateflow block at the rate
you specify as the block’s Sample Time property. An implicit event is
generated at regular time intervals corresponding to the specified rate. The
sample time is in the same units as the Simulink simulation time. Other
blocks in the Simulink model can have different sample times.

19-13

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

• Continuous

Stateflow charts maintain mode in minor time steps and can define
continuous states and their derivatives. In addition, charts can register
zero crossings, allowing Simulink models to sample Stateflow charts
whenever state changes occur. See Chapter 16, “Modeling Continuous-Time
Systems in Stateflow Charts”.

19-14

Implementing Update Interfaces to Simulink® Models

Implementing Update Interfaces to Simulink Models

In this section...

“Defining a Triggered Stateflow Block” on page 19-15

“Defining a Sampled Stateflow Block” on page 19-16

“Defining an Inherited Stateflow Block” on page 19-17

“Defining a Continuous Stateflow Block” on page 19-18

“Defining Function-Call Output Events” on page 19-18

“Defining Edge-Triggered Output Events” on page 19-19

Defining a Triggered Stateflow Block
Essential conditions that define an edge-triggered Stateflow block are:

• The chart Update method (set in the Chart properties dialog box) is
Discrete or Inherited. (See “Specifying Chart Properties” on page 19-4.)

• The chart has an Input from Simulink event defined and an edge-trigger
type specified. (See “Using Input Events to Activate a Stateflow Chart” on
page 9-11.)

Triggered Stateflow Block Example
The following model shows an edge-triggered Stateflow block named Callee:

19-15

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

The Input from Simulink event has an Either edge-trigger type. If you
define more than one Input from Simulink event, the Simulink model
determines the sample times to be consistent with various rates of all the
incoming signals. The outputs of a triggered Stateflow block are held after the
execution of the block.

Defining a Sampled Stateflow Block
There are two ways you can define a sampled Stateflow block. Setting the
chart Update method (set in the Chart properties dialog box) to Discrete
and entering a Sample Time value define a sampled Stateflow block. (See
“Specifying Chart Properties” on page 19-4.)

Alternatively, you can add and define an Input from Simulink data object.
You add and define data using either the Stateflow Editor Add menu or the
Model Explorer. (See “Sharing Input and Output Data with Simulink Models”
on page 8-29.) Simulink determines the chart sample time to be consistent
with the rate of the incoming data signal.

The Sample Time you set in the Chart properties dialog box takes precedence
over the sample time of any Input from Simulink data.

Sampled Stateflow Block Example
You specify a discrete sample rate to have Simulink trigger a Stateflow block
that does use an explicit trigger port. You can specify a sample time for the
chart in the Chart properties dialog box. Simulink then calls the Stateflow
block at a defined, regular sample time.

19-16

Implementing Update Interfaces to Simulink® Models

The outputs of a sampled Stateflow block are held after the execution of the
block.

Defining an Inherited Stateflow Block
Essential conditions that define an inherited trigger Stateflow block are:

• The chart Update method (set in the Chart properties dialog box) is
Discrete or Inherited. (See “Specifying Chart Properties” on page 19-4)

• The chart has an Input from Simulink data object defined using
the Stateflow Editor Add menu or the Model Explorer. (See “Sharing
Input and Output Data with Simulink Models” on page 8-29.) Simulink
determines the chart sample time to be consistent with the rate of the
incoming data signal.

Inherited Stateflow Block Example
Simulink can trigger a Stateflow block that does not use an explicit trigger
port or a specified discrete sample time. In this case, the Simulink calls the
Stateflow block at a sample time determined by the model.

In this example, the chart contains two Input from Simulink data objects.
Simulink determines the sample times to be consistent with the rates of both
incoming signals.

The outputs of an inherited trigger Stateflow block are held after the
execution of the block.

19-17

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Defining a Continuous Stateflow Block
To define a continuous Stateflow block, set the chart Update method in
the Chart properties dialog box to Continuous. See Chapter 16, “Modeling
Continuous-Time Systems in Stateflow Charts”.

Defining Function-Call Output Events
This topic shows you how to trigger a function-call subsystem in a Simulink
model with a function-call output event in a Stateflow chart. The procedure
assumes that you have a programmed function-call subsystem and a Stateflow
block in the model. Use the following steps to connect the Stateflow block to
the function-call subsystem and trigger it during simulation.

1 In your chart, select Add > Event > Output to Simulink.

The Event properties dialog box appears with a default name of event and
a Scope of Output to Simulink.

2 Set Trigger to Function Call.

3 Name the event appropriately and click OK to close the dialog box.

An output port with the name of the event you add appears on the right
side of the Stateflow block.

4 Connect the output port on the Stateflow block for the function-call output
event to the input trigger port of the subsystem.

Avoid placing any other blocks in the connection lines between the
Stateflow block and the function-call subsystem.

Note You cannot connect a function-call output event from a chart to a
Demux block to trigger multiple subsystems.

5 To execute the function-call subsystem, include an event broadcast of the
function-call output event in the actions of the chart.

For examples of using function-call output events, see “Using Function Calls
to Activate a Simulink Block” on page 9-33.

19-18

Implementing Update Interfaces to Simulink® Models

Defining Edge-Triggered Output Events
Simulink controls the execution of edge-triggered subsystems with output
events. Essential conditions that define this use of triggered output events
are:

• The chart has an Output to Simulink event with the trigger type set to
Either. See “Using Output Events to Activate a Simulink Block” on page
9-24.

• The Simulink block connected to the edge-triggered Output to Simulink
event has its own trigger type set to the equivalent edge trigger.

For examples of using edge-triggered output events, see “Using Edge Triggers
to Activate a Simulink Block” on page 9-24.

19-19

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Creating Specialized Chart Libraries for Large-Scale
Modeling

In this section...

“When to Use Chart Libraries” on page 19-20

“How to Create Chart Libraries” on page 19-20

“Properties You Can Specialize Across Instances of Library Blocks” on
page 19-21

“Limitations of Library Charts” on page 19-22

When to Use Chart Libraries
In Simulink, you can create your own block libraries as a way to reuse the
functionality of blocks or subsystems in one or more models. Similarly, you
can reuse a set of Stateflow algorithms by encapsulating the functionality in
a chart library.

As with other Simulink block libraries, you can specialize each instance of
chart library blocks in your model to use different data types, sample times,
and other properties. Library instances that inherit the same properties can
reuse generated code.

For more information about Simulink block libraries, see “Working with Block
Libraries” in the Simulink documentation.

How to Create Chart Libraries

1 Add Stateflow charts with polymorphic logic to a Simulink model.

Polymorphic logic is logic that can process data with different properties,
such as type, size, and complexity.

2 Configure the charts to inherit the properties you want to specialize.

For a list, see “Properties You Can Specialize Across Instances of Library
Blocks” on page 19-21.

19-20

Creating Specialized Chart Libraries for Large-Scale Modeling

3 Optionally, customize your charts using masking.

For more information, see “Masks on Blocks in User Libraries” in the
Simulink documentation.

4 Simulate and debug your charts.

5 In Simulink, create a library model by selecting File > New > Library.

6 Copy or drag the charts into a library model.

For an example using MATLAB Function blocks, see “Creating Custom Block
Libraries with MATLAB Function Blocks” in the Simulink documentation.

Properties You Can Specialize Across Instances of
Library Blocks
You can specialize instances of Stateflow library blocks by allowing them to
inherit any of the following properties from Simulink.

Property Inherits by
Default?

How to Specify Inheritance

Type Yes Set the data type property to Inherit:
Same as Simulink.

Size Yes Set the data size property to -1.

Complexity Yes Set the data complexity property to
Inherited.

Limit range No Specify minimum and maximum values
as Simulink parameters. For example, if
minimum value = aParam and maximum
value = aParam + 3, different instances of
a Stateflow library block can resolve to
different aParam parameters defined in
their parent mask subsystems.

19-21

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

Property Inherits by
Default?

How to Specify Inheritance

Initial value Depends on
scope

For local data, temporary data, and
outputs, specify initial values as Simulink
parameters. Other data always inherits
the initial value:

• Parameters inherit the initial value
from the associated parameter in the
parent mask subsystem.

• Inputs inherit the initial value from the
Simulink input signal.

• Data store memory inherits the initial
value from the Simulink data store to
which it is bound.

Sampling mode
(input)

Yes Stateflow chart input ports always inherit
sampling mode.

Data type
override mode
for fixed-point
data

Yes Different library instances inherit
different data type override modes from
their ancestors in the model hierarchy.

Sample time
(block)

Yes Set the block sample time property to -1.

Limitations of Library Charts
Events parented by a library Stateflow machine are invalid. The parser flags
such events as errors.

19-22

MATLAB® Workspace Interfaces

MATLAB Workspace Interfaces

In this section...

“About the MATLAB Workspace” on page 19-23

“Examining the MATLAB Workspace” on page 19-23

“Interfacing the MATLAB Workspace with Charts” on page 19-23

About the MATLAB Workspace
The MATLAB workspace is an area of memory normally accessible from the
MATLAB command line. It maintains a set of variables built up during a
MATLAB session.

Examining the MATLAB Workspace
Two commands, who and whos, show the current contents of the workspace.
The who command gives a short list, while whos also gives size and storage
information.

To delete all the existing variables from the workspace, enter clear all
at the MATLAB command line. See the MATLAB documentation for more
information.

Interfacing the MATLAB Workspace with Charts
A chart has the following access to the MATLAB workspace:

• You can access MATLAB data or MATLAB functions in Stateflow action
language with the ml namespace operator or the ml function.

See “Using MATLAB Functions and Data in Actions” on page 10-42 for
more information.

• You can use the MATLAB workspace to initialize chart data at the
beginning of a simulation.

See “Entering Expressions and Parameters for Data Properties” on page
8-26.

• You can save chart data to the workspace at the end of a simulation.

19-23

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

See “Saving Data to the MATLAB Workspace” on page 8-32 for more
information.

19-24

Interface to External Sources

Interface to External Sources

In this section...

“Introduction” on page 19-25

“Exported Data” on page 19-25

“Imported Data” on page 19-26

“Exported Events” on page 19-27

“Imported Events” on page 19-28

Introduction
Any source of data, events, or code that is outside a Stateflow chart, its
Stateflow machine, or its Simulink model, is considered external to that
Stateflow chart. You can interface data and events from external sources
to your Stateflow chart. See Chapter 8, “Defining Data” and Chapter 9,
“Defining Events” for information on defining data and events.

You can include external source code in the Simulation Target > Custom
Code pane of the Configuration Parameters dialog box. (For details, see
Chapter 25, “Building Targets”.)

Exported Data
You might want an external source (outside the chart and the model) to
be able to access a data object. By defining the scope of a data object as
Exported, you make it accessible to external sources. Exported data must
be parented by the Stateflow machine, because the machine is the highest
level in the Stateflow hierarchy and can interface to external sources. The
Stateflow machine also retains the ability to access the exported data object.
Exporting the data object does not imply anything about what the external
source does with the data. It is the responsibility of the external source to
include the exported data object (in the manner appropriate to the source) to
make use of the right to access the data.

If the external source is another Stateflow machine, then that machine
defines an exported data object, and the other machine defines the same data

19-25

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

object as Imported. Stateflow software generates the appropriate export and
import data code for both machines.

Exported Data Example
Suppose that you want to export a Stateflow data object named ext_data.
Follow these steps:

1 In your Stateflow machine, define data named ext_data of Exported scope.

2 Define ext_data as imported in the external code source (custom code)
using the following format:

extern int ext_data;

void func_example(void)
{
...
ext_data = 123;
...
}

Stateflow software generates the following code for the exported data:

int ext_data;

Imported Data
Similarly, you might want to access a data object that is defined outside the
chart and the model. If you define the scope of the data as Imported, you
can access the data anywhere in the hierarchy of the Stateflow machine.
The parent of an imported data object is external. However, the data object
needs an adoptive parent to resolve symbols for code generation. The adoptive
parent of an imported data object must be the Stateflow machine, because the
machine is the highest level in the hierarchy and can interface to external
sources. It is the responsibility of the external source to make the imported
data object available (in the manner appropriate to the source).

If the external source for the data is another Stateflow machine, that machine
must define the same data object as Exported. Stateflow software generates
the appropriate import and export data code for both machines.

19-26

Interface to External Sources

Imported Data Example
Suppose that you want to import a Stateflow data object named ext_data.
Follow these steps:

1 In your Stateflow machine, define data named ext_data of Imported scope.

2 Define ext_data as exported in the external code source (custom code)
using the following format:

int ext_data;

void func_example(void)
{
...
}

Stateflow software generates the following code for the imported data:

extern int ext_data;

Exported Events
You might want an external source (outside the chart and the model) to be
able to broadcast an event. By defining the scope of an event to be Exported,
you make that event available to external sources for broadcast purposes.
Exported events must be parented by the Stateflow machine, because the
machine is the highest level in the hierarchy and can interface to external
sources. The Stateflow machine also retains the ability to broadcast the
exported event. Exporting the event does not imply anything about what
the external source does with the information. It is the responsibility of the
external source to include the Exported event (in the manner appropriate to
the source) to make use of the right to broadcast the event.

If the external source for the event is another Stateflow machine, then that
machine must define the event as an Exported event, and the other machine
must define the same event as Imported. Stateflow software generates the
appropriate export and import event code for both machines.

Consider a typical example of when to define an Exported event. Suppose
that you have a pager and you give a few people your pager number. These
people can call that number and page you at any time. You do not usually

19-27

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

page yourself, but you can do so. Telling someone the pager number does not
mean they have heard and recorded the number. It is the other person’s
responsibility to retain the number.

Exported Event Example
Suppose that you want to export a Stateflow event named e. Follow these
steps:

1 In your Stateflow machine, define an event named e of Exported scope.

2 Define e as imported in the external code source (custom code) using the
following format:

void func_example(void)
{
extern void broadcast_e (void);
...
external_broadcast_e();
...
}

Stateflow software generates the following code for the exported event:

void broadcast_e (void)
{
/* code based on

event definition
*/
...
}

Imported Events
You might want to broadcast an event that is defined externally (outside
the chart and the model). By defining the scope of an event to be Imported,
you can broadcast the event anywhere within the hierarchy of that machine
(including any offspring of the machine).

The parent of an imported event is external. However, the event needs an
adoptive parent to resolve symbols for code generation. The adoptive parent
of an imported event must be the Stateflow machine, because the machine is

19-28

Interface to External Sources

the highest level in the hierarchy and can interface to external sources. It is
the responsibility of the external source to make the imported event available
(in the manner appropriate to the source).

If the external source is another Stateflow machine, the source machine
must define the same event as Exported. Stateflow software generates the
appropriate import and export event code for both machines.

The preceding pager example for exported events can clarify the use of
imported events. For example, someone buys a pager and tells you that you
might want to use this number to page them in the future, and they give
you the pager number to record. You can then use that number to page that
person.

Imported Event Example
Suppose that you want to import a Stateflow event named e. Follow these
steps:

1 In your Stateflow machine, define an event named e of Imported scope.

2 Define e as exported in the external code source (custom code) using the
following format:

void broadcast_e (void)
{
...
}

Stateflow software generates the following code for the imported event:

extern void broadcast_e (void);

19-29

19 Defining Interfaces to Simulink® Models and the MATLAB® Workspace

19-30

20

Working with Structures
and Bus Signals in
Stateflow Charts

• “About Stateflow Structures” on page 20-2

• “Defining Stateflow Structures” on page 20-8

• “Structure Operations” on page 20-17

• “Integrating Custom Structures in Stateflow Charts” on page 20-22

• “Debugging Structures” on page 20-26

20 Working with Structures and Bus Signals in Stateflow® Charts

About Stateflow Structures

In this section...

“What Is a Stateflow Structure?” on page 20-2

“What You Can Do with Structures” on page 20-2

“Example of Stateflow Structures” on page 20-2

What Is a Stateflow Structure?
A Stateflow structure is a data type that you define as a Simulink.Bus object.
The elements of a Stateflow structure data type are called fields. The fields
can be any combination of individual signals, muxed signals, vectors, and
buses. Each field has its own data type, which need not match that of any
other field.

What You Can Do with Structures
With the Stateflow structure data type, you can create:

• Inputs and outputs for accessing Simulink bus signals from Stateflow
charts, Truth Table blocks, and MATLAB Function blocks (see “Defining
Structure Inputs and Outputs” on page 20-8)

• Local structure data in Stateflow charts, truth tables, graphical functions,
MATLAB functions, and boxes (see “Defining Local Structures” on page
20-12)

• Temporary structure data in Stateflow graphical functions, truth tables,
and MATLAB functions (see “Defining Temporary Structures” on page
20-14)

Example of Stateflow Structures
The model sfbus_demo provides examples of structures in a Stateflow chart:

20-2

About Stateflow® Structures

The chart contains a graphical function:

In this model, the Stateflow chart receives a bus input signal using the
structure inbus at input port 1 and outputs a bus signal from the structure
outbus at output port 1. The input signal comes from the Simulink Bus

20-3

20 Working with Structures and Bus Signals in Stateflow® Charts

Creator block COUNTERBUSCreator, which bundles signals from two other Bus
Creator blocks: SIGNALBUSCreator and LIMITBUSCreator. The structure
outbus connects to a Simulink Bus Selector block BUSSelector. The
Stateflow chart also contains a local structure counterbus_struct and a
graphical function get_input_signal that contains an input structure u
and output structure y.

Structure Definitions in sfbus_demo Stateflow Chart
Definitions of structures in the chart of the sfbus_demo model appear in the
Model Explorer as follows:

20-4

About Stateflow® Structures

Note The local structure counterbus_struct is defined using the type
operator in an expression, as described in “Defining Structure Types with
Expressions” on page 20-15.

Structure Definitions in sfbus_demo Stateflow Graphical
Function
Definitions of structures in the graphical function get_input_signal appear
in the Model Explorer as follows:

20-5

20 Working with Structures and Bus Signals in Stateflow® Charts

Simulink Bus Objects Define Stateflow Structures
Each Stateflow structure must be defined by a Simulink.Bus object in the
base workspace. The structure shares the same properties as the bus object,
including number, name, and type of fields. For example, the sfbus_demo
model defines the following bus objects in the base workspace:

You can find the bus object that defines a Stateflow structure by looking
in the Data Type and Compiled Type columns in the Contents pane of
the Model Explorer. For example, the structures inbus, outbus, and
counterbus_struct are all defined in sfbus_demo by the same Simulink
bus object, COUNTERBUS.

20-6

About Stateflow® Structures

Based on these definitions, inbus, outbus, and counterbus_struct have the
same properties as COUNTERBUS. For example, these Stateflow structures
in sfbus_demo reference their fields by the same names as the elements in
COUNTERBUS, as follows:

Structure First Field Second Field

inbus inbus.inputsignal inbus.limits

outbus outbus.inputsignal outbus.limits

counterbus_struct counterbus_struct.inputsignal counterbus_struct.limits

To learn how to define structures in Stateflow charts using Simulink.Bus
objects, see “Defining Stateflow Structures” on page 20-8.

If you define a custom structure in C for your Stateflow chart, you must make
sure that the structure’s typedef declaration in your header file matches the
properties of the Simulink.Bus object that defines the structure, as described
in “Integrating Custom Structures in Stateflow Charts” on page 20-22.

20-7

20 Working with Structures and Bus Signals in Stateflow® Charts

Defining Stateflow Structures

In this section...

“Rules for Defining Structure Data Types in Charts” on page 20-8

“Defining Structure Inputs and Outputs” on page 20-8

“Defining Local Structures” on page 20-12

“Defining Structures of Parameter Scope” on page 20-13

“Defining Temporary Structures” on page 20-14

“Defining Structure Types with Expressions” on page 20-15

Rules for Defining Structure Data Types in Charts
Follow these rules when defining structures in Stateflow charts:

• You must define each structure as a Simulink.Bus object in the base
workspace.

• You cannot define structures for Stateflow machines.

Note The Stateflow machine is the object that contains all other Stateflow
objects in a Simulink model (see “Stateflow Hierarchy of Objects” on page
1-8).

• Structures cannot have these scopes: Constant or Data Store Memory.

• Structures of parameter scope must be tunable.

• Data array objects cannot contain structures.

• Structures cannot contain arrays of buses.

• Structures cannot use Simulink.StructType, which is unsupported for
charts.

Defining Structure Inputs and Outputs

• “Interfacing Stateflow Structures with Simulink Bus Signals” on page 20-9

20-8

Defining Stateflow® Structures

• “Working with Virtual and Nonvirtual Buses” on page 20-11

Interfacing Stateflow Structures with Simulink Bus Signals
You can drive Stateflow structure inputs by using any Simulink bus signal
that has matching properties. Similarly, Stateflow charts can output
structures to Simulink blocks that accept bus signals.

To create inputs and outputs in Stateflow charts:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data object as described in “Adding Data
Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select either Input or Output.

6 In the Type field, select Inherit: Same as Simulink, Bus: <object
name>, or <data type expression> according to these guidelines:

20-9

20 Working with Structures and Bus Signals in Stateflow® Charts

Type Works with
Scope

Requirements

Inherit:
Same as
Simulink

Input You do not need to specify a value. The data type is inherited
from previously-defined data, based on the scope you selected for
the data object.

There must be a Simulink bus signal in your model that connects
to the Stateflow structure input.

The Simulink bus signal must be a nonvirtual bus (see “Working
with Virtual and Nonvirtual Buses” on page 20-11).

You must specify a Simulink.Bus object in the base workspace
with the same properties as the bus signal in your model that
connects to the Stateflow structure input. The following properties
must match:

• Number, name, and type of inputs

• Dimension

• Sample Time

• Complexity

• Sampling Mode

If your input signal comes from a Bus Creator block, you must
check the option Specify properties via bus object in the Bus
Creator properties dialog box. When you enable this option, the
Simulink model verifies that the properties of the Simulink.Bus
object in the base workspace match the properties of the Simulink
bus signal.

20-10

Defining Stateflow® Structures

Type Works with
Scope

Requirements

Bus:
<object
name>

Input or
Output

Replace “<object name>” in the Type field with the name of
the Simulink.Bus object in the base workspace that defines the
Stateflow structure. For example: Bus: inbus.

Note You are not required to specify a bus signal in your
Simulink model that connects to the Stateflow structure input
or output. However, if you do specify a bus signal, its properties
must match the Simulink.Bus object that defines the Stateflow
structure input or output.

<date type
expression>

Input or
Output

Replace “<data type expression>” in the Type field with an
expression that evaluates to a data type.Enter the expression
according to these guidelines:

• For structure inputs, you can use the Stateflow type operator
to assign the type of your structure based on the type of
another structure defined in the Stateflow chart, as described
in “Defining Structure Types with Expressions” on page 20-15.

Note You cannot use the type operator for structure outputs
(structures of scope Output).

• For structure inputs or outputs, you can enter the name of the
Simulink.Bus object in the base workspace that defines the
Stateflow structure.

7 Click Apply.

Working with Virtual and Nonvirtual Buses
Simulink models support virtual and nonvirtual buses. Virtual buses read
their inputs from noncontiguous memory, while nonvirtual buses read their
inputs from data structures stored in contiguous memory (see “Virtual and
Nonvirtual Buses” in the Simulink documentation).

20-11

20 Working with Structures and Bus Signals in Stateflow® Charts

Stateflow charts support nonvirtual buses only. When Simulink models
contain Stateflow structure inputs and outputs, a hidden converter block
converts bus signals for use with Stateflow charts, as follows:

• Converts incoming virtual bus signals to nonvirtual buses for Stateflow
structure inputs

• Converts outgoing nonvirtual bus signals from Stateflow charts to virtual
bus signals, if necessary

Even though this conversion process allows Stateflow charts to accept virtual
and nonvirtual buses as input, Stateflow structures cannot inherit properties
from virtual bus input signals. If the input to a chart is a virtual bus, you must
set the data type mode of the Stateflow bus input to Bus Object, as described
in “Interfacing Stateflow Structures with Simulink Bus Signals” on page 20-9.

Defining Local Structures
To define local structures:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data object as described in “Adding Data
Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select Local.

6 In the Type field, select either Bus: <object name>, or <data type
expression>, and then specify the expression as follows:

20-12

Defining Stateflow® Structures

Type What to Specify

Bus: <object
name>

Replace “<object name>” in the Type field with the name of the Simulink.Bus
object in the base workspace that defines the Stateflow structure. For example:
Bus: inbus.

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can enter any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Defining Structure Types with Expressions” on page 20-15

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Defining Structures of Parameter Scope
To define structures of parameter scope:

1 Create a Simulink bus object in the base workspace to define the structure
type for your chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data object as described in “Adding Data
Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select Parameter.

20-13

20 Working with Structures and Bus Signals in Stateflow® Charts

6 In the Type field, select either Bus: <object name>, or <data type
expression>, and then specify the expression as follows:

Type What to Specify

Bus: <object
name>

Replace “<object name>” in the Type field with the name of the Simulink.Bus
object in the base workspace that defines the Stateflow structure. For example:
Bus: inbus.

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can enter any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Defining Structure Types with Expressions” on page 20-15

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Tip Stateflow structures with parameter scope must be tunable. To ensure
tunability, open the Configuration Parameters dialog box and clear the Inline
parameters check box on the Optimization > Signals and Parameters
pane. In this case, each element in the structure is tunable.

For more information, see “Tunable Parameters” in the Simulink
documentation.

Defining Temporary Structures
You can define temporary structures in truth tables, graphical functions, and
MATLAB functions of a Stateflow chart.

To define a temporary structure:

1 Create a Simulink bus object in the base workspace to define the structure
type for your chart.

20-14

Defining Stateflow® Structures

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Select Tools > Explore in the Stateflow Editor to open the Model Explorer.

3 In the Model Explorer, add a data object to your function as described in
“Adding Data Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select Temporary.

6 In the Type field, select either Bus: <object name>, or <data type
expression>, and then specify the expression as follows:

Type What to Specify

Bus: <object
name>

Replace “<object name>” in the Type field with the name of the Simulink.Bus
object in the base workspace that defines the Stateflow structure. For example:
Bus: inbus.

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can enter any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Defining Structure Types with Expressions” on page 20-15

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Defining Structure Types with Expressions
You can define structure types with expressions that call the Stateflow type
operator. This operator assigns the type of your structure based on the type
of another structure defined in the Stateflow chart. For example, the model

20-15

20 Working with Structures and Bus Signals in Stateflow® Charts

sfbus_demo contains a local structure whose type is defined using a type
operator expression, as follows:

In this case, the structure counterbus_struct derives its type from
structure inbus, which is defined by the Simulink.Bus object COUNTERBUS.
Therefore, the structure counterbus_struct is also defined by the bus object
COUNTERBUS.

To learn how to use the Stateflow type operator, see “Deriving Data Types
from Previously Defined Data” on page 8-48.

20-16

Structure Operations

Structure Operations

In this section...

“Indexing Sub-Structures and Fields” on page 20-17

“Guidelines for Assignment of Values” on page 20-19

“Getting Addresses” on page 20-20

Indexing Sub-Structures and Fields
You index substructures and fields of Stateflow structures by using dot
notation. With dot notation, the first text string identifies the parent object,
and subsequent text strings identify the children along a hierarchical path.
When the parent is a structure, its children are individual fields or fields that
contain other structures (also called substructures). By default, the names
of the fields of a Stateflow structure match the names of the elements of the
Simulink.Bus object that defines the structure.

Suppose that you have the following model:

In this example, the SubBus and BusObject blocks to the left of the chart are
Bus Creator blocks. The BusObject block to the right of the chart is a Bus
Selector block.

20-17

20 Working with Structures and Bus Signals in Stateflow® Charts

The following structures are defined in the chart:

Name of Structure Scope Defined By
Simulink.Bus Object

in Input BusObject

out Output BusObject

subbus Local SubBus

The Simulink.Bus objects that define these structures have the following
elements:

By default, Stateflow structures in and out have the same fields — sb, a,
b, and c — as the elements of Simulink.Bus object BusObject. Similarly,

20-18

Structure Operations

the Stateflow structure subbus has the same field ele as the element of
Simulink.Bus object SubBus. Based on these specifications, the following
table shows how the Stateflow chart resolves symbols in dot notation for
indexing fields of the structures in this example:

Dot Notation Symbol Resolution

in.c Field c of input structure in

in.a[1] Second value of the vector field a of input structure in

out.sb Substructure sb of output structure out

in.sb.ele[2][3] Value in the third row, fourth column of field ele of
substructure sb of input structure in

subbus.ele[1][1] Value in the second row, second column of field ele
of local structure subbus

Guidelines for Assignment of Values
You can assign values to any Stateflow structure except input structures —
that is, a structure with scope equal to Input. Here are the guidelines for
assigning values to output, local, parameter, and temporary structures:

Operation Conditions

Assign one structure to another
structure

You must define both structures
with the same Simulink.Bus object
in the base workspace.

Assign one structure to a
substructure of a different structure
and vice versa

You must define the structure with
the same Simulink.Bus object in the
base workspace as the substructure.

Assign a field of one structure to a
field of another structure

The fields must have the same type
and size.

Note In this case, you do not need
to define the Stateflow structures
with the same Simulink.Bus object
in the base workspace.

20-19

20 Working with Structures and Bus Signals in Stateflow® Charts

For example, the following table presents valid and invalid structure
assignments based on specifications for the sfbus_demo model, as described in
“Example of Stateflow Structures” on page 20-2:

Assignment Valid or
Invalid?

Rationale

outbus = inbus; Valid Both outbus and inbus are defined
by the same Simulink.Bus object,
COUNTERBUS.

inbus = outbus; Invalid You cannot write to input structures.

inbus.limits = outbus.limits; Invalid You cannot write to fields of input
structures.

counterbus_struct = inbus; Valid Both counterbus_struct and inbus
are defined by the same Simulink.Bus
object, COUNTERBUS.

counterbus_struct.inputsignal =
inbus.inputsignal;

Valid Both
counterbus_struct.inputsignal
and inbus.inputsignal have the
same type and size because they
each reference field inputsignal, a
substructure of the Simulink.Bus
object COUNTERBUS.

outbus.limits.upper_saturation_limit
= inbus.inputsignal.input;

Valid The field upper_saturation_limit
from limits, a substructure of
COUNTERBUS, has the same type
and size as the field input from
inputsignal, a different substructure
of COUNTERBUS.

outbus.limits = inbus.inputsignal; Invalid The substructure limits is defined by
a different Simulink.Bus object than
the substructure inputsignal.

Getting Addresses
When you write custom functions that take structure pointers as arguments,
you must pass the structures by address. To get addresses of Stateflow

20-20

Structure Operations

structures and structure fields, use the & operator, as in the following
examples:

• &in — Address of Stateflow structure in

• &in.b— Address of field b in Stateflow structure in

The model sfbus_demo contains a custom C function counterbusFcn that
takes structure pointers as arguments, defined as follows in a custom header
file:

...
extern void counterbusFcn

(COUNTERBUS *u1, int u2, COUNTERBUS *y1, int *y2);
...

To call this function, you must pass addresses to two structures defined by the
Simulink.Bus object COUNTERBUS, as in this example:

counterbusFcn(&counterbus_struct, u2, &outbus, &y2);

See “Example of Stateflow Structures” on page 20-2 for a description of the
structures defined in sfbus_demo.

20-21

20 Working with Structures and Bus Signals in Stateflow® Charts

Integrating Custom Structures in Stateflow Charts
You can define custom structures in C code, which you can then integrate with
your chart for simulation and real-time code generation. Follow these steps:

1 Define your structure in C, creating custom source and header files.

The header file must contain the typedef statements for your structures.
For example, the model sfbus_demo uses custom structures, defined in a
custom header file as follows:

...
#include "tmwtypes.h"

typedef struct {
int input;

} SIGNALBUS;

typedef struct {
int upper_saturation_limit;
int lower_saturation_limit;

} LIMITBUS;

typedef struct {
SIGNALBUS inputsignal;
LIMITBUS limits;

} COUNTERBUS;
...

2 Define a Simulink.Bus object in the base workspace that matches each
custom structure typedef.

20-22

Integrating Custom Structures in Stateflow® Charts

For example, the model sfbus_demo defines the following Simulink.Bus
objects to match each typedef in the custom header file:

3 Open the Bus Editor and for each bus object in the base workspace defined
in custom code, add the name of the header file that contains the matching
typedef.

20-23

20 Working with Structures and Bus Signals in Stateflow® Charts

For example, the model sfbus_demo specifies the custom header file
counterbus.h for the bus object COUNTERBUS:

4 Configure your chart to include custom C code, as follows.

20-24

Integrating Custom Structures in Stateflow® Charts

To Include
Custom C
Code:

Do This:

In code
generated for
simulation

Follow these steps:
1 Open the chart that uses your custom C structures.
2 Open the Configuration Parameters dialog box.
3 In the Configuration Parameters dialog box, select
Simulation Target > Custom Code in the Select
tree.

Custom code options appear in the right pane.
4 Specify your custom code as described in “Task 1:
Include Custom C Code in the Simulation Target” on
page 25-9.

For more information, see Chapter 25, “Building
Targets”.

In code
generated
for real-time
applications

Follow these steps:
1 Open the chart that uses your custom C structures.
2 Open the Configuration Parameters dialog box.
3 In the Configuration Parameters dialog box, select
Code Generation > Custom Code in the Select tree.

Custom code options appear in the right pane.
4 Follow instructions in “Integrating External Code
Using Model Configuration Parameters” in the
Simulink Coder documentation.

5 Build your model and fix errors (see “Debugging Structures” on page 20-26).

6 Run your model.

20-25

20 Working with Structures and Bus Signals in Stateflow® Charts

Debugging Structures
You debug structures as you would other Stateflow chart data, as described in
Chapter 26, “Debugging and Testing Stateflow Charts”. Using the Stateflow
Debugger, you can examine the values of structure fields during simulation,
either from the graphical debugging window or from the command line, as
described in “Watching Data Values During Simulation” on page 26-42. To
view the values of structure fields at the command line, use dot notation
to index into the structure, as described in “Indexing Sub-Structures and
Fields” on page 20-17.

20-26

21

Stateflow Design Patterns

This chapter describes Stateflow patterns that you can use to address design
challenges that occur when developing and implementing embedded software.
Think of these design patterns as templates that you can customize for your
own applications.

• “Debouncing Signals” on page 21-2

• “Scheduling Execution of Simulink Subsystems” on page 21-8

• “Implementing Dynamic Test Vectors” on page 21-20

21 Stateflow® Design Patterns

Debouncing Signals

In this section...

“Why Debounce Signals” on page 21-2

“The Debouncer Model” on page 21-3

“Key Behaviors of Debouncer Chart” on page 21-4

“Running the Debouncer” on page 21-6

Why Debounce Signals
When a switch opens and closes, the switch contacts can bounce off each other
before the switch completely transitions to an on or off state. The bouncing
action can produce transient signals that do not represent a true change of
state. Therefore, when modeling switch logic, it is important to filter out
transient signals using a process called debouncing.

For example, if you model a controller in a Stateflow chart, you do not
want your switch logic to overwork the controller by turning it on and off
in response to every transient signal it receives. Instead, you can design a
Stateflow debouncer that uses temporal logic to determine whether the switch
is really on or off.

21-2

Debouncing Signals

The Debouncer Model
The model sf_debouncer illustrates a design pattern that uses temporal logic
to isolate transient signals.

21-3

21 Stateflow® Design Patterns

The Debouncer chart contains the following logic:

Key Behaviors of Debouncer Chart
The key behaviors of the Debouncer chart are:

• “Intermediate Debounce State Isolates Transients” on page 21-4

• “Temporal Logic Determines True State” on page 21-5

Intermediate Debounce State Isolates Transients
In addition to the states On and Off, the Debouncer chart contains an
intermediate state called Debounce. The Debounce state isolates transient
inputs by checking whether the signals retain their positive or negative

21-4

Debouncing Signals

values, or fluctuate between zero crossings over a prescribed period of time.
The logic works as follows.

If the input signal... Then this state... Transitions to... And the...

Retains positive value
for 0.1 second

Debounce.On On Switch turns on

Retains negative value
for 0.1 second

Debounce.Off Off Switch turns off

Fluctuates between
zero crossings for 0.3
second

Debounce Off.Fault

Note The Debounce
to Off.Fault transition
comes from a
higher level in the
chart hierarchy
and overrides the
transitions from
the Debounce.Off
and Debounce.On
substates.

Chart isolates the
input as a transient
signal and gives it
time to recover

Temporal Logic Determines True State
The debouncer design pattern uses temporal logic to:

• Determine whether the input signal is normal or transient

• Give transient signals time to recover and return to normal state

Using Absolute-Time Temporal Logic. The debouncer design uses the
after(n, sec) operator to implement absolute-time temporal logic (see
“Operators for Absolute-Time Temporal Logic” on page 10-70). The keyword
sec defines simulation time that has elapsed since activation of a state.

21-5

21 Stateflow® Design Patterns

Using Event-Based Temporal Logic. As an alternative to absolute-time
temporal logic, you can apply event-based temporal logic to determine true
state in the Debouncer chart by using the after(n, tick) operator (see
“Operators for Event-Based Temporal Logic” on page 10-64). The keyword
tick specifies and implicitly generates a local event when the chart awakens
(see “Using Implicit Events” on page 9-40).

The Error Generator block in the sf_debouncer model generates a pulse
signal every 0.001 second. Therefore, to convert the absolute-time temporal
logic specified in the Debouncer chart to event-based logic, multiply the n
argument by 1000, as follows.

Absolute Time-Based Logic Event-Based Logic

after (0.1, sec) after (100, tick)

after (0.3, sec) after (300, tick)

after (1, sec) after (1000, tick)

Running the Debouncer
To run the sf_debouncer model, follow these steps:

1 Open the model by typing sf_debouncer at the MATLAB command prompt.

2 Open the Stateflow chart Debouncer and the Scope block.

3 Simulate the chart.

21-6

Debouncing Signals

The scope shows how the debouncer isolates transient signals from the
noisy input signal.

Note To debounce the signals using event-based logic, change the
Debouncer chart as described in “Using Event-Based Temporal Logic” on
page 21-6 and simulate the chart again. You should get the same results.

21-7

21 Stateflow® Design Patterns

Scheduling Execution of Simulink Subsystems

In this section...

“When to Implement Schedulers Using Stateflow Charts” on page 21-8

“Types of Scheduler Patterns” on page 21-8

“Scheduling Multiple Subsystems in a Single Time Step Using a Ladder
Logic Scheduler” on page 21-9

“Scheduling One Subsystem in a Single Time Step Using a Loop Scheduler”
on page 21-13

“Scheduling Subsystems to Execute at Specific Times Using a Temporal
Logic Scheduler” on page 21-17

When to Implement Schedulers Using Stateflow
Charts
Use Stateflow charts to schedule the order of execution of Simulink
subsystems explicitly in a model. Stateflow schedulers extend control
of subsystem execution in a Simulink model, which determines order of
execution implicitly based on block connectivity via sample time propagation.

Types of Scheduler Patterns
You can implement the following types of schedulers using Stateflow charts.

Scheduler
Design
Pattern

Description

Ladder logic
scheduler

Schedules multiple Simulink subsystems to execute in a
single time step

Loop
scheduler

Schedules one Simulink subsystem to execute multiple
times in a single time step

Temporal
logic
scheduler

Schedules Simulink subsystems to execute at specific times

21-8

Scheduling Execution of Simulink® Subsystems

Scheduling Multiple Subsystems in a Single Time Step
Using a Ladder Logic Scheduler
The ladder logic scheduler design pattern allows you to specify the order in
which multiple Simulink subsystems execute in a single time step. The model
sf_ladder_logic_scheduler illustrates this design pattern.

21-9

21 Stateflow® Design Patterns

The Ladder Logic Scheduler chart contains the following logic:

Key Behaviors of Ladder Logic Scheduler
The key behaviors of the ladder logic scheduler are:

• “Function-Call Output Events Trigger Multiple Subsystems” on page 21-10

• “Flow Graph Determines Order of Execution” on page 21-11

Function-Call Output Events Trigger Multiple Subsystems. In a given
time step, the Stateflow chart broadcasts a series of function-call output
events to trigger the execution of three function-call subsystems — A1, A2,
and A3— in the Simulink model in an order determined by the ladder logic
scheduler. Here is the sequence of activities during each time step:

1 The Simulink model activates the Stateflow chart Edge to Function at a
rising edge of the 1-millisecond pulse generator.

21-10

Scheduling Execution of Simulink® Subsystems

2 The Edge to Function chart broadcasts the function-call output event call
to activate the Stateflow chart Ladder Logic Scheduler.

3 The Ladder Logic Scheduler chart broadcasts function-call output events
to trigger the function-call subsystems A1, A2, and A3, based on the values
of inputs u1 and u2 (see “Flow Graph Determines Order of Execution” on
page 21-11).

Flow Graph Determines Order of Execution. The Ladder Logic Scheduler
chart uses Stateflow flow charting capabilities to implement the logic that
schedules the execution of the Simulink function-call subsystems. The chart
contains a Stateflow flow graph that resembles a ladder diagram. Each
rung in the ladder represents a rule or condition that determines whether to
execute one of the Simulink function-call subsystems. The flow logic evaluates
each condition sequentially, which has the effect of scheduling the execution
of multiple subsystems within the same time step. The chart executes each
subsystem by using the send action to broadcast a function-call output event
(see “Example of Directed Event Broadcasting Using send” on page 10-60).

Here is the sequence of activities that occurs in the Ladder Logic Scheduler
chart in each time step:

1 Assign output y to input u1.

2 If u1 is positive, send function-call output event A1 to the Simulink model.

The subsystem connected to A1 executes. This subsystem multiplies its
input by a gain of 2 and passes this value back to the Stateflow Ladder
Logic Scheduler chart as input u2. Control returns to the next condition in
the Ladder Logic Scheduler.

3 If u2 is positive or zero, send function-call output event A2 to the Simulink
model.

The subsystem connected to A2 executes. This subsystem outputs its input
value unchanged. Control returns to the next condition in the Ladder
Logic Scheduler.

4 If u1 and u2 are positive, send function-call output event A3 to the Simulink
model.

21-11

21 Stateflow® Design Patterns

The subsystem connected to A3 executes. This subsystem multiplies its
input by a gain of 1.

5 The Ladder Logic Scheduler chart goes to sleep.

Running the Ladder Logic Scheduler
To run the sf_ladder_logic_scheduler model, follow these steps:

1 Open the model by typing sf_ladder_logic_scheduler at the MATLAB
command prompt.

2 Open the Stateflow chart Ladder Logic Scheduler and the Scope block.

3 Simulate the chart.

The scope shows how output y changes, depending on which subsystems
the Ladder Logic Scheduler chart calls during each time step.

21-12

Scheduling Execution of Simulink® Subsystems

Scheduling One Subsystem in a Single Time Step
Using a Loop Scheduler
The loop scheduler design pattern allows you to schedule one Simulink
subsystem to execute multiple times in a single time step. The model
sf_loop_scheduler illustrates this design pattern.

21-13

21 Stateflow® Design Patterns

The Looping Scheduler chart contains the following logic:

Key Behaviors of Loop Scheduler
The key behaviors of the loop scheduler are:

• “Function-Call Output Event Triggers Subsystem Multiple Times” on
page 21-14

• “Flow Graph Implements For Loop” on page 21-15

Function-Call Output Event Triggers Subsystem Multiple Times. In a
given time step, the Stateflow chart broadcasts a function-call output event to
trigger the execution of the function-call subsystem A1 multiple times in the
Simulink model. Here is the sequence of activities during each time step:

1 The Simulink model activates the Stateflow chart Edge to Function at a
rising edge of the 1-millisecond pulse generator.

2 The Edge to Function chart broadcasts the function-call output event call
to activate the Stateflow chart Looping Scheduler.

21-14

Scheduling Execution of Simulink® Subsystems

3 The Looping Scheduler chart broadcasts a function-call output event from a
for loop to trigger the function-call subsystem A1 multiple times (see “Flow
Graph Implements For Loop” on page 21-15).

Flow Graph Implements For Loop. The Looping Scheduler chart uses
Stateflow flow charting capabilities to implement a for loop for broadcasting
an event multiple times in a single time step. The chart contains a Stateflow
flow graph that uses a local data variable i to control the loop. At each
iteration, the chart updates output y and issues the send action to broadcast a
function-call output event that executes subsystem A1. Subsystem A1 uses
the value of y to recompute its output and send the value back to the Looping
Scheduler chart.

Running the Loop Scheduler
To run the sf_loop_scheduler model, follow these steps:

1 Open the model by typing sf_loop_scheduler at the MATLAB command
prompt.

2 Open the Stateflow chart Looping Scheduler and the Scope block.

3 Simulate the chart.

21-15

21 Stateflow® Design Patterns

The scope displays the value of y at each time step.

In this example, the Looping Scheduler chart executes the for loop 10 times
in each time step. During each iteration:

1 The chart increments y by 1 (the constant value of input u1).

2 The chart broadcasts a function-call output event that executes subsystem
A1.

3 Subsystem A1 multiplies y by a gain of 1.

4 Control returns to the chart.

21-16

Scheduling Execution of Simulink® Subsystems

Scheduling Subsystems to Execute at Specific Times
Using a Temporal Logic Scheduler
The temporal logic scheduler design pattern allows you to schedule
Simulink subsystems to execute at specified times. The model
sf_temporal_logic_scheduler illustrates this design pattern.

21-17

21 Stateflow® Design Patterns

The Temporal Logic Scheduler chart contains the following logic:

Key Behaviors of Temporal Logic Scheduler
The Temporal Logic Scheduler chart contains two states that schedule the
execution of the function-call subsystems A1, A2, and A3 at different rates,
as determined by the temporal logic operator every (see “Operators for
Event-Based Temporal Logic” on page 10-64).

In the FastScheduler state, the every operator schedules function calls as
follows:

• Sends A1 every time the function-call output event call wakes up the chart

• Sends A2 at half the base rate

• Sends A3 at one-quarter the base rate

The SlowScheduler state schedules function calls less frequently — at 8, 16,
and 32 times slower than the base rate. The chart switches between fast and
slow executions after every 100 invocations of the call event.

21-18

Scheduling Execution of Simulink® Subsystems

Running the Temporal Logic Scheduler
To run the sf_temporal_logic_scheduler model, follow these steps:

1 Open the model by typing sf_temporal_logic_scheduler at the MATLAB
command prompt.

2 Open the Stateflow chart Temporal Logic Scheduler and the Scope block.

3 Simulate the chart.

The scope illustrates the different rates of execution.

21-19

21 Stateflow® Design Patterns

Implementing Dynamic Test Vectors

In this section...

“When to Implement Test Vectors Using Stateflow Charts” on page 21-20

“A Dynamic Test Vector Chart” on page 21-22

“Key Behaviors of the Test Vector Chart and Model” on page 21-24

“Running the Model with Stateflow Test Vectors” on page 21-27

When to Implement Test Vectors Using Stateflow
Charts
Use Stateflow charts to create test vectors that change dynamically during
simulation, based on the state of the system you are modeling.

For example, suppose you want to test an automatic car transmission
controller in the situation where a car is coasting. To achieve a coasting state,
a driver accelerates until the transmission shifts into the highest gear, then
eases up on the gas pedal. To test this scenario, you could generate a signal
that represents this behavior, as in the following Signal Builder block.

21-20

Implementing Dynamic Test Vectors

However, this approach has limitations. The signal changes value based
on time, but cannot respond dynamically to changes in the system that
are not governed by time alone. For example, how does the signal know
when the transmission shifts into the highest gear? In this case, the signal
assumes that the shift always occurs at time 5 because it cannot test for other

21-21

21 Stateflow® Design Patterns

deterministic conditions such as the speed of the vehicle. Moreover, you
cannot change the signal based on outputs from the model.

By contrast, you can use Stateflow charts to develop test vectors that use
conditional logic to evaluate and respond to changes in system state as they
occur. For example, to test the coasting scenario, the chart can evaluate
an output that represents the gear range and reduce speed only after the
transmission shifts to the highest gear. That is, the car slows down as a direct
result of the gear shift and not at a predetermined time. For a detailed look at
this type of chart, see “A Dynamic Test Vector Chart” on page 21-22.

A Dynamic Test Vector Chart
The following model of an automatic transmission controller uses a Stateflow
chart to implement test vectors that represent brake, throttle, and gear shift
dynamics. The chart, called Dynamic Test Vectors, interfaces with the rest of
the model as shown.

21-22

Implementing Dynamic Test Vectors

The chart models the dynamic relationship between the brake and throttle to
test four driving scenarios. Each scenario is represented by a state.

21-23

21 Stateflow® Design Patterns

In some of these scenarios, the throttle changes in response to time; in
other cases, it responds to gear selection, an output of the Stateflow chart
Shift_logic. The Shift_logic chart determines the gear value based on the
speed of the vehicle.

Note This model is based on the Simulink demo model sldemo_autotrans.

Key Behaviors of the Test Vector Chart and Model
The key behaviors of the test vector chart and model are:

• “Chart Represents Test Cases as States” on page 21-24

• “Chart Uses Conditional Logic to Respond to Dynamic Changes” on page
21-24

• “Model Provides an Interface for Selecting Test Cases” on page 21-25

Chart Represents Test Cases as States
The Dynamic Test Vectors chart represents each test case as an exclusive
(OR) state. Each state manipulates brake and throttle values in a unique
way, based on the time and gear inputs to the chart.

The chart determines which test to execute from the value of a constant signal
case, output from the Signal Builder block. Each test case corresponds to a
unique signal value.

Chart Uses Conditional Logic to Respond to Dynamic Changes
The Dynamic Test Vectors chart uses conditions on transitions to test time
and gear level, and then adjusts brake and throttle accordingly for each
driving scenario. Stateflow charts provide many constructs for testing system
state and responding to changes, including:

• Conditional logic (see “State Action Types” on page 10-2 and “Transition
Action Types” on page 10-7)

• Temporal logic (see “Using Temporal Logic in State Actions and
Transitions” on page 10-63)

21-24

Implementing Dynamic Test Vectors

• Change detection operators (see “Using Change Detection in Actions” on
page 10-83)

• MATLAB functions (see “Using MATLAB Functions and Data in Actions”
on page 10-42)

For more information, see Chapter 10, “Using Actions in Stateflow Charts”.

Model Provides an Interface for Selecting Test Cases
The model uses a Signal Builder block to provide an interface for selecting
test scenarios to simulate.

21-25

21 Stateflow® Design Patterns

Selecting and Running Test Cases. In the Signal Builder, select and run
test cases as follows:

21-26

Implementing Dynamic Test Vectors

To Test: Do This:

One case Select the tab that corresponds to the
driving scenario you want to test and
click the Start simulation button:

All cases and produce a model
coverage report (requires a
Simulink® Verification and
Validation™ software license)

Click the Run all and produce
coverage button:

The Signal Builder block sends to the Dynamic Test Vectors chart one or more
constant signal values that correspond to the driving scenarios you select. The
chart uses these values to activate the appropriate test cases.

Running the Model with Stateflow Test Vectors

To run the sf_test_vectors model, follow these steps:

1 Open the model by typing sf_test_vectors at the MATLAB command
prompt.

2 Open the Dynamic Test Vectors chart, the Signal Builder block, and the
Scope block.

3 Select and simulate a driving scenario from the Signal Builder block, as
described in “Selecting and Running Test Cases” on page 21-26.

The scope illustrates the interaction between speed and throttle for the
selected scenario.

21-27

21 Stateflow® Design Patterns

Driving
Scenario

Scope Display Description

Passing
Maneuver

Driver accelerates
rapidly. At t = 15 seconds,
steps the throttle to 100.
With continued heavy
throttle, the vehicle
accelerates to about 100
MPH and then shifts into
overdrive at about t =
21 seconds. The vehicle
cruises along in fourth
gear for the remainder of
the simulation.

Gradual
Acceleration

Driver maintains a
slow but steady rate of
acceleration.

21-28

Implementing Dynamic Test Vectors

Driving
Scenario

Scope Display Description

Hard Braking Driver accelerates until
the transmission shifts to
third gear, then removes
foot from the gas pedal.
After a short delay, moves
foot to the brake pedal
and pushes hard.

Coasting Driver accelerates until
transmission shifts to
highest gear, then eases
up on the gas.

21-29

21 Stateflow® Design Patterns

21-30

22

Truth Table Functions

• “What Is a Truth Table?” on page 22-2

• “Language Options for Stateflow Truth Tables” on page 22-4

• “Workflow for Using Truth Tables” on page 22-6

• “Building a Model with a Stateflow Truth Table” on page 22-7

• “Programming a Truth Table” on page 22-22

• “Debugging a Truth Table” on page 22-48

• “Correcting Overspecified and Underspecified Truth Tables” on page 22-62

• “How Stateflow Software Implements Truth Tables” on page 22-71

• “Truth Table Editor Operations” on page 22-80

22 Truth Table Functions

What Is a Truth Table?
Truth table functions implement logical decision-making behavior that
you call in an action language. Stateflow truth tables contain conditions,
decisions, and actions arranged as follows:

Condition Decision 1 Decision 2 Decision 3
Default
Decision

x == 1 T F F -

y == 1 F T F -

z == 1 F F T -

Action t = 1 t = 2 t = 3 t = 4

Each of the conditions entered in the Condition column must evaluate to
true (nonzero value) or false (zero value). Outcomes for each condition are
specified as T (true), F (false), or - (true or false). Each of the decision columns
combines an outcome for each condition with a logical AND into a compound
condition, that is referred to as a decision.

You evaluate a truth table one decision at a time, starting with Decision 1. If
one of the decisions is true, you perform its action and truth table execution is
complete. For example, if conditions 1 and 2 are false and condition 3 is true,
Decision 3 is true and the variable t is set equal to 3. The remaining decisions
are not tested and evaluation of the truth table is finished.

The last decision in the preceding example, Default Decision, covers all
possible remaining decisions. If Decisions 1, 2, and 3 are false, then the
Default Decision is automatically true and its action (t = 4) is executed. You
can see this behavior when you examine the following equivalent pseudocode
for the evaluation of the preceding truth table example:

22-2

What Is a Truth Table?

Description Pseudocode

Decision 1

Decision 1 Action
if ((x == 1) & !(y == 1) & !(z == 1))
t = 1;

Decision 2

Decision 2 Action
elseif (!(x == 1) & (y == 1) & !(z == 1))
t = 2;

Decision 3

Decision 3 Action
elseif (!(x == 1) & !(y == 1) & (z == 1))
t = 3;

Default Decision

Default Decision Action
else
t = 4;

endif

22-3

22 Truth Table Functions

Language Options for Stateflow Truth Tables

In this section...

“Stateflow Classic Truth Tables” on page 22-4

“MATLAB Truth Tables” on page 22-4

“Selecting a Language for Stateflow Truth Tables” on page 22-5

“Migration from Stateflow Classic to MATLAB Truth Tables” on page 22-5

Stateflow Classic Truth Tables
Using Stateflow Classic truth tables, you can specify conditions and actions
using the Stateflow action language, which supports basic C constructs and
provides access to MATLAB functions using the ml namespace operator or
ml function. For more information about the Stateflow action language, see
Chapter 10, “Using Actions in Stateflow Charts”.

Stateflow Classic mode is the default setting for Stateflow truth tables.

MATLAB Truth Tables
You can specify conditions and actions for MATLAB truth tables by using
MATLAB action language, which provides optimizations for code generation.

MATLAB truth tables offer several advantages over Stateflow Classic truth
tables:

• The MATLAB action language provides a richer syntax for specifying
control flow logic in truth table actions. It provides for loops, while loops,
nested if statements, and switch statements.

• You can call MATLAB functions directly in truth table actions. Also, you
can call library functions (for example, MATLAB sin and fft functions)
and generate code for these functions using Simulink Coder code generation
software.

• You can create temporary or persistent variables during simulation or in
code directly without having to define them in the Model Explorer.

22-4

Language Options for Stateflow® Truth Tables

• Better debugging tools are available. You can set breakpoints on lines of
code, step through code, and watch data values using tool tips.

• You can use persistent variables in truth table actions. This feature allows
you to define data that persists across multiple calls to the truth table
function during simulation.

Selecting a Language for Stateflow Truth Tables
To specify an action language for your Stateflow truth table:

1 Double-click the truth table to open the Truth Table Editor.

2 Select Language from the Settings menu.

3 Select a language from the drop-down menu.

Migration from Stateflow Classic to MATLAB Truth
Tables
When you migrate from a Stateflow Classic truth table to a MATLAB truth
table, you must verify that the code used to program the actions conforms to
MATLAB syntax. Between the two action languages, these differences exist.

For this type of action
language...

Indices are... And the expression
for not equal to is...

MATLAB One-based ~=

Stateflow Zero-based !=

You can check for syntax errors by using the Run Diagnostics command in the
Truth Table Editor, as described in “Checking Truth Tables for Errors” on
page 22-48.

22-5

22 Truth Table Functions

Workflow for Using Truth Tables
Here is the recommended workflow for using truth tables in Simulink models.

Step Task Reference

1 Add a truth table to your
Simulink model.

“Building a Model with a
Stateflow Truth Table” on page
22-7

2 Specify properties of the truth
table function.

“Specifying Properties of Truth
Table Functions in Stateflow
Charts” on page 22-11

3 Select an action language and
program the conditions and
actions in the truth table.

“Programming a Truth Table” on
page 22-22

4 Debug the truth table for syntax
errors and for error during
simulation.

“Debugging a Truth Table” on
page 22-48

5 Simulate the model and check
the generated content for the
truth tables.

“How Stateflow Software
Implements Truth Tables” on
page 22-71

22-6

Building a Model with a Stateflow® Truth Table

Building a Model with a Stateflow Truth Table

In this section...

“Methods for Adding Truth Tables to Simulink Models” on page 22-7

“Adding a Stateflow Block that Calls a Truth Table Function” on page 22-7

Methods for Adding Truth Tables to Simulink Models
Methods for adding a Stateflow truth table to a Simulink model are:

Procedure Action Languages
Supported

How To Do It

Add a Truth Table block
directly to the model.

MATLAB only See the Truth Table
block reference page.

Add a Stateflow block
that calls a truth table
function.

Stateflow Classic and
MATLAB

See “Adding a Stateflow
Block that Calls a
Truth Table Function”
on page 22-7.

Adding a Stateflow Block that Calls a Truth Table
Function
This section describes how to add a Stateflow block to your Simulink model,
and then create a chart that calls a truth table function. These topics include:

• “Creating a Simulink Model” on page 22-8

• “Creating a Stateflow Truth Table” on page 22-10

• “Specifying Properties of Truth Table Functions in Stateflow Charts” on
page 22-11

• “Calling a Truth Table in a Stateflow Action” on page 22-14

• “Creating Truth Table Data in Stateflow Charts and Simulink Models” on
page 22-17

Once you build a model in this section, finish it by programming the truth
table with its behavior in “Programming a Truth Table” on page 22-22.

22-7

22 Truth Table Functions

Creating a Simulink Model
To execute a truth table, you first need a Simulink model that calls a Stateflow
block. Later, you will create a Stateflow chart for the Stateflow block that
calls a truth table function. In this section, you create a Simulink model that
calls a Stateflow block with the following procedure:

1 At the MATLAB prompt, enter the following command:

sfnew

An untitled model with a Stateflow block appears.

2 Click and drag the Stateflow block to the center of the model window.

This step makes room for the blocks you add in the steps that follow.

3 In the model window, select View > Library Browser.

The Simulink Library Browser window opens with the Simulink node
expanded.

4 Under the Simulink node, select the Sources library.

The right pane of the Simulink Library Browser window displays the
blocks of the Sources library.

5 From the right pane of the Simulink Library Browser, click and drag the
Constant block to the left of the Chart block in the model.

6 Add two more Constant blocks to the left of the Chart block, and add a
Display block (from the Sinks library) to the right of the Chart block.

7 In the model, double-click the middle Constant block.

22-8

Building a Model with a Stateflow® Truth Table

8 In the Block Parameters dialog box that appears, change Constant value
to 0.

9 Click OK to close the dialog box.

10 In the model, double-click the bottom Constant block.

11 In the Block Parameters dialog box that appears, change Constant value
to 0.

12 Click OK to close the dialog box.

Your model should now look something like this:

13 Open the Configuration Parameters dialog box.

14 On the Solver pane, set:

• Type to Fixed-step

• Solver to discrete (no continuous states)

• Fixed-step size to 1

15 Click OK to accept these values and close the Configuration Parameters
dialog box.

16 Save the model as ex_first_truth_table.mdl.

22-9

22 Truth Table Functions

Creating a Stateflow Truth Table
You created a Simulink model in “Creating a Simulink Model” on page 22-8
that contains a Stateflow block. Now you need to open the chart for the block
and specify a truth table for it:

1 In your model, double-click the Chart block to open an empty chart.

2 Click the Truth Table drawing tool:

3 Move your pointer into the empty chart and notice that it appears in the
shape of a box.

4 Click to place a new truth table.

A shaded box appears with the title truthtable.

5 Enter the signature label

t = ttable(x,y,z)

and click outside the truth table box.

The signature label of the truth table function follows this syntax:

[return_val1, return_val2,...] = function_name(arg1, arg2,...)

You can specify multiple return values and multiple input arguments.
Each return value and input argument can be a scalar, vector, or matrix of
values.

22-10

Building a Model with a Stateflow® Truth Table

Note For functions with only one return value, you can omit the brackets
in the signature label.

Specifying Properties of Truth Table Functions in Stateflow
Charts
After you add a truth table function to a chart, you can specify its properties
by following these steps:

1 Right-click the truth table function box.

2 Select Properties from the context menu.

22-11

22 Truth Table Functions

The Truth Table properties dialog box for the truth table function appears.

The fields in the Truth Table properties dialog box are as follows:

22-12

Building a Model with a Stateflow® Truth Table

Field Description

Name Function name; read-only; click this hypertext link
to bring the truth table function to the foreground
in its native Stateflow chart.

Breakpoints Select Function Call to set a breakpoint to pause
execution during simulation when the truth table
function is called.

Function Inline
Option

This option controls the inlining of the truth table
function in generated code through the following
selections:

• Auto
Decides whether or not to inline the truth table
function based on an internal calculation.

• Inline
Inlines the truth table function as long as it is
not exported to other charts and is not part of
a recursion. A recursion exists if the function
calls itself either directly or indirectly through
another called function.

• Function
Does not inline the function.

Label You can specify the signature label for the function
through this field. See “Creating a Stateflow Truth
Table” on page 22-10 for more information.

Description Textual description/comment.

Document link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address, and
edit/spec/data/speed.txt.

3 Click OK to close the dialog box.

22-13

22 Truth Table Functions

Calling a Truth Table in a Stateflow Action
In “Creating a Stateflow Truth Table” on page 22-10, you created the truth
table function ttable with the signature:

t = ttable(x,y,z)

Now you need to specify a call to the truth table function in the chart. Later,
when the chart executes during simulation, it calls the truth table.

You can call truth table functions from the actions of any state or transition.
You can also call truth tables from other functions, including graphical
functions and other truth tables. Also, if you export a truth table, you can
call it from any chart in the model.

To call the ttable function from the default transition of its own chart, follow
these steps:

1 From the toolbar, select the Default Transition tool:

2 Move your pointer to a location left of the truth table function and notice
that it appears in the shape of a downward-pointing arrow.

3 Click to place a default transition into a terminating junction.

4 Click the question mark character (?) that appears on the default
transition.

22-14

Building a Model with a Stateflow® Truth Table

A blinking cursor in a text field appears for entering the label of the default
transition.

22-15

22 Truth Table Functions

5 Enter the text

{d = ttable(a,b,c);}

and click outside the transition label to finish editing it.

You might want to adjust the label’s position by clicking and dragging it to
a new location. The finished chart should look something like this:

The label on the default transition provides a condition action that calls
the truth table with arguments and a return value. When the Simulink
model triggers the Stateflow block during simulation, the default transition
executes and a call to the truth table ttable occurs.

The call to the truth table in Stateflow action language must match the
truth table signature. The type of the return value d must match the type
of the signature return value t, and the type of the arguments a, b, and c
must match the type of the signature arguments x, y, and z. You ensure
this with a later step in this section when you create the data that you
use in the chart.

Tip If the formal arguments of a function signature are scalars, verify that
inputs and outputs of function calls follow the rules of scalar expansion.
For more information, see “How Scalar Expansion Works for Functions”
on page 13-6.

6 Save the model.

22-16

Building a Model with a Stateflow® Truth Table

Creating Truth Table Data in Stateflow Charts and Simulink
Models
When you create a truth table with its own signature, you specify data for
it in the form of a return value (t) and argument values (x, y, z). When
you specify a call to a truth table, as you did in “Calling a Truth Table in a
Stateflow Action” on page 22-14, you specify data that you pass to the return
and argument values of the truth table (d, a, b, and c). Now you must define
this data for the chart as follows:

1 Double-click the truth table function to open the Truth Table Editor.

2 In the Truth Table Editor, select Add > Edit Data/Ports.

The Model Explorer appears.

22-17

22 Truth Table Functions

In the Model Hierarchy pane, the node for the function ttable appears
highlighted, and the Contents pane displays the output (t) and inputs (x,
y, z) for ttable. By default, these data are scalars of type double. If you
want to redefine these data with a different size and type, you do it in the
Model Explorer. However, no changes are necessary for this example.

Notice also in theModel Hierarchy pane that the node above the function
ttable is Chart, the name of the chart that contains the truth table ttable.

How do I enable the third pane in the Model Explorer?

To enable or disable the third pane in the Model Explorer, select
View > Show Dialog Pane.

22-18

Building a Model with a Stateflow® Truth Table

3 In the Model Hierarchy pane, select Chart.

Notice that Chart contains no input or output data in the Contents pane.
You must add the return and argument data for calling ttable.

4 Select Add > Data.

A scalar data is added to the chart in the Contents pane of the Model
Explorer with the default name data. This data matches argument x in
type and size.

How do I verify type and size?

To verify that the properties match, right-click data in the Contents pane
and select Properties. The property sheet shows that the type is double
and the size is scalar (the default when there is no entry in the Size field).

5 In the Contents pane, double-click the entry data in the Name column.

A small text field opens with the name data highlighted.

6 In the text field, change the name to a.

7 Under Scope, click the entry Local .

A drop-down menu of selectable scopes appears with Local selected.

8 Select Input.

The scope Input means that the Simulink model provides the value for this
data, which passes to the chart through an input port on the Stateflow
block.

You should now see the new data input a in the Contents pane.

9 Repeat steps 4 through 8 to add the data b and c with the scope Input,
and data d with the scope Output.

The scope Output means that the chart provides this data, which passes to
the Simulink model through an output port on the Stateflow block.

You should now see the input and output data in the Model Explorer.

22-19

22 Truth Table Functions

The data a, b, c, and d match their counterparts x, y, z, and t in the truth
table signature in size (scalar) and type (double), but have sources outside
the Stateflow block. Notice that input ports for a, b, and c, and an output
port for d appear on the Stateflow block in the model.

22-20

Building a Model with a Stateflow® Truth Table

10 Complete connections to the Simulink blocks:

11 Save the model.

22-21

22 Truth Table Functions

Programming a Truth Table

In this section...

“Opening a Truth Table for Editing” on page 22-22

“Selecting An Action Language” on page 22-24

“Entering Truth Table Conditions” on page 22-24

“Entering Truth Table Decisions” on page 22-27

“Entering Truth Table Actions” on page 22-29

“Assigning Truth Table Actions to Decisions” on page 22-39

“Adding Initial and Final Actions” on page 22-45

Opening a Truth Table for Editing
After you create and label a truth table in a chart, you specify its logical
behavior. Double-click the truth table function to open the Truth Table Editor.

22-22

Programming a Truth Table

By default, a truth table contains a Condition Table and an Action Table,
each with one row. The Condition Table also contains a single decision
column, D1, and a single action row.

22-23

22 Truth Table Functions

Selecting An Action Language
Select the language you want to use for programming conditions and actions
in your truth table:

1 In the Truth Table Editor, select Settings > Language.

2 Choose a language from the drop-down menu.

Entering Truth Table Conditions
Conditions are the starting point for specifying logical behavior in a truth
table. You open the truth table ttable for editing in “Opening a Truth Table
for Editing” on page 22-22. In this topic, you start programming the behavior
of ttable by specifying conditions.

You enter conditions in the Condition column of the Condition Table. For
each condition that you enter, you can also enter an optional description in
the Description column. Use the following procedure to enter conditions
for the truth table ttable:

1 Click anywhere in the Condition Table to select it.

2 Select Edit > Append Row twice.

The editor appends two rows to the bottom of the Condition Table.

3 Click and drag the bar that separates the Condition Table and the
Action Table panes down to enlarge the Condition Table pane.

4 In the Condition Table, click the top cell of the Description column.

A flashing text cursor appears in the cell, which appears highlighted.

5 Enter the following text:

x is equal to 1

Condition descriptions are optional, but appear as comments in the
generated code for the truth table.

22-24

Programming a Truth Table

6 Press the Tab key to select the next cell on the right in the Condition
column.

Tip You can use Shift+Tab to select the next cell on the left.

7 In the first cell of the Condition column, enter the following text:

XEQ1:

This text is an optional label you can include with the condition. Each label
must begin with an alphabetic character ([a-z][A-Z]) followed by any
number of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore
(_).

8 Press Enter and enter the following text:

x == 1

This text is the actual condition. Each condition you enter must evaluate to
zero (false) or nonzero (true). You can use optional brackets in the condition
(for example, [x == 1]) as you do in Stateflow action language.

In truth table conditions, you can use data that passes to the truth table
function through its arguments. The preceding condition tests whether the
argument x is equal to 1. You can also use data defined for parent objects
of the truth table, including the chart.

22-25

22 Truth Table Functions

9 Repeat the preceding steps to enter the other two conditions.

22-26

Programming a Truth Table

Entering Truth Table Decisions
Each decision column (D1, D2, and so on) binds a group of condition outcomes
together with an AND relationship into a decision. The possible values for
condition outcomes in a decision are T (true), F (false), and - (true or false). In
“Entering Truth Table Conditions” on page 22-24 you entered conditions for
the truth table ttable. Continue by entering values in the decision columns:

1 Click anywhere in the Condition Table to select it.

2 Select Edit > Append Column three times to add three columns to the
right end of the Condition Table.

3 Click the top cell in decision column D1.

A flashing text cursor appears in the cell, which appears highlighted.

4 Press the space bar until a value of T appears.

Pressing the space bar toggles through the possible values of F, -, and T.
You can also enter these characters directly. The editor rejects all other
entries.

5 Press the down arrow key to advance to the next cell down in the D1
column.

In the decision columns, you can use the arrow keys to advance to another
cell in any direction. You can also use Tab and Shift+Tab to advance
left or right in these cells.

22-27

22 Truth Table Functions

6 Enter the remaining values for the decision columns:

During execution of the truth table, decision testing occurs in left-to-right
order. The order of testing for individual condition outcomes within a decision

22-28

Programming a Truth Table

is undefined. Truth tables evaluate the conditions for each decision in
top-down order (first condition 1, then condition 2, and so on). Because this
implementation is subject to change in the future, do not rely on a specific
evaluation order.

The Default Decision Column
The last decision column in ttable, D4, is the default decision for this truth
table. The default decision covers any decisions not tested for in preceding
decision columns to the left. You enter a default decision as the last decision
column on the right with an entry of - for all conditions in the decision. This
entry represents any outcome for the condition, T or F.

In the preceding example, the default decision column, D4, specifies these
decisions:

Condition
Decision
4

Decision
5

Decision
6

Decision
7

Decision
8

x == 1 F T F T T

y == 1 F F T T T

z == 1 F T T F T

Tip The default decision column must be the last column on the right in
the Condition Table.

Entering Truth Table Actions
During execution of the truth table, decision testing occurs in left-to-right
order. When a decision match occurs, the action in the Action Table
specified in the Actions row for that decision column executes. Then the
truth table exits.

In “Entering Truth Table Decisions” on page 22-27, you entered decisions in
the Truth Table Editor. The next step is to enter actions you want to occur for
each decision in the Action Table. Later, you assign these actions to their
decisions in the Actions row of the Condition Table.

22-29

22 Truth Table Functions

This section describes how to program truth table actions with these topics:

• “Setting Up the Action Table” on page 22-30 — Shows you how to set up
the Action Table in truth table ttable.

• “Programming Actions in Stateflow Classic Action Language” on page
22-32 — Provides sample code in Stateflow action language to program
actions in ttable. Follow this section if you selected Stateflow Classic as
the language for this truth table.

• “Programming Actions in MATLAB Action Language” on page 22-35 —
Provides sample MATLAB code to program actions in ttable. Follow this
section if you selectedMATLAB as the language for this truth table.

Setting Up the Action Table

1 Click anywhere in the Action Table to select it.

22-30

Programming a Truth Table

2 Select Edit > Append Row three times to add three rows to the bottom
of the Action Table:

3 Program the actions using the language you selected for the truth table.

22-31

22 Truth Table Functions

If you selected... Use this procedure...

Stateflow
Classic

“Programming Actions in Stateflow Classic Action
Language” on page 22-32

MATLAB “Programming Actions in MATLAB Action
Language” on page 22-35

Programming Actions in Stateflow Classic Action Language
Follow this procedure to program your actions in Stateflow action language:

1 Click the top cell in the Description column of the Action Table.

A flashing text cursor appears in the cell, which appears highlighted.

2 Enter the following description:

set t to 1

Action descriptions are optional, but appear as comments in the generated
code for the truth table.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ([a-z][A-Z]) followed by any number
of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

5 Press Enter and enter the following text:

t=1;

In truth table actions, you can use data that passes to the truth table
function through its arguments and return value. The preceding action,
t=1, sets the value of the return value t. You can also specify actions with

22-32

Programming a Truth Table

data defined for a parent object of the truth table, including the chart.
Truth table actions can also broadcast or send events that are defined for
the truth table, or for a parent, such as the chart itself.

Tip If you omit the semicolon at the end of an action, the result of the
action echoes to the MATLAB Command Window when the action executes
during simulation. Use this echoing option as a debugging tool.

22-33

22 Truth Table Functions

6 Enter the remaining actions in the Action Table, as shown:

Now you are ready to assign actions to decisions, as described in “Assigning
Truth Table Actions to Decisions” on page 22-39.

22-34

Programming a Truth Table

Programming Actions in MATLAB Action Language
If you selected MATLAB action language, you can write MATLAB code to
program your actions. Using this code, you can add control flow logic and call
MATLAB functions directly. In the following procedure, you program an
action in the truth table ttable, using the following features of MATLAB
syntax:

• Persistent variables

• if ... else ... end control flows

• for loop

Follow these steps:

1 Click the top cell in the Description column of the Action Table.

A flashing text cursor appears in the cell, which appears highlighted.

2 Enter this description:

Maintain a counter and a circular
vector of values of length 6.
Every time this action is called,
output t takes the next value of
the vector.

Action descriptions are optional, but appear as comments in the generated
code for the truth table.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ([a-z][A-Z]) followed by any number
of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

22-35

22 Truth Table Functions

5 Press Enter and enter the following text:

persistent values counter;
cycle = 6;

coder.extrinsic('plot');

if isempty(counter)
% Initialize counter to be zero
counter = 0;

else
% Otherwise, increment counter
counter = counter + 1;

end

if isempty(values)
% Values is a vector of 1 to cycle
values = zeros(1, cycle);
for i = 1:cycle

values(i) = i;
end

% For debugging purposes, call the MATLAB
% function "plot" to show values
plot(values);

end

% Output t takes the next value in values vector
t = values(mod(counter, cycle) + 1);

In truth table actions, you can use data that passes to the truth table
function through its arguments and return value. The preceding action sets
the return value t equal to the next value of the vector values. You can
also specify actions with data defined for a parent object of the truth table,
including the chart. Truth table actions can also broadcast or send events
that are defined for the truth table, or for a parent, such as the chart itself.

22-36

Programming a Truth Table

Note If you omit the semicolon at the end of an action, the result of the
action echoes to the MATLAB Command Window when the action executes
during simulation. Use this echoing option as a debugging tool.

6 Enter the remaining actions in the Action Table, as shown:

22-37

22 Truth Table Functions

22-38

Programming a Truth Table

If action A1 executes during simulation, a plot of the values vector appears:

Now you are ready to assign actions to decisions, as described in “Assigning
Truth Table Actions to Decisions” on page 22-39.

Assigning Truth Table Actions to Decisions
You must assign at least one action from the Action Table to each decision
in the Condition Table. The truth table uses this association to determine
what action to execute when a decision tests as true.

Rules for Assigning Actions to Decisions
The following rules apply when you assign actions to decisions in a truth table:

22-39

22 Truth Table Functions

• You specify actions for decisions by entering a row number or a label in the
Actions row cell of a decision column.

If you use a label specifier, the label must appear with the action in the
Action Table.

• You must specify at least one action for each decision.

Actions for decisions are not optional. Each decision must have at least one
action specifier that points to an action in the Action Table. If you want
to specify no action for a decision, specify a row that contains no action
statements.

• You can specify multiple actions for a decision with multiple specifiers
separated by a comma, semicolon, or space.

For example, for the decision column D1, you can specify A1,A2,A3 or
1;2;3 to execute the first three actions when decision D1 is true.

• You can mix row number and label action specifiers interchangeably in
any order.

22-40

Programming a Truth Table

The following example uses both row and label action specifiers.

22-41

22 Truth Table Functions

• You can specify the same action for more than one decision, as shown:

• Row number action specifiers in the Actions row of the Condition Table
automatically adjust to changes in the row order of the Action Table.

22-42

Programming a Truth Table

How to Assign Actions to Decisions
This section describes how to assign actions to decisions in the truth table
ttable. In this example, the Actions row cell for each decision column
contains a label specified for each action in the Action Table. Follow these
steps:

1 Click the bottom cell in decision column D1, the first cell of the Actions
row of the Condition Table.

2 Enter the action specifier A1 for decision column D1.

When D1 is true, action A1 in the Action Table executes.

3 Enter the action specifiers for the remaining decision columns:

22-43

22 Truth Table Functions

Now you are ready to perform the final step in programming a truth table,
“Adding Initial and Final Actions” on page 22-45.

22-44

Programming a Truth Table

Adding Initial and Final Actions
In addition to actions for decisions, you can add initial and final actions to the
truth table function. Initial actions specify an action that executes before any
decision testing occurs. Final actions specify an action that executes as the
last action before the truth table exits. To specify initial and final actions for
a truth table, use the action labels INIT and FINAL in the Action Table.

Use this procedure to add initial and final actions that display diagnostic
messages in the MATLAB Command Window before and after execution of
the truth table ttable:

1 In the Truth Table Editor, right-click row 1 of the Action Table and
select Insert Row.

A blank row appears at the top of the Action Table.

2 Select Edit > Append Row.

A blank row appears at the bottom of the Action Table.

22-45

22 Truth Table Functions

3 Click and drag the bottom border of the Truth Table Editor to show all six
rows of the Action Table:

4 Add the initial action in row 1 as follows:

22-46

Programming a Truth Table

Truth Table
Type

Description Action

Stateflow Classic Initial action:

Display message

INIT:

ml.disp('truth table ttable
entered');

MATLAB Initial action:

Display message

INIT:

coder.extrinsic('disp');

disp('truth table ttable
entered');

5 Add the final action in row 6 as follows:

Truth Table
Type

Description Action

Stateflow Classic Final action:

Display message

FINAL:

ml.disp('truth table ttable
exited');

MATLAB Final action:

Display message

FINAL:

coder.extrinsic('disp');

disp('truth table ttable
exited');

Although the initial and final actions for the preceding truth table example
appear in the first and last rows of the Action Table, you can enter these
actions in any row. You can also assign initial and final actions to decisions by
using the action specifier INIT or FINAL in the Actions row of the Condition
Table.

22-47

22 Truth Table Functions

Debugging a Truth Table

In this section...

“Checking Truth Tables for Errors” on page 22-48

“Debugging a Truth Table During Simulation” on page 22-49

Checking Truth Tables for Errors
Once you completely specify your truth tables, you begin the process of
debugging them. The first step is to run diagnostics to check truth tables for
syntax errors including overspecification and underspecification, as described
in “Correcting Overspecified and Underspecified Truth Tables” on page 22-62.

To check for syntax errors:

1 Double-click the truth table to open its editor.

2 In the Truth Table Editor, select Settings > Run Diagnostics.

If there are no errors or warnings, a message of success appears. If errors
exist, you see a window with diagnostic messages. For example, if you
change the action for decision column D4 to an action that does not exist,
you get the following messages:

22-48

Debugging a Truth Table

Each error appears with a red button, and each warning appears with a
gray button. The first error message appears highlighted in the top pane,
and the diagnostic message appears in the bottom pane.

Truth table diagnostics run automatically when you start simulation of the
model with a new or modified truth table. If no errors exist, the diagnostic
window does not appear and simulation starts immediately.

Debugging a Truth Table During Simulation
Ways to debug truth tables during simulation include:

22-49

22 Truth Table Functions

Method Type of Truth Tables How To Do It

Use Stateflow
debugging tools to step
through each condition
and action, and monitor
data values during
simulation.

Stateflow Classic truth
table and MATLAB
truth table

See “Using Stateflow
Debugging Tools” on
page 22-50.

Use MATLAB
debugging tools to
step through generated
code for the truth table.

MATLAB truth table
only

See “Using MATLAB
Debugging Tools” on
page 22-61.

Using Stateflow Debugging Tools
When you use Stateflow debugging tools to debug truth tables, you must
perform these tasks:

1 Specify a breakpoint for the call to the truth table.

2 Step through the conditions and actions.

Specifying a Breakpoint for the Call to a Truth Table. Before you debug
the truth table during simulation, you must set a breakpoint for the truth
table. This breakpoint pauses execution during simulation so that you can
debug each execution step of a truth table using the Stateflow Debugger.

1 In the chart, right-click the function box for the truth table and select
Breakpoints.

2 Select Function Call.

A breakpoint occurs when the chart calls this truth table function during
simulation.

Note You can also set breakpoints using the Truth Table properties dialog
box. However, using the right-click context menu is faster. For more
information, see “Setting Breakpoints to Debug Charts” on page 26-7.

22-50

Debugging a Truth Table

Stepping Through Conditions and Actions of a Truth Table. After
setting a breakpoint for the truth table function call, you can step through
conditions and actions:

1 Enter sfdebugger at the command prompt to open the Stateflow Debugging
window.

2 In the Stateflow Debugging window, click Start to begin simulation of
your model.

If you made any changes to the truth tables since the last simulation, the
debugger checks automatically for syntax errors. If you receive errors or
warnings, make corrections before you try to simulate again.

If no syntax errors exist in the truth table, simulation of your model begins.

3 Wait until the breakpoint for the call to the truth table occurs.

22-51

22 Truth Table Functions

When this breakpoint occurs, the Truth Table Editor appears and the Start
button in the Stateflow Debugging window changes to Continue.

4 In the Stateflow Debugging window, from the Browse Data pull-down,
select All Data (Current Chart).

22-52

Debugging a Truth Table

An updated display appears in the bottom pane.

You can use this display to monitor Stateflow data during simulation.

22-53

22 Truth Table Functions

5 In the Stateflow Debugging window, click Step four times to advance
simulation through the call to the truth table.

The INIT action of the truth table highlights prior to execution.

22-54

Debugging a Truth Table

6 Click Step twice to execute the INIT action and advance truth table
execution to the first condition.

22-55

22 Truth Table Functions

7 Click Step twice to evaluate the first condition and advance truth table
execution to the second condition.

22-56

Debugging a Truth Table

8 Click Step twice to evaluate the second condition and advance truth table
execution to the third condition.

22-57

22 Truth Table Functions

9 Click Step twice to evaluate the third condition and advance truth table
execution to the first decision.

22-58

Debugging a Truth Table

10 Click Step twice.

Because the first decision is true, truth table execution advances to its
action A1.

22-59

22 Truth Table Functions

11 Click Step eight times to execute action A1 and advance to the FINAL action.

12 In the Stateflow Debugging window, click Stop Simulation.

22-60

Debugging a Truth Table

This step executes the final action and exits the truth table. The Display
block in the model displays the number 1.

Using MATLAB Debugging Tools
MATLAB truth tables generate content as MATLAB code, a format that offers
advantages for debugging. You can set breakpoints on any line of generated
code (whereas you cannot set breakpoints directly on a truth table). You can
debug code that MATLAB truth tables generate the same way you debug
a MATLAB function.

For more information about how to generate content for truth tables, see
“How Stateflow Software Implements Truth Tables” on page 22-71.

22-61

22 Truth Table Functions

Correcting Overspecified and Underspecified Truth Tables

In this section...

“Example of an Overspecified Truth Table” on page 22-62

“Example of an Underspecified Truth Table” on page 22-66

Example of an Overspecified Truth Table
An overspecified truth table contains at least one decision that never executes
because a previous decision specifies it in the Condition Table. The following
example shows the Condition Table of an overspecified truth table.

22-62

Correcting Overspecified and Underspecified Truth Tables

22-63

22 Truth Table Functions

The decision in column D3 (-TT) specifies the decisions FTT and TTT. These
decisions are duplicates of decisions D1 (FTT) and D2 (TTT and TFT). Therefore,
column D3 is an overspecification.

The following example shows the Condition Table of a truth table that
appears to be overspecified, but is not.

22-64

Correcting Overspecified and Underspecified Truth Tables

22-65

22 Truth Table Functions

In this case, the decision D4 specifies two decisions (TTT and FTT). FTT also
appears in decision D1, but TTT is not a duplicate. Therefore, this Condition
Table is not overspecified.

Example of an Underspecified Truth Table
An underspecified truth table lacks one or more possible decisions that
require an action to avoid undefined behavior. The following example shows
the Condition Table of an underspecified truth table.

22-66

Correcting Overspecified and Underspecified Truth Tables

22-67

22 Truth Table Functions

Complete coverage of the conditions in the preceding truth table requires a
Condition Table with every possible decision:

A possible workaround is to specify an action for all other possible decisions
through a default decision, named DA:

22-68

Correcting Overspecified and Underspecified Truth Tables

The last decision column is the default decision for the truth table. The
default decision covers any remaining decisions not tested in the preceding

22-69

22 Truth Table Functions

decision columns. See “The Default Decision Column” on page 22-29 for an
example and more complete description of the default decision column for
a Condition Table.

22-70

How Stateflow® Software Implements Truth Tables

How Stateflow Software Implements Truth Tables

In this section...

“Types of Generated Content” on page 22-71

“Viewing Generated Content” on page 22-71

“How Stateflow Software Generates Graphical Functions for Truth Tables”
on page 22-72

“How Stateflow Software Generates MATLAB Code for Truth Tables” on
page 22-76

Types of Generated Content
Stateflow software realizes the logical behavior specified in a truth table by
generating content as follows:

Type of Truth Table Generated Content

Stateflow Classic Graphical function

MATLAB MATLAB code

Viewing Generated Content
You generate content for a truth table when you simulate your model. Content
regenerates whenever a truth table changes. To view the generated content
of a truth table, follow these steps:

1 Simulate the model that contains the truth table.

2 Double-click the truth table to open its editor.

3 Click the View Generated Content button:

22-71

22 Truth Table Functions

How Stateflow Software Generates Graphical
Functions for Truth Tables
This section describes how Stateflow software translates the logic of a
Stateflow Classic truth table into a graphical function.

22-72

How Stateflow® Software Implements Truth Tables

In the following example, a Stateflow Classic truth table has three conditions,
four decisions and actions, and initial and final actions.

22-73

22 Truth Table Functions

Stateflow software generates a graphical function for the preceding truth
table. The top half of the flow graph looks like this:

The top half of the flow graph executes as follows:

• Performs initial actions

• Evaluates the conditions and stores the results in temporary data variables

The temporary data for storing conditions is based on the labels that you
enter for the conditions. If you do not specify the labels, temporary data
variables appear.

22-74

How Stateflow® Software Implements Truth Tables

The bottom half of the flow graph looks like this:

In the bottom half of the flow graph, the stored values for conditions determine
which decision is true and what action to perform. Each decision appears as a
fork from a connective junction with one of two possible paths:

• A transition segment with a decision followed by a segment with the
consequent action

22-75

22 Truth Table Functions

The action appears as a condition action that leads to the FINAL action
and termination of the flow graph.

• A transition segment that flows to the next fork for an evaluation of the
next decision

This transition segment has no condition or action.

This implementation continues from the first decision through the remaining
decisions in left-to-right column order. When a decision match occurs,
the action for that decision executes as a condition action of its transition
segment. After the action executes, the flow graph performs the final action
for the truth table and terminates. Therefore, only one action results from a
call to a truth table graphical function. This behavior also means that no data
dependencies are possible between different decisions.

How Stateflow Software Generates MATLAB Code
for Truth Tables
Stateflow software generates the content of MATLAB truth tables as
MATLAB code that represents each action as a nested function inside the
main truth table function.

Nested functions offer these advantages over subfunctions:

• Nested functions are independent of one another. Variables are local to
each function and not subject to naming conflicts.

• Nested functions can access all data from the main truth table function.

The generated content appears in the function editor, which provides tools for
simulation and debugging.

Here is the generated content for the MATLAB truth table described in
“Programming Actions in MATLAB Action Language” on page 22-35:

• Main truth table function

function t = ttable(x,y,z)

% Initialize condition vars to logical scalar

22-76

How Stateflow® Software Implements Truth Tables

XEQ1 = false;
YEQ1 = false;
ZEQ1 = false;

% Condition #1, "XEQ1"
% x is equal to 1
XEQ1 = logical(x == 1);

% Condition #2, "YEQ1"
% y is equal to 1
YEQ1 = logical(y == 1);

% Condition #3, "ZEQ1"
% z is equal to 1
ZEQ1 = logical(z == 1);

if (XEQ1 && ~YEQ1 && ~ZEQ1) % D1
A1();

elseif (~XEQ1 && YEQ1 && ~ZEQ1) % D2
A2();

elseif (~XEQ1 && ~YEQ1 && ZEQ1) % D3
A3();

else % Default
A4();

end

• Action A1

function A1()
% Action #1, "A1"
% Maintain a counter and a circular vector of length 6.
% Every time this action is called,
% output t takes the next value of the vector.

persistent values counter;
cycle = 6;

if isempty(counter)
% Initialize counter to be zero
counter = 0;

22-77

22 Truth Table Functions

else
% Otherwise, increment counter
counter = counter + 1;

end

if isempty(values)
% Values is a vector of 1 to cycle
values = zeros(1, cycle);
for i = 1:cycle

values(i) = i;
end

% For debugging purposes, call the MATLAB
% function "plot" to show values
plot(values);

end

% Output t takes the next value in values vector
t = values(mod(counter, cycle) + 1);

• Actions A2, A3, and A4

function A2()
% Action #2, "A2"
% set t to 2

t=2;

%==================================
function A3()
% Action #3, "A3"
% set t to 3

t=3;

%==================================
function A4()
% Action #4, "A4"
% set t to 4

22-78

How Stateflow® Software Implements Truth Tables

t=4;

22-79

22 Truth Table Functions

Truth Table Editor Operations

In this section...

“Adding or Modifying Stateflow Data” on page 22-80

“Appending Rows and Columns” on page 22-80

“Compacting the Table” on page 22-81

“Deleting Text, Rows, and Columns” on page 22-81

“Diagnosing the Truth Table” on page 22-81

“Viewing Generated Content” on page 22-81

“Editing Tables” on page 22-82

“Inserting Rows and Columns” on page 22-82

“Moving Rows and Columns” on page 22-82

“Printing Tables” on page 22-83

“Selecting and Deselecting Table Elements” on page 22-83

“Undoing and Redoing Edit Operations” on page 22-83

“Viewing the Stateflow Chart for the Truth Table” on page 22-84

Adding or Modifying Stateflow Data

Edit Data/Ports opens the Model Explorer so that you can add
or modify Stateflow data.

Appending Rows and Columns

Append Column adds a column on the right end of the selected
table.

Append Row adds a row to the bottom of the selected table.

22-80

Truth Table Editor Operations

Compacting the Table

Compact Table removes the empty rows and columns of the
selected table.

Deleting Text, Rows, and Columns
To delete the contents of a cell:

1 Right-click the cell.

2 From the context menu, select Delete Cell.

To delete an entire row or column:

1 Right-click the row or column header.

2 From the context menu, select Delete Row or Delete Column.

You can also click the row or column header to select the entire row or
column and press the Delete key.

Diagnosing the Truth Table

Run Diagnostics checks the truth table for syntax errors. See
“Debugging a Truth Table” on page 22-48.

Viewing Generated Content

View Generated Content displays the code generated for the
truth table. Stateflow Classic truth tables generate graphical
functions. MATLAB truth tables generate MATLAB code. For
details, see “How Stateflow Software Implements Truth Tables”
on page 22-71.

22-81

22 Truth Table Functions

Editing Tables
Both the default Condition Table and the default Action Table have one
empty row. Click a cell to edit its text contents. Use Tab and Shift+Tab to
move horizontally between cells. To add rows and columns to either table,
see “Appending Rows and Columns” on page 22-80.

You set the Truth Table Editor to display only one of the two tables by
double-clicking the header of the table to display. To revert to the display of
both tables, double-click the header of the displayed table.

Cells for the numbered rows in decision columns like D1 can take values of T,
F, or -. After you select one of these cells, you can use the spacebar to step
through the T, F, and - values. In these cells you can use the left, right, up,
and down arrow keys to advance to another cell in any direction.

Inserting Rows and Columns
To insert a blank row above an existing table row:

1 Right-click any cell in the row (including the row header).

2 From the context menu, select Insert Row.

To insert a blank decision column to the left of an existing decision column:

1 Right-click any cell in the existing decision column (including the column
header).

2 From the context menu, select Insert Column.

Moving Rows and Columns
To move a condition or action row up or down:

1 Click the row header to select the row.

2 Drag the row to a new position.

The Truth Table Editor renumbers the rows automatically.

To move a decision column left or right:

22-82

Truth Table Editor Operations

1 Click the column header to select the column.

2 Drag the column to a new position.

The Truth Table Editor renumbers the decision columns automatically.

Printing Tables

Print makes a printed copy or an online viewable copy (HTML
file) of the truth table.

Selecting and Deselecting Table Elements

To... Perform this action...

Select a cell for editing Click the cell

Select text in a cell Click and drag your pointer over the
text

Select a row Click the header for the row

Select a decision column in the
Condition Table

Click the header for the column

Deselect a selected cell, row, or
column

Press Esc or click another table, cell,
row, or column

Undoing and Redoing Edit Operations

Click the Undo button or press Ctrl+Z (Command+Z) to undo
the effects of the preceding operation.

Click the Redo button or press Ctrl+Y (Command+Y) to redo
the most recently undone operation.

22-83

22 Truth Table Functions

Viewing the Stateflow Chart for the Truth Table

Go to Editor displays the current truth table function in its
native chart.

22-84

23

Using MATLAB Functions
in Stateflow Charts

• “Use of MATLAB Functions in Stateflow Charts” on page 23-2

• “Building a Model with a MATLAB Function in a Chart” on page 23-5

• “Programming a MATLAB Function in a Chart” on page 23-11

• “Debugging a MATLAB Function in a Chart” on page 23-15

• “Working with Structures and Bus Signals in MATLAB Functions” on
page 23-23

• “Working with Enumerated Data in MATLAB Functions” on page 23-26

• “Working with Variable-Size Data in MATLAB Functions” on page 23-27

• “Enhancing Readability of Generated Code for MATLAB Functions” on
page 23-28

23 Using MATLAB® Functions in Stateflow® Charts

Use of MATLAB Functions in Stateflow Charts
You can add MATLAB functions to a Stateflow chart. This capability is useful
for coding algorithms that are better expressed in the textual MATLAB
language than in the graphical Stateflow action language. These functions
provide optimizations for generating efficient, production-quality C code for
embedded applications. For more information, see the Code Generation from
MATLAB documentation.

The following model contains a Stateflow chart with a MATLAB function.

The chart contains the following logic:

23-2

Use of MATLAB® Functions in Stateflow® Charts

The function contains the following code:

function stats(vals)
%#codegen

% calculates a statistical mean and standard deviation
% for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
coder.extrinsic('plot');
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

You will build a similar model in “Building a Model with a MATLAB Function
in a Chart” on page 23-5.

Note in this example that the MATLAB function can call any of these types
of functions:

• Subfunctions

Subfunctions are defined in the body of the MATLAB function. In this
example, avg is a subfunction. See “Calling Subfunctions” in the Code
Generation from MATLAB documentation.

• Stateflow functions

Graphical, truth table, and other MATLAB functions can be called from a
MATLAB function in a chart.

• MATLAB toolbox functions that support code generation

Toolbox functions for code generation are a subset of the functions that you
can call in the MATLAB workspace. These functions generate C code for
building targets that conform to the memory and data type requirements
of embedded environments. In this example, length, sqrt, and sum are
examples of toolbox functions for code generation. See “Calling Supported
Toolbox Functions” in the Code Generation from MATLAB documentation.

23-3

23 Using MATLAB® Functions in Stateflow® Charts

• MATLAB toolbox functions that do not support code generation

You can also call extrinsic functions on the MATLAB path that do not
generate code. These functions execute only in the MATLAB workspace
during simulation of the model. See “Calling MATLAB Functions” in the
Code Generation from MATLAB documentation.

• Simulink Design Verifier functions

Simulink Design Verifier software provides MATLAB functions for
property proving and test generation.

- sldv.prove

- sldv.assume

- sldv.test

- sldv.condition

23-4

Building a Model with a MATLAB® Function in a Chart

Building a Model with a MATLAB Function in a Chart
This section explains how to create a model with a Stateflow chart that calls
two MATLAB functions, meanstats and stdevstats. meanstats calculates a
mean and stdevstats calculates a standard deviation for the values in vals
and outputs them to the Stateflow data mean and stdev, respectively.

Follow these steps:

1 Create a new model with the following blocks:

2 Save the model as call_stats_function_stateflow.

3 In the model, double-click the Chart block.

4 Drag two MATLAB functions into the empty chart using this icon from
the toolbar:

A text field with a flashing cursor appears in the middle of each MATLAB
function.

23-5

23 Using MATLAB® Functions in Stateflow® Charts

5 Label each function as shown:

You must label a MATLAB function with its signature. Use the following
syntax:

[return_val1, return_val2,...] = function_name(arg1, arg2,...)

You can specify multiple return values and multiple input arguments,
as shown in the syntax. Each return value and input argument can be a
scalar, vector, or matrix of values.

Note For MATLAB functions with only one return value, you can omit
the brackets in the signature label.

6 In the chart, draw a default transition into a terminating junction with
this condition action:

{
mean = meanstats(invals);
stdev = stdevstats(invals);
}

23-6

Building a Model with a MATLAB® Function in a Chart

The chart should look something like this:

Tip If the formal arguments of a function signature are scalars, verify that
inputs and outputs of function calls follow the rules of scalar expansion.
For more information, see “How Scalar Expansion Works for Functions”
on page 13-6.

7 In the chart, double-click the function meanstats to edit its function body
in the editor.

8 In the function editor, select Tools > Model Explorer to open the Model
Explorer.

23-7

23 Using MATLAB® Functions in Stateflow® Charts

The function meanstats is highlighted in theModel Hierarchy pane. The
Contents pane displays the input argument vals and output argument
meanout. Both are scalars of type double by default.

9 Double-click the vals row under the Size column to set the size of vals to 4.

10 Back in the chart, double-click the function stdevstats and repeat the
previous two steps.

11 Back in the Model Hierarchy pane of the Model Explorer, select Chart
and add the following data:

23-8

Building a Model with a MATLAB® Function in a Chart

Name Scope Size

invals Input 4

mean Output Scalar (no change)

stdev Output Scalar (no change)

You should now see the following data in the Model Explorer.

23-9

23 Using MATLAB® Functions in Stateflow® Charts

After you add the data invals, mean, and stdev to the chart, the
corresponding input and output ports appear on the Stateflow block in
the model.

12 Connect the Constant and Display blocks to the ports of the Chart block
and save the model.

The section “Debugging a MATLAB Function in a Chart” on page 23-15 shows
you how to program the functions meanstats and stdevstats.

23-10

Programming a MATLAB® Function in a Chart

Programming a MATLAB Function in a Chart
To program the functions meanstats and stdevstats that you created in
“Building a Model with a MATLAB Function in a Chart” on page 23-5, follow
these steps:

1 Open the chart in the model call_stats_function_stateflow.

2 In the chart, open the function meanstats.

The function editor appears with the header:

function meanout = meanstats(vals)

This header is taken from the function label in the chart. You can edit the
header directly in the editor, and your changes appear in the chart after
you close the editor.

3 On the line after the function header, enter:

%#codegen

The %#codegen compilation directive helps detect compile-time violations of
syntax and semantics in MATLAB functions supported for code generation.
To learn more about detecting compile-time errors, see “Adding the
Compilation Directive %#codegen” in the Code Generation from MATLAB
documentation.

4 Enter a line space and this comment:

% Calculates the statistical mean for vals

5 Add the line:

len = length(vals);

The function length is an example of a built-in MATLAB function that is
supported for code generation. You can call this function directly to return
the vector length of its argument vals. When you build a simulation target,
the function length is implemented with generated C code. Functions
supported for code generation appear in “Functions Supported for Code
Generation” in the Code Generation from MATLAB documentation.

23-11

23 Using MATLAB® Functions in Stateflow® Charts

The variable len is an example of implicitly declared local data. It has the
same size and type as the value assigned to it — the value returned by the
function length, a scalar double. To learn more about declaring variables,
see “Defining MATLAB Variables for C/C++ Code Generation” in the Code
Generation from MATLAB documentation.

The MATLAB function treats implicitly declared local data as temporary
data, which exists only when the function is called and disappears when
the function exits. You can declare local data for a MATLAB function in a
chart to be persistent by using the persistent construct (see “Defining and
Initializing Persistent Variables” in the Code Generation from MATLAB
documentation).

6 Enter this line to calculate the value of meanout:

meanout = avg(vals,len);

The function meanstats stores the mean of vals in the Stateflow data
meanout. Because these data are defined for the parent Stateflow chart,
you can use them directly in the MATLAB function.

Two-dimensional arrays with a single row or column of elements are
treated as vectors or matrices in MATLAB functions. For example, in
meanstats, the argument vals is a four-element vector. You can access
the fourth element of this vector with the matrix notation vals(4,1) or
the vector notation vals(4).

The MATLAB function uses the functions avg and sum to compute the
value of mean. sum is a function supported for code generation. avg is
a subfunction that you define later. When resolving function names,
MATLAB functions in your chart look for subfunctions first, followed by
functions supported for code generation.

Note If you call a function that the MATLAB function cannot resolve as a
subfunction or a function for code generation, you must declare the function
to be extrinsic. For more information, see “Calling MATLAB Functions” in
the Code Generation from MATLAB documentation.

7 Now enter this statement:

23-12

Programming a MATLAB® Function in a Chart

coder.extrinsic('plot');

8 Enter this line to plot the input values in vals against their vector index.

plot(vals,'-+');

Recall that you declared plot to be an extrinsic function because it is not
supported for code generation. When the MATLAB function encounters an
extrinsic function, it sends the call to the MATLAB workspace for execution
during simulation.

9 Now, define the subfunction avg, as follows:

function mean = avg(array,size)
mean = sum(array)/size;

The header for avg defines two arguments, array and size, and a single
return value, mean. The subfunction avg calculates the average of the
elements in array by dividing their sum by the value of argument size.

For more information on creating subfunctions, see “Subfunctions” in the
MATLAB documentation.

The complete code for the function meanstats looks like this:

function meanout = meanstats(vals)
%#codegen

% Calculates the statistical mean for vals

len = length(vals);
meanout = avg(vals,len);

coder.extrinsic('plot');
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

10 Save the model.

23-13

23 Using MATLAB® Functions in Stateflow® Charts

11 Back in the chart, open the function stdevstats and add code to compute
the standard deviation of the values in vals. The complete code should
look like this:

function stdevout = stdevstats(vals)
%#codegen

% Calculates the standard deviation for vals

len = length(vals);
stdevout = sqrt(sum(((vals-avg(vals,len)).^2))/len);

function mean = avg(array,size)
mean = sum(array)/size;

12 Save the model again.

23-14

Debugging a MATLAB® Function in a Chart

Debugging a MATLAB Function in a Chart

In this section...

“Checking MATLAB Functions for Syntax Errors” on page 23-15

“Run-Time Debugging for MATLAB Functions in Charts” on page 23-17

“Checking for Data Range Violations” on page 23-21

Checking MATLAB Functions for Syntax Errors
Before you can build a simulation application for a model, you must fix syntax
errors. Follow these steps to check the MATLAB function meanstats for
syntax violations:

1 Open the function meanstats inside the chart in the
call_stats_function_stateflow model that you updated in
“Programming a MATLAB Function in a Chart” on page 23-11.

The editor automatically checks your function code for errors and
recommends corrections.

2 In the editor, select Tools > Build.

23-15

23 Using MATLAB® Functions in Stateflow® Charts

If there are no errors or warnings, the Builder window appears and reports
success. Otherwise, it lists errors. For example, if you change the name
of subfunction avg to a nonexistent subfunction aug in meanstats, the
following errors appear:

Each error message appears with a red button. The selected error message
displays diagnostic information in the bottom pane.

3 Click the first error line to display its diagnostic message in the bottom
error window.

The diagnostic message provides details of the type of error and a link to the
code where the error occurred. The diagnostic message also contains a link
to a diagnostic report that provides links to your MATLAB functions and
compile-time type information for the variables and expressions in these
functions. If your model fails to build, this information simplifies finding
sources of error messages and aids understanding of type propagation
rules. For more information about this report, see “Working with MATLAB
Function Reports” in the Simulink documentation.

23-16

Debugging a MATLAB® Function in a Chart

4 In the diagnostic message, click the link after the function name meanstats
to display the offending line of code.

The offending line appears highlighted in the editor.

5 Correct the error by changing aug back to avg and recompile. No errors
are found and the compile completes successfully.

Run-Time Debugging for MATLAB Functions in Charts
You use simulation to test your MATLAB functions for run-time errors that
are not detectable by the Stateflow Debugger. When you simulate your model,
your MATLAB functions undergo diagnostic tests for missing or undefined
information and possible logical conflicts as described in “Checking MATLAB
Functions for Syntax Errors” on page 23-15. If no errors are found, the
simulation of your model begins.

Follow these steps to simulate and debug the meanstats function during
run-time conditions:

1 In the function editor, click the dash (-) character in the left margin of
this line:

len = length(vals);

23-17

23 Using MATLAB® Functions in Stateflow® Charts

A small red ball appears in the margin of this line, indicating that you
have set a breakpoint.

2 Start simulation for the model.

23-18

Debugging a MATLAB® Function in a Chart

If you get any errors or warnings, make corrections before you try to
simulate again. Otherwise, simulation pauses when execution reaches
the breakpoint you set. This pause is indicated by a small green arrow in
the left margin.

3 To advance execution to the next line, select Debug > Step.

Notice that this line calls the subfunction avg. If you select Step here,
execution advances past the execution of the subfunction avg. To track
execution of the lines in the subfunction avg, select Debug > Step In
instead.

4 To advance execution to the first line of the called subfunction avg, select
Debug > Step In.

Once you are in the subfunction, you can advance through the subfunction
one line at a time with the Step tool. If the subfunction calls another
subfunction, use the Step In tool to step into it. To continue through
the remaining lines of the subfunction and go back to the line after the
subfunction call, select Debug > Step Out.

5 Select Step to execute the only line in the subfunction avg.

23-19

23 Using MATLAB® Functions in Stateflow® Charts

When the subfunction avg finishes its execution, you see a green arrow
pointing down under its last line.

6 Select Step to return to the function meanstats.

Execution advances to the line after the call to the subfunction avg.

7 To display the value of the variable len, place your pointer over the text
len in the function editor for at least a second.

The value of len appears adjacent to your pointer.

You can display the value for any data in the MATLAB function in this
way, no matter where it appears in the function. For example, you can
display the values for the vector vals by placing your pointer over it as an
argument to the function length, or as an argument in the function header.

You can also report the values for MATLAB function data in the MATLAB
Command Window during simulation. When you reach a breakpoint, the
debug>> command prompt appears in the MATLAB Command Window
(you might have to press Enter to see it). At this prompt, you can inspect
data defined for the function by entering the name of the data, as shown
in this example:

debug>> len
len =

4
debug>>

As another debugging alternative, you can display the execution result of a
function line by omitting the terminating semicolon. If you do, execution
results appear in the MATLAB Command Window during simulation.

8 To leave the function until it is called again and the breakpoint is reached,
select Debug > Continue.

At any point in a function, you can advance through the execution of the
remaining lines of the function with the Continue tool. If you are at the end
of the function, selecting Step does the same thing.

9 Click the breakpoint to remove it and select Debug > Exit Debug Mode
to complete the simulation.

23-20

Debugging a MATLAB® Function in a Chart

In the model, the computed values of mean and stdev now appear in the
Display blocks.

Checking for Data Range Violations
During debugging, MATLAB functions automatically check input and output
data for data range violations.

Specifying a Range
To specify a range for input and output data, follow these steps:

1 In the Model Explorer, select the MATLAB function input or output of
interest.

The Data properties dialog box opens in the Dialog pane of the Model
Explorer.

2 In the Data properties dialog box, click the General tab and enter a limit
range, as described in “Limit range properties” on page 8-14.

Controlling Data Range Checking
To control data range checking, follow these steps:

1 Open the Stateflow Debugger, as described in “Opening the Stateflow
Debugger” on page 26-2.

2 In the Error checking options pane, perform one of these actions:

23-21

23 Using MATLAB® Functions in Stateflow® Charts

To: Do This:

Enable data range checking Select the Data Range check box

Disable data range checking Clear the Data Range check box

23-22

Working with Structures and Bus Signals in MATLAB® Functions

Working with Structures and Bus Signals in MATLAB
Functions

In this section...

“About Structures in MATLAB Functions” on page 23-23

“Defining Structures in MATLAB Functions” on page 23-23

About Structures in MATLAB Functions
MATLAB functions support MATLAB structures. You can create structures
in top-level MATLAB functions in Stateflow charts to interface with Simulink
bus signals at input and output ports. Simulink buses appear inside the
MATLAB function as structures; structure outputs from the MATLAB
function appear as buses.

You can also create structures as local and persistent variables in top-level
functions and subfunctions of MATLAB functions.

Defining Structures in MATLAB Functions
This section describes how to define structures in MATLAB functions.

• “Rules for Defining Structures in MATLAB Functions” on page 23-23

• “Defining Structure Inputs and Outputs to Interface with Bus Signals” on
page 23-24

• “Defining Local and Persistent Structure Variables” on page 23-25

Rules for Defining Structures in MATLAB Functions
Follow these rules when defining structures for MATLAB functions in
Stateflow charts:

• For each structure input or output in a MATLAB function, you must
define a Simulink.Bus object in the base workspace to specify its type to
the Simulink signal.

• MATLAB structures cannot inherit their type from Simulink signals.

23-23

23 Using MATLAB® Functions in Stateflow® Charts

• MATLAB functions support nonvirtual buses only (see “Virtual and
Nonvirtual Buses” in the Simulink documentation).

• Structures cannot have scopes defined as Constant.

Defining Structure Inputs and Outputs to Interface with Bus
Signals
When you create structure inputs in MATLAB functions, the function
determines the type, size, and complexity of the structure from the Simulink
input signal. When you create structure outputs, you must define their type,
size, and complexity in the MATLAB function.

You can connect MATLAB structure inputs and outputs to any Simulink
bus signal, including:

• Simulink blocks that output bus signals — such as Bus Creator blocks

• Simulink blocks that accept bus signals as input — such as Bus Selector
and Gain blocks

• S-Function blocks

• Other MATLAB functions

To define structure inputs and outputs for MATLAB functions in Stateflow
charts, follow these steps:

1 Create a Simulink bus object in the base workspace to specify the properties
of the structure you will create in the MATLAB function.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference.

2 Open the Model Explorer and follow these steps:

a In the Model Hierarchy pane, select the MATLAB function in your
chart.

b Add a data object, as described in “Adding Data Using the Model
Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog
box in its right-hand Dialog pane.

23-24

Working with Structures and Bus Signals in MATLAB® Functions

c In the Properties dialog box, enter the following information in the
General tab fields:

Field What to Specify

Name Enter a name for referencing the structure in the
MATLAB function. This name does not have to match the
name of the bus object in the base workspace.

Scope Select Input or Output.

Type Select Bus: <bus object name> from the drop-down
list.

Then, replace “<bus object name>” with the name of the
Simulink.Bus object in the base workspace that defines
the structure. For example: Bus: inbus.

d To add or modify Simulink.Bus objects, open the Data Type Assistant.
Then, click the Edit button to open the Simulink Bus Editor (see “Using
the Bus Editor” in the Simulink documentation).

e Click Apply.

3 If your structure is an output (has scope of Output), define the output
implicitly in the MATLAB function to have the same type, size, and
complexity as its Simulink.Bus object. For details, see “Code Generation
for MATLAB Structures” in the Code Generation from MATLAB
documentation.

Defining Local and Persistent Structure Variables
You can define structures as local or persistent variables inside MATLAB
functions (see “Structure Operations Allowed for Code Generation” in the
Code Generation from MATLAB documentation).

23-25

23 Using MATLAB® Functions in Stateflow® Charts

Working with Enumerated Data in MATLAB Functions
Define and use enumerated data with MATLAB functions in Stateflow
charts the same way as in MATLAB Function blocks in a model. For more
information, see “Using Enumerated Data in MATLAB Function Blocks” in
the Simulink documentation.

To learn how to define and use enumerated data in Stateflow charts, see
Chapter 15, “Using Enumerated Data in Stateflow Charts”.

23-26

Working with Variable-Size Data in MATLAB® Functions

Working with Variable-Size Data in MATLAB Functions
Declare and use variable-size matrices and arrays with MATLAB functions in
Stateflow charts the same way as in MATLAB Function blocks in a model.
For more information, see “Using Variable-Size Data in MATLAB Function
Blocks” in the Simulink documentation.

To learn how to declare variable-size data at the chart level, see Chapter 14,
“Using Variable-Size Data in Stateflow Charts”.

23-27

23 Using MATLAB® Functions in Stateflow® Charts

Enhancing Readability of Generated Code for MATLAB
Functions

You can enhance the readability of generated code for MATLAB functions in
Stateflow charts the same way as in MATLAB Function blocks in a model.
For more information, see “Enhancing Readability of Generated Code for
MATLAB Function Blocks” in the Simulink documentation.

To learn how to enhance readability of generated code for flow graphs in
Stateflow charts, see “Enhancing Readability of Generated Code for Flow
Graphs” on page 5-32.

23-28

24

Using Simulink Functions
in Stateflow Charts

• “What Is a Simulink Function?” on page 24-2

• “When to Use a Simulink Function in a Stateflow Chart” on page 24-3

• “How to Define a Simulink Function in a Stateflow Chart” on page 24-10

• “How a Simulink Function Binds to a State” on page 24-13

• “How a Simulink Function Behaves When Called from Multiple Sites” on
page 24-21

• “Rules for Using Simulink Functions in Stateflow Charts” on page 24-22

• “Best Practices for Using Simulink Functions” on page 24-24

• “Tutorial: Defining a Function That Uses Simulink Blocks” on page 24-25

• “Tutorial: Scheduling Execution of Multiple Controllers” on page 24-34

24 Using Simulink® Functions in Stateflow® Charts

What Is a Simulink Function?
In a Stateflow chart, a Simulink function is a graphical object that you fill
with Simulink blocks and call in the actions of states and transitions. This
function provides an efficient model design and improves readability by
minimizing graphical and nongraphical objects. Typical applications include:

• Defining a function that requires Simulink blocks, such as lookup tables
(see “About Lookup Table Blocks” in the Simulink documentation)

• Scheduling execution of multiple controllers

In a Stateflow chart, a Simulink function behaves like a function-call
subsystem block of a Simulink model. (See “Function-Call Subsystems” in the
Simulink documentation.) However, these differences apply.

Behavior Function-Call
Subsystem

Simulink Function

Requires function-call
output events for
execution

Yes No

Requires signal lines in
the model

Yes No

Supports frame-based
input and output
signals

Yes No

The scope of a Simulink function in a Stateflow chart depends on where the
function resides.

If the function resides in a... Then you can call the function...

State In that state and all its substates
(see “How a Simulink Function
Binds to a State” on page 24-13)

Chart Anywhere in the chart

24-2

When to Use a Simulink® Function in a Stateflow® Chart

When to Use a Simulink Function in a Stateflow Chart

In this section...

“Advantages of Using Simulink Functions in a Stateflow Chart” on page
24-3

“Benefits of Using a Simulink Function to Access Simulink Blocks” on page
24-4

“Benefits of Using a Simulink Function to Schedule Execution of Multiple
Controllers” on page 24-6

Advantages of Using Simulink Functions in a
Stateflow Chart
When you define a function that uses Simulink blocks or schedule execution
of multiple controllers without Simulink functions, the model requires these
elements:

• Simulink function-call subsystem blocks

• Stateflow chart with function-call output events

• Signal lines between the chart and each function-call subsystem port

Simulink functions in a Stateflow chart provide these advantages:

• No function-call subsystem blocks

• No output events

• No signal lines

For details about each modeling method, see “Benefits of Using a Simulink
Function to Access Simulink Blocks” on page 24-4 and “Benefits of Using a
Simulink Function to Schedule Execution of Multiple Controllers” on page
24-6.

24-3

24 Using Simulink® Functions in Stateflow® Charts

Benefits of Using a Simulink Function to Access
Simulink Blocks
The sections that follow compare two ways of defining a function that uses
Simulink blocks.

Modeling Method Without a Simulink Function
You define a function-call subsystem in the Simulink model (see
“Function-Call Subsystems” in Simulink User’s Guide). Use an output event
in a Stateflow chart to call the subsystem, as shown.

24-4

When to Use a Simulink® Function in a Stateflow® Chart

Modeling Method With a Simulink Function
You place one or more Simulink blocks in a Simulink function of a Stateflow
chart. Use a function call to execute the blocks in that function, as shown.

In the chart, the during action in selection_state contains a function call
to calc_th, which is a function that contains Simulink blocks.

24-5

24 Using Simulink® Functions in Stateflow® Charts

This modeling method minimizes the objects in your model.

For more information, see “Tutorial: Defining a Function That Uses Simulink
Blocks” on page 24-25.

Benefits of Using a Simulink Function to Schedule
Execution of Multiple Controllers
The sections that follow compare two ways of scheduling execution of multiple
controllers.

24-6

When to Use a Simulink® Function in a Stateflow® Chart

Modeling Method Without Simulink Functions
You define each controller as a function-call subsystem block and use output
events in a Stateflow chart to schedule execution of the subsystems, as shown.

24-7

24 Using Simulink® Functions in Stateflow® Charts

Modeling Method With Simulink Functions
You define each controller as a Simulink function in a Stateflow chart and use
function calls to schedule execution of the subsystems, as shown.

24-8

When to Use a Simulink® Function in a Stateflow® Chart

This modeling method minimizes the objects in your model.

For more information, see “Tutorial: Scheduling Execution of Multiple
Controllers” on page 24-34.

24-9

24 Using Simulink® Functions in Stateflow® Charts

How to Define a Simulink Function in a Stateflow Chart

In this section...

“Task 1: Add a Function to the Chart” on page 24-10

“Task 2: Define the Subsystem Elements of the Simulink Function” on
page 24-11

“Task 3: Configure the Function Inputs” on page 24-12

Task 1: Add a Function to the Chart
Follow these steps to add a Simulink function to the chart:

1 Click the Simulink function icon in the Stateflow Editor toolbar:

2 Move your pointer to the location for the new Simulink function in your
chart and click to insert the function box.

Tip You can also drag the function from the toolbar.

3 Enter the function signature.

The function signature specifies a name for your function and the formal
names for the arguments and return values. A signature has this syntax:

[r_1, r_2,..., r_n] = simfcn(a_1, a_2,..., a_n)

where simfcn is the name of your function, a_1, a_2, ..., a_n are formal
names for the arguments, and r_1, r_2, ..., r_n are formal names for the
return values.

24-10

How to Define a Simulink® Function in a Stateflow® Chart

Note This syntax is the same as what you use for graphical functions,
truth tables, and MATLAB functions. You can define arguments and
return values as scalars, vectors, or matrices of any data type.

4 Click outside the function box.

The following example shows a Simulink function that has the name sim_fcn,
which takes three arguments (a, b, and c) and returns two values (x and y).

Note You can also create and edit a Simulink function by using API methods.
See “API Object Reference” for more information.

Task 2: Define the Subsystem Elements of the
Simulink Function
Follow these steps to define the subsystem elements of the Simulink function:

1 Double-click the Simulink function box.

The contents of the subsystem appear: input and output ports that match
the function signature and a single function-call trigger port.

2 Add Simulink blocks to the subsystem.

3 Connect the input and output ports to each block.

24-11

24 Using Simulink® Functions in Stateflow® Charts

Note You cannot delete the trigger port in the function.

The following example shows the subsystem elements for a Simulink function.

Task 3: Configure the Function Inputs
Follow these steps to configure inputs for the Simulink function:

1 Configure the input ports.

a Double-click an input port to open the Block Parameters dialog box.

b In the Signal Attributes pane, enter the size and data type.

For example, you can specify a size of [2 3] for a 2-by-3 matrix and a
data type of uint8.

2 Click OK.

Note An input port of a Simulink function cannot inherit size or data type.
Therefore, you define the size and data type of an input that is not scalar
data of type double. However, an output port can inherit size and data type.
For more information, see “Best Practices for Using Simulink Functions” on
page 24-24.

24-12

How a Simulink® Function Binds to a State

How a Simulink Function Binds to a State

In this section...

“Binding Behavior of a Simulink Function” on page 24-13

“Controlling Subsystem Variables When the Simulink Function Is Disabled”
on page 24-15

“Example of Binding a Simulink Function to a State” on page 24-16

Binding Behavior of a Simulink Function
When a Simulink function resides inside a state, the function binds to that
state. Binding results in the following behavior:

• Function calls can occur only in state actions and on transitions within
the state and its substates.

• When the state is entered, the function is enabled.

• When the state is exited, the function is disabled.

24-13

24 Using Simulink® Functions in Stateflow® Charts

For example, the following Stateflow chart shows a Simulink function that
binds to a state.

Because the function queue resides in state A1, the function binds to that state.

• State A1 and its substates A2 and A3 can call queue, but state B1 cannot.

• When state A1 is entered, queue is enabled.

• When state A1 is exited, queue is disabled.

24-14

How a Simulink® Function Binds to a State

Controlling Subsystem Variables When the Simulink
Function Is Disabled
If a Simulink function binds to a state, you can hold the subsystem variables
at their values from the previous execution or reset the variables to their
initial values. Follow these steps:

1 In the Simulink function, double-click the trigger port to open the Block
Parameters dialog box.

2 Select an option for States when enabling.

Option Description Reference Section

held Holds the values of the
subsystem variables
from the previous
execution

“How the Function
Behaves When
Variables Are Held” on
page 24-19

reset Resets the subsystem
variables to their
initial values

“How the Function
Behaves When
Variables Are Reset”
on page 24-20

24-15

24 Using Simulink® Functions in Stateflow® Charts

Example of Binding a Simulink Function to a State
This example shows how a Simulink function behaves when bound to a state.

The function queue contains a block diagram that increments a counter by
1 each time the function executes.

24-16

How a Simulink® Function Binds to a State

The Block Parameters dialog box for the trigger port appears as follows.

In the dialog box, setting Sample time type to periodic enables the
Sample time field, which defaults to 1. These settings tell the function to
execute for each time step specified in the Sample time field while the
function is enabled.

24-17

24 Using Simulink® Functions in Stateflow® Charts

Note If you use a fixed-step solver, the value in the Sample time field must
be an integer multiple of the fixed-step size. This restriction does not apply to
variable-step solvers. (For more information, see “Solvers” in the Simulink
documentation.)

Simulation Behavior of the Chart

When you simulate the chart, the following actions occur.

1 The default transition to state A1 occurs, which includes setting local data
u1 to 1.

2 When A1 is entered, the function queue is enabled.

3 Function calls to queue occur until the condition after(5, sec) is true.

4 The transition from state A1 to B1 occurs.

5 When A1 is exited, the function queue is disabled.

6 After two more seconds pass, the transition from B1 to A1 occurs.

7 Steps 2 through 6 repeat until the simulation ends.

24-18

How a Simulink® Function Binds to a State

How the Function Behaves When Variables Are Held
If you set States when enabling to held, the output y1 is as follows.

When state A1 becomes inactive at t = 5, the Simulink function holds the
counter value. When A1 is active again at t = 7, the counter has the same
value as it did at t = 5. Therefore, the output y1 continues to increment over
time.

24-19

24 Using Simulink® Functions in Stateflow® Charts

How the Function Behaves When Variables Are Reset
If you set States when enabling to reset, the output y1 is as follows.

When state A1 becomes inactive at t = 5, the Simulink function does not hold
the counter value. When A1 is active again at t = 7, the counter resets to zero.
Therefore, the output y1 resets too.

24-20

How a Simulink® Function Behaves When Called from Multiple Sites

How a Simulink Function Behaves When Called from
Multiple Sites

If you call a Simulink function from multiple sites in a chart, all call sites
share the state of the function variables. For example, suppose you have a
chart with two calls to the same Simulink function at each time step.

The function f contains a block diagram that increments a counter by 1 each
time the function executes.

At each time step, the function f is called twice, which causes the counter to
increment by 2. Because all call sites share the value of this counter, the data
y and y1 increment by 2 at each time step.

Note This behavior also applies to external function-call subsystems in a
Simulink model. For more information, see “Function-Call Subsystems” in
the Simulink documentation.

24-21

24 Using Simulink® Functions in Stateflow® Charts

Rules for Using Simulink Functions in Stateflow Charts
Do not call Simulink functions in state during actions or transition
conditions of continuous-time charts

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see Chapter 16, “Modeling Continuous-Time Systems
in Stateflow Charts”.

Do not call Simulink functions in default transitions if you enable
execute-at-initialization mode

If you select Execute (enter) Chart At Initialization in the Chart
properties dialog box, you cannot call Simulink functions in default transitions
that execute the first time that the chart awakens. Otherwise, an error
message appears when you simulate your model.

Use only alphanumeric characters or underscores when naming
input and output ports for a Simulink function

This rule ensures that the names of input and output ports are compatible
with identifier naming rules of Stateflow charts.

Note Any space in a name automatically changes to an underscore.

Convert discontiguous signals to contiguous signals for Simulink
functions

For Simulink functions inside a Stateflow chart, the output ports do not
support discontiguous signals. If your function contains a block that outputs
a discontiguous signal, insert a Signal Conversion block between the
discontiguous output and the output port. This action ensures that the output
signal is contiguous.

24-22

Rules for Using Simulink® Functions in Stateflow® Charts

Blocks that can output a discontiguous signal include the Bus Creator block
and the Mux block. For the Bus Creator block, the output is discontiguous
only if you clear the Output as nonvirtual bus check box—that is, if the
Bus Creator block outputs a virtual bus. If you select Output as nonvirtual
bus, the output signal is contiguous and no conversion is necessary.

For more information, see Bus Creator, Mux, and Signal Conversion in the
Simulink Reference documentation.

Do not export Simulink functions

If you try to export Simulink functions, an error message appears when you
simulate your model. To avoid this problem, clear the Export Chart Level
Graphical Functions (Make Global) check box in the Chart properties
dialog box.

Use the Stateflow Editor to rename a Simulink function

If you try to use the Model Explorer to rename a Simulink function, the
change does not appear in the chart. Click the function box in the Stateflow
Editor to rename the function.

Do not use Simulink functions in Moore charts

This restriction prevents violations of Moore semantics during chart execution.
See “Design Rules for Moore Charts” on page 6-13 for more information.

Do not generate HDL code for Simulink functions

If you try to generate HDL code for charts that contain Simulink functions, an
error message appears when you simulate your model. HDL code generation
does not support Simulink functions.

24-23

24 Using Simulink® Functions in Stateflow® Charts

Best Practices for Using Simulink Functions
Place a Simulink function at the lowest possible level of the Stateflow
hierarchy

This guideline enables binding of a Simulink function only to the state and
substates that require access. You also enhance readability of the chart.

Set properties of input ports explicitly for a Simulink function

The input ports of a Simulink function cannot inherit their sizes and data
types. Therefore, you must set sizes and types explicitly when the inputs
are not scalar data of type double.

The output ports of a Simulink function can inherit sizes and data types based
on connections inside the subsystem. Therefore, you can specify sizes and
types of outputs as inherited.

Tip To minimize updates required for changes in input port properties, you
can specify sizes and data types as parameters.

Verify that function-call expressions have inputs and outputs of
correct size

If the formal arguments of a function signature are scalars, verify that inputs
and outputs of function calls follow the rules of scalar expansion. For more
information, see “How Scalar Expansion Works for Functions” on page 13-6.

Avoid using machine-parented data with Simulink functions

Use data store memory instead of machine-parented data. For more
information, see “Sharing Global Data with Simulink Models” on page 8-33.

24-24

Tutorial: Defining a Function That Uses Simulink® Blocks

Tutorial: Defining a Function That Uses Simulink Blocks

In this section...

“Goal of the Tutorial” on page 24-25

“Editing a Model to Use a Simulink Function” on page 24-26

“Running the New Model” on page 24-33

Goal of the Tutorial
The goal of this tutorial is to use a Simulink function in a Stateflow chart to
improve the design of a model named old_sf_car.

Rationale for Improving the Model Design
The old_sf_car model contains a function-call subsystem named Threshold
Calculation and a Stateflow chart named shift_logic. The two blocks interact
as follows:

24-25

24 Using Simulink® Functions in Stateflow® Charts

• The chart broadcasts the output event CALC_TH to trigger the function-call
subsystem.

• The subsystem uses lookup tables to interpolate two values for the
shift_logic chart.

• The subsystem outputs (up_th and down_th) feed directly into the chart as
inputs.

No other blocks in the model access the subsystem outputs.

You can replace a function-call subsystem with a Simulink function in a
chart when:

• The subsystem performs calculations required by the chart.

• Other blocks in the model do not need access to the subsystem outputs.

Editing a Model to Use a Simulink Function
The sections that follow describe how to replace a function-call subsystem
in a Simulink model with a Simulink function in a Stateflow chart. This
procedure reduces the number of objects in the model while retaining the
same simulation results.

Step Task Reference

1 Open the model. “Open the Model” on page 24-27

2 Move the contents of the
function-call subsystem into a
Simulink function in the chart.

“Add a Simulink Function to the
Chart” on page 24-28

3 Change the scope of specific
chart-level data to Local.

“Change the Scope of Chart Data”
on page 24-31

4 Replace the event broadcast with
a function call.

“Update State Action in the
Chart” on page 24-32

5 Verify that function inputs and
outputs are defined.

“Add Data to the Chart” on page
24-32

6 Remove unused items in the
model.

“Remove Unused Items in the
Model” on page 24-33

24-26

Tutorial: Defining a Function That Uses Simulink® Blocks

Note To skip the conversion steps and access the new model directly, type
sf_car at the MATLAB command prompt.

Open the Model
Type old_sf_car at the MATLAB command prompt. If you simulate the
model, you see these results in the two scopes.

24-27

24 Using Simulink® Functions in Stateflow® Charts

Add a Simulink Function to the Chart
Follow these steps to add a Simulink function to the shift_logic chart.

24-28

Tutorial: Defining a Function That Uses Simulink® Blocks

1 In the Simulink model, right-click the Threshold Calculation block in the
lower left corner and select Cut from the context menu.

2 Open the shift_logic chart.

3 In the chart, right-click below selection_state and select Paste from
the context menu.

24-29

24 Using Simulink® Functions in Stateflow® Charts

4 Expand the new Simulink function so that the signature fits inside the
function box.

Tip To change the font size of a function, right-click the function box and
select a new size from the Font Size menu.

24-30

Tutorial: Defining a Function That Uses Simulink® Blocks

5 Expand the border of selection_state to include the new function.

Note The function resides in this state instead of the chart level because
no other state in the chart requires the function outputs up_th and
down_th. See “How a Simulink Function Binds to a State” on page 24-13.

6 Rename the Simulink function from Threshold_Calculation
to calc_threshold by entering [down_th, up_th] =
calc_threshold(gear, throttle) in the function box.

Change the Scope of Chart Data
In the Model Explorer, change the scope of chart-level data up_th and down_th
to Local because calculations for those data now occur inside the chart.

24-31

24 Using Simulink® Functions in Stateflow® Charts

Update State Action in the Chart
In the Stateflow Editor, change the during action in selection_state to call
the Simulink function calc_threshold.

during: [down_th, up_th] = calc_threshold(gear, throttle);

Add Data to the Chart
Because the function calc_threshold takes throttle as an input, you must
define that data as a chart input. (For details, see “Adding Data” on page 8-2.)

1 Add input data throttle to the chart with a Port property of 1.

24-32

Tutorial: Defining a Function That Uses Simulink® Blocks

Using port 1 prevents signal lines from overlapping in the Simulink model.

2 In the Simulink model, add a signal line for throttle between the inport of
the Engine block and the inport of the shift_logic chart.

Remove Unused Items in the Model

1 In the Model Explorer, delete the function-call output event CALC_TH
because the Threshold Calculation block no longer exists.

2 Delete any dashed signal lines from your model.

Running the New Model
Your new model looks something like this:

If you simulate the new model, the results match those of the original design.

24-33

24 Using Simulink® Functions in Stateflow® Charts

Tutorial: Scheduling Execution of Multiple Controllers

In this section...

“Goal of the Tutorial” on page 24-34

“Editing a Model to Use Simulink Functions” on page 24-35

“Running the New Model” on page 24-42

Goal of the Tutorial
The goal of this tutorial is to use Simulink functions in a Stateflow chart to
improve the design of a model named sf_temporal_logic_scheduler.

24-34

Tutorial: Scheduling Execution of Multiple Controllers

Rationale for Improving the Model Design
The sf_temporal_logic_scheduler model contains a Stateflow chart and
three function-call subsystems. These blocks interact as follows:

• The chart broadcasts the output events A1, A2, and A3 to trigger the
function-call subsystems.

• The subsystems A1, A2, and A3 execute at different rates defined by the
chart.

• The subsystem outputs feed directly into the chart.

No other blocks in the model access the subsystem outputs.

You can replace function-call subsystems with Simulink functions inside a
chart when:

• The subsystems perform calculations required by the chart.

• Other blocks in the model do not need access to the subsystem outputs.

Editing a Model to Use Simulink Functions
The sections that follow describe how to replace function-call subsystem
blocks in a Simulink model with Simulink functions in a Stateflow chart.
This procedure reduces the number of objects in the model while retaining
the same simulation results.

Step Task Reference

1 Open the model. “Open the Model” on page 24-37

2 Move the contents of the
function-call subsystems into
Simulink functions in the chart.

“Add Simulink Functions to the
Chart” on page 24-37

3 Change the scope of specific
chart-level data to Local.

“Change the Scope of Chart Data”
on page 24-40

4 Replace event broadcasts with
function calls.

“Update State Actions in the
Chart” on page 24-41

24-35

24 Using Simulink® Functions in Stateflow® Charts

Step Task Reference

5 Verify that function inputs and
outputs are defined.

“Add Data to the Chart” on page
24-41

6 Remove unused items in the
model.

“Remove Unused Items in the
Model” on page 24-42

Note To skip the conversion steps and access the new model directly, type
sf_temporal_logic_scheduler_with_sl_fcns at the MATLAB command
prompt.

24-36

Tutorial: Scheduling Execution of Multiple Controllers

Open the Model
Type sf_temporal_logic_scheduler at the MATLAB command prompt. If
you simulate the model, you see this result in the scope.

For more information, see “Scheduling Subsystems to Execute at Specific
Times Using a Temporal Logic Scheduler” on page 21-17.

Add Simulink Functions to the Chart
Follow these steps to add Simulink functions to the Temporal Logic Scheduler
chart.

24-37

24 Using Simulink® Functions in Stateflow® Charts

1 In the Simulink model, right-click the A1 block in the lower right corner
and select Cut from the context menu.

2 Open the Temporal Logic Scheduler chart.

3 In the chart, right-click outside any states and select Paste from the
context menu.

24-38

Tutorial: Scheduling Execution of Multiple Controllers

4 Expand the new Simulink function so that the signature fits inside the
function box.

Tip To change the font size of a function, right-click the function box and
select a new size from the Font Size menu.

5 Rename the Simulink function from A1 to f1 by entering y = f1(u) in
the function box.

24-39

24 Using Simulink® Functions in Stateflow® Charts

6 Repeat steps 1 through 5 for these cases:

• Copying the contents of A2 into a Simulink function named f2.

• Copying the contents of A3 into a Simulink function named f3.

Note The new functions reside at the chart level because both states
FastScheduler and SlowScheduler require access to the function outputs.

Change the Scope of Chart Data
In the Model Explorer, change the scope of chart-level data y to Local because
the calculation for that data now occurs inside the chart.

24-40

Tutorial: Scheduling Execution of Multiple Controllers

Update State Actions in the Chart
In the Stateflow Editor, you can replace event broadcasts in state actions
with function calls.

1 Edit the state actions in FastScheduler and SlowScheduler to call the
Simulink functions f1, f2, and f3.

2 In both states, update each during action as follows.

du: y = u1-y2;

Add Data to the Chart
For the on every state actions of FastScheduler and SlowScheduler, define
three data. (For details, see “Adding Data” on page 8-2.)

24-41

24 Using Simulink® Functions in Stateflow® Charts

1 Add local data y1 and y2 to the chart.

2 Add output data y3 to the chart.

3 In the model, connect the outport for y3 to the inport of the scope.

Tip To flip the Scope block, right-click and select Format > Flip Block
from the context menu.

Remove Unused Items in the Model

1 In the Model Explorer, delete output events A1, A2, and A3 and input data
u2 because the function-call subsystems no longer exist.

2 Delete any dashed signal lines from your model.

Running the New Model
Your new model looks something like this:

24-42

Tutorial: Scheduling Execution of Multiple Controllers

If you simulate the new model, the results match those of the original design.

24-43

24 Using Simulink® Functions in Stateflow® Charts

24-44

25

Building Targets

• “Targets You Can Build” on page 25-3

• “Choosing a Procedure to Simulate a Model” on page 25-5

• “Procedures for Simulation” on page 25-7

• “Speeding Up Simulation” on page 25-17

• “Choosing a Procedure to Generate Embeddable Code for a Model” on
page 25-19

• “Procedures for Embeddable Code Generation” on page 25-21

• “Optimizing Generated Code” on page 25-29

• “Using the Command-Line API to Set Parameters for Simulation and
Embeddable Code Generation” on page 25-31

• “Specifying Relative Paths for Custom Code” on page 25-41

• “Choosing a Compiler” on page 25-43

• “Examples of Integrating Custom C Code in Nonlibrary Models” on page
25-44

• “How to Build a Stateflow Custom Target” on page 25-53

• “What Happens During the Target Building Process?” on page 25-63

• “Parsing Stateflow Charts” on page 25-64

• “Resolving Event, Data, and Function Symbols in Stateflow Action
Language” on page 25-69

• “Error Messages When Parsing Charts and Generating Code” on page 25-74

• “Generated Code Files for Targets You Build” on page 25-77

• “Traceability of Stateflow Objects in Generated Code” on page 25-82

25 Building Targets

• “Controlling Inlining of State Functions in Generated Code” on page 25-98

25-2

Targets You Can Build

Targets You Can Build

In this section...

“Code Generation for Stateflow Charts and Truth Table Blocks” on page
25-3

“Software Requirements for Building Targets” on page 25-4

Code Generation for Stateflow Charts and Truth
Table Blocks
You can generate code for models with Stateflow charts and Truth Table
blocks for these uses:

• Simulation

• Production and rapid prototyping

Code Generation for Simulation
A simulation target is a specification of the generated code, custom code,
and build type you use for generating simulation code for Chart and Truth
Table blocks in a model.

Whenever you simulate a model that contains Stateflow blocks, Stateflow
software generates code that compiles into an S-function MEX file (for details,
see “S-Function MEX-Files” on page 25-77). This code enables the Stateflow
blocks to interface with other blocks in a Simulink model, the MATLAB
base workspace, and the Stateflow Debugger. This code is not suitable for
production or rapid prototyping.

Code Generation for Production and Rapid Prototyping
An embeddable target is a specification of the generated code, custom code,
and build type you use for generating production code for Chart and Truth
Table blocks in a model.

Simulink Coder software can generate embeddable code for Stateflow blocks.
This code is optimized for production and rapid prototyping, but does not

25-3

25 Building Targets

contain code to interface with other blocks in a Simulink model, the MATLAB
base workspace, and the Stateflow Debugger.

Software Requirements for Building Targets
To build targets for models with Stateflow charts or Truth Table blocks, you
must have a license for the software listed:

Target to Build Software to Use

Simulation target Stateflow

Embeddable target Simulink Coder

The default target type of Simulink Coder code generation is generic real-time
(grt). To build other targets, you must have the appropriate license.
See “Available Targets” in the Simulink Coder documentation for more
information.

25-4

Choosing a Procedure to Simulate a Model

Choosing a Procedure to Simulate a Model

In this section...

“Guidelines for Simulation” on page 25-5

“Choosing the Right Procedure for Simulation” on page 25-5

Guidelines for Simulation
When you simulate a model, use these guidelines to choose the right
procedure.

Do this step... When...

Speed up
simulation

You have a large model with many blocks.

See “Speeding Up Simulation” on page 25-17.

Include custom
code

You want to take advantage of legacy code that
augments model capabilities and also include custom
variables and functions that you share between your
custom code and Stateflow generated code.

Choose a custom
compiler

You use the UNIX version of Stateflow software or do
not wish to use the default lcc compiler.

See “Choosing a Compiler” on page 25-43.

Include custom
code only for
library charts

You want to provide custom code in a portable,
self-contained library for use in multiple models.

Choosing the Right Procedure for Simulation
To choose the right procedure for simulation, find the highlighted block that
describes your goal and see the corresponding section in “Procedures for
Simulation” on page 25-7. These procedures apply to models that contain
Chart or Truth Table blocks.

25-5

25 Building Targets

����	���
����
����

��

���
=����	�%�>�
����
���?�

���

��

�����	�
������
��	��

��

5����5@@�
	

5������

������
��������

���
=5�����%�

5������?�

���

��

!����&�
��
��
����

	

���

���

5�����
��	��
�����

������

������
�����������

�������������
���������

����=��
���%
����
���?�

���
=����%�
��%
5������5@@
5�	�����
����
���?�

����=����%�
��%
�5������5�5�	�
�����A���&�
��
5�
�������
����
���?�

����=����%�
��%
�5������5�5�	�
����B&�
��
5�
�������
����
���?�

����=����%�
��%
5������5�5�	�
����!���5�
�������
����
���?�

25-6

Procedures for Simulation

Procedures for Simulation

In this section...

“Starting Simulation” on page 25-7

“Integrating Custom C++ Code for Simulation” on page 25-7

“Integrating Custom C Code for Nonlibrary Charts for Simulation” on page
25-9

“Integrating Custom C Code for Library Charts for Simulation” on page
25-12

“Integrating Custom C Code for All Charts for Simulation” on page 25-14

Starting Simulation
Simulate your model in one of these ways:

• Click the play button in the toolbar of the editor.

• Select Simulation > Start in the editor.

See “Generated Code Files for Targets You Build” on page 25-77 for details
about the simulation code you generate for your model and the folder
structure.

For information on setting simulation options using the command-line API,
see “Using the Command-Line API to Set Parameters for Simulation and
Embeddable Code Generation” on page 25-31.

Note You cannot simulate only the Stateflow blocks in a library model. You
must first create a link to the library block in your main model and then
simulate the main model.

Integrating Custom C++ Code for Simulation
To integrate custom C++ code for simulation, perform the tasks that follow.

25-7

25 Building Targets

Task 1: Prepare Code Files
Prepare your custom C++ code for simulation as follows:

1 Add a C function wrapper to your custom code. This wrapper function
executes the C++ code that you are including.

The C function wrapper should have this form:

int my_c_function_wrapper()
{
.
.
.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes the C function wrapper in the previous
step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for
Simulation
To include custom C++ code for simulation, you must configure your
simulation target and select C++ as the custom code language:

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

25-8

Procedures for Simulation

3 Add your custom header file in the Header file subpane. Click Apply.

4 Add your custom C++ files in the Source files subpane. Click Apply.

5 In the Configuration Parameters dialog box, select the Code Generation
pane.

6 Select C++ from the Language menu.

7 Click OK.

Task 3: Choose a C++ Compiler
For instructions, see “Choosing a Compiler” on page 25-43.

Task 4: Simulate the Model
For instructions, see “Starting Simulation” on page 25-7.

Integrating Custom C Code for Nonlibrary Charts for
Simulation
To integrate custom C code that applies to nonlibrary charts for simulation,
perform the tasks that follow.

Task 1: Include Custom C Code in the Simulation Target
Specify custom code options in the simulation target for your model:

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

25-9

25 Building Targets

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 25-41.

• Source file — Enter code lines to include at the top of a generated
source code file. These code lines appear at the top of the generated
model.c source file, outside of any function.

For example, you can include extern int declarations for global
variables.

• Header file — Enter code lines to include at the top of the generated
model.h header file that declares custom functions and data in the

25-10

Procedures for Simulation

generated code. These code lines appear at the top of all generated
source code files and are visible to all generated code.

Note When you include a custom header file, you must enclose the file
name in double quotes. For example, #include ''sample_header.h''
is a valid declaration for a custom header file.

Since the code you specify in this option appears in multiple source files
that link into a single binary, limitations exist on what you can include.
For example, do not include a global variable definition such as int x;
or a function body such as

void myfun(void)
{
...
}

These code lines cause linking errors because their symbol definitions
appear multiple times in the source files of the generated code. You can,
however, include extern declarations of variables or functions such as
extern int x; or extern void myfun(void);.

• Initialize function — Enter code statements that execute once at
the start of simulation. Use this code to invoke functions that allocate
memory or perform other initializations of your custom code.

• Terminate function — Enter code statements that execute at the
end of simulation. Use this code to invoke functions that free memory
allocated by the custom code or perform other cleanup tasks.

• Include directories— Enter a space-separated list of the folder paths
that contain custom header files that you include either directly (see
Header file option) or indirectly in the compiled target.

• Source files — Enter a list of source files to compile and link into the
target. You can separate source files with a comma, a space, or a new
line.

• Libraries— Enter a space-separated list of static libraries that contain
custom object code to link into the target.

25-11

25 Building Targets

4 Click OK.

Tip If you want to rebuild the target to include custom code changes, select
Tools > Rebuild All in the Stateflow Editor.

If you want to build the target only for the parts of a chart that have changed
since the previous build, select Tools > Build Diagram in the Stateflow
Editor.

Task 2: Simulate the Model
For instructions, see “Starting Simulation” on page 25-7.

Integrating Custom C Code for Library Charts for
Simulation
To integrate custom C code that applies only to library charts for simulation,
perform the tasks that follow.

Task 1: Include Custom C Code in Simulation Targets for
Library Models
Specify custom code options in the simulation target for each library model
that contributes a chart to the main model:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

25-12

Procedures for Simulation

The Configuration Parameters dialog box appears.

2 In the Simulation Target pane, select Use local custom code settings
(do not inherit from main model).

This step ensures that each library model retains its own custom code
settings during simulation.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 25-41.

25-13

25 Building Targets

Note See “Task 1: Include Custom C Code in the Simulation Target” on
page 25-9 for descriptions of the custom code options.

4 Click OK.

Task 2: Simulate the Model
For instructions, see “Starting Simulation” on page 25-7.

Integrating Custom C Code for All Charts for
Simulation
To integrate custom C code that applies to all charts for simulation, perform
the tasks that follow.

Task 1: Include Custom C Code in the Simulation Target for
the Main Model
Specify custom code options in the simulation target for your main model:

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

25-14

Procedures for Simulation

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 25-41.

Note See “Task 1: Include Custom C Code in the Simulation Target” on
page 25-9 for descriptions of the custom code options.

4 Click OK.

By default, settings in the Simulation Target > Custom Code pane for
the main model apply to all charts contributed by library models.

25-15

25 Building Targets

Tip If you want to rebuild the target to include custom code changes, select
Tools > Rebuild All in the Stateflow Editor.

If you want to build the target only for the parts of a chart that have changed
since the previous build, select Tools > Build Diagram in the Stateflow
Editor.

Task 2: Ensure That Custom C Code for the Main Model Applies
to Library Charts
Configure the simulation target for each library model that contributes a
chart to your main model:

1 In the Stateflow Editor, select Tools > Open Simulation Target.

2 In the Simulation Target pane, clear the Use local custom code
settings (do not inherit from main model) check box.

This step ensures that library charts inherit the custom code settings of
your main model.

3 Click OK.

Task 3: Simulate the Model
For instructions, see “Starting Simulation” on page 25-7.

25-16

Speeding Up Simulation

Speeding Up Simulation
To simulate your model more quickly, disable options as described in the
steps that follow:

1 Open the Configuration Parameters dialog box and select the Simulation
Target pane.

2 Clear any of these options:

• Enable debugging/animation— Clear this check box to disable chart
animation and debugging.

This option enables automatically when you use the Stateflow Debugger
to start a model simulation. You can also control chart animation
separately in the Debugger. (The Stateflow Debugger works only with
simulation targets. Therefore, you cannot generate debugging/animation
code for embeddable targets, even if you enable this option.)

• Enable overflow detection (with debugging)— Clear this check box
to disable overflow detection of Stateflow data in the generated code.
Overflow occurs for data when a value is assigned to it that exceeds
the numeric capacity of its type.

25-17

25 Building Targets

Note The Enable overflow detection (with debugging) option is
important for fixed-point data. For more information, see “Detecting
Overflow for Fixed-Point Types” on page 17-11.

To detect overflow in data during simulation, you must also select the
Data Range check box in the Debugger window. See “Debugging Data
Range Violations in a Chart” on page 26-35 for more details.

• Echo expressions without semicolons — Clear this check box to
disable run-time output in the MATLAB Command Window, such as
actions that do not terminate with a semicolon.

3 Click OK.

25-18

Choosing a Procedure to Generate Embeddable Code for a Model

Choosing a Procedure to Generate Embeddable Code for
a Model

In this section...

“Guidelines for Embeddable Code Generation” on page 25-19

“Choosing the Right Procedure for Embeddable Code Generation” on page
25-19

Guidelines for Embeddable Code Generation
When you generate embeddable code for a model, use these guidelines to
choose the right procedure.

Do this step... When...

Optimize
generated code

You want to improve readability of the code and
reduce the amount of memory storage required.

See “Optimizing Generated Code” on page 25-29.

Include custom
code

You want to take advantage of legacy code that
augments model capabilities and also include custom
variables and functions that you share between your
custom code and Stateflow generated code.

Choose a custom
compiler

You use the UNIX version of Stateflow software or do
not wish to use the default lcc compiler.

See “Choosing a Compiler” on page 25-43.

Include custom
code only for
library charts

You want to provide custom code in a portable,
self-contained library for use in multiple models.

Choosing the Right Procedure for Embeddable Code
Generation
To choose the right procedure for embeddable code generation, find the
highlighted block that describes your goal and see the corresponding section

25-19

25 Building Targets

in “Procedures for Embeddable Code Generation” on page 25-21. These
procedures apply to models that contain Chart or Truth Table blocks.

C���/�
%����
��	
��	��

��

����=C���/�%
�����
��	
5�	�?�

���

��

�����	�
������
��	��

��

5����5@@�
	

5������

������
��������

���
=5�����%�

5������?�

���

��

!����&�
��
��
����

	

���

���

5�����
��	��
�����

������

������
�����������

�������������
���������

���
=�����
��%
��5�	�?�

���
=����%�
��%
5������5@@
5�	������5�	�
�����
���?�

����=����%�
��%
5������5�5�	�
�����A���&�
��
5�
��������5�	�
�����
���?�

����=����%�
��%
�5������5�5�	�
����B&�
��

5�
��������5�	�
�����
���?�

����=����%�
��%
�5������5�5�	�
����!���5�
�������

5�	�
�����
���?�

25-20

Procedures for Embeddable Code Generation

Procedures for Embeddable Code Generation

In this section...

“Generating Code” on page 25-21

“Integrating Custom C++ Code for Code Generation” on page 25-22

“Integrating Custom C Code for Nonlibrary Charts for Code Generation” on
page 25-23

“Integrating Custom C Code for Library Charts for Code Generation” on
page 25-25

“Integrating Custom C Code for All Charts for Code Generation” on page
25-26

Generating Code
Generate embeddable code for your model in one of these ways:

• Use the keyboard shortcut Ctrl-B or Command-B.

• Click Build in the Code Generation pane of the Configuration
Parameters dialog box.

See “Generated Code Files for Targets You Build” on page 25-77 for details
about the embeddable code you generate for your model and the folder
structure.

For information on setting code generation options using the command-line
API, see “Using the Command-Line API to Set Parameters for Simulation and
Embeddable Code Generation” on page 25-31.

Note You cannot generate embeddable code only for the Stateflow blocks in a
library model. You must first create a link to the library block in your main
model and then generate code for the main model.

25-21

25 Building Targets

Integrating Custom C++ Code for Code Generation
To integrate custom C++ code for embeddable code generation, perform the
tasks that follow.

Task 1: Prepare Code Files
Prepare your custom C++ code for code generation.

1 Add a C function wrapper to your custom code. This wrapper function
executes the C++ code that you are including.

The C function wrapper should have this form:

int my_c_function_wrapper()
{
.
.
.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes the C function wrapper in the previous
step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for Code
Generation
To include custom C++ code for Simulink Coder code generation, perform
these steps:

25-22

Procedures for Embeddable Code Generation

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select the Code Generation
pane.

3 Select C++ from the Language menu. Click Apply.

4 Select the Code Generation > Custom Code pane.

5 Add your custom header file in the Header file subpane. Click Apply.

6 Add your custom C++ files in the Source files subpane.

7 Click OK.

Task 3: Choose a C++ Compiler
For instructions, see “Choosing a Compiler” on page 25-43.

Task 4: Generate Code
For instructions, see “Generating Code” on page 25-21.

Integrating Custom C Code for Nonlibrary Charts for
Code Generation
To integrate custom C code that applies to nonlibrary charts for embeddable
code generation, perform the tasks that follow.

Task 1: Include Custom C Code for Embeddable Code
Generation
Specify custom code options for Simulink Coder code generation of your model:

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Code
Generation > Custom Code.

25-23

25 Building Targets

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 25-41.

Note If you specified custom code settings for simulation, you can apply
these settings to code generation. To avoid entering the same information
twice, selectUse the same custom code settings as Simulation Target.

Task 2: Generate Code
For instructions, see “Generating Code” on page 25-21.

25-24

Procedures for Embeddable Code Generation

Integrating Custom C Code for Library Charts for
Code Generation
To integrate custom C code that applies only to library charts for embeddable
code generation, perform the tasks that follow.

Task 1: Include Custom C Code in Embeddable Targets for
Library Models
Specify custom code options in the embeddable target for each library model
that contributes a chart to your main model:

1 In the Stateflow Editor, select Tools > Open Code Generation Target.

The Configuration Parameters dialog box appears.

25-25

25 Building Targets

2 In the Code Generation pane, select Use local custom code settings
(do not inherit from main model).

This step ensures that each library model retains its own custom code
settings during code generation.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 25-41.

Note If you specified custom code settings for simulation, you can apply
these settings to code generation. To avoid entering the same information
twice, selectUse the same custom code settings as Simulation Target.

4 Click OK.

Task 2: Generate Code
For instructions, see “Generating Code” on page 25-21.

Integrating Custom C Code for All Charts for Code
Generation
To integrate custom C code that applies to all charts for embeddable code
generation, perform the tasks that follow.

Task 1: Include Custom C Code for Embeddable Code
Generation of the Main Model
Specify custom code options for Simulink Coder code generation of your
main model:

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Code
Generation > Custom Code.

25-26

Procedures for Embeddable Code Generation

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specifying Relative Paths for Custom Code” on
page 25-41.

Note If you specified custom code settings for simulation, you can apply
these settings to code generation. To avoid entering the same information
twice, selectUse the same custom code settings as Simulation Target.

25-27

25 Building Targets

Task 2: Ensure That Custom C Code for the Main Model Applies
to Library Charts
Configure the embeddable target for each library model that contributes a
chart to your main model:

1 In the Stateflow Editor, select Tools > Open Code Generation Target.

2 In the Code Generation pane, clear the Use local custom code settings
(do not inherit from main model) check box.

This step ensures that library charts inherit the custom code settings of
your main model.

3 Click OK.

Task 3: Generate Code
For instructions, see “Generating Code” on page 25-21.

25-28

Optimizing Generated Code

Optimizing Generated Code

In this section...

“How to Optimize Generated Code for Embeddable Targets” on page 25-29

“Design Tips for Optimizing Generated Code” on page 25-29

How to Optimize Generated Code for Embeddable
Targets
To optimize code generation for your model:

1 Open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select the Optimization >
Stateflow pane.

3 Choose from these options:

• Use bitsets for storing state configuration— Reduces the amount
of memory that stores state configuration variables. However, it can
increase the amount of memory that stores target code if the target
processor does not include instructions for manipulating bitsets.

• Use bitsets for storing Boolean data — Reduces the amount of
memory that stores Boolean variables. However, it can increase the
amount of memory that stores target code if the target processor does
not include instructions for manipulating bitsets.

Note You cannot use bitsets when you generate code for these cases:

– An external mode simulation

– A target that specifies an explicit structure alignment

Design Tips for Optimizing Generated Code
The following design tips can help optimize generated code.

25-29

25 Building Targets

Do not access machine-parented data in a graphical function

This restriction prevents long parameter lists from appearing in the code
generated for a graphical function. You can access local data that resides in
the same chart as the graphical function.

For more information, see “Using Graphical Functions to Extend Actions”
on page 7-30.

Be explicit about the inline option of a graphical function

When you use a graphical function in a Stateflow chart, select Inline or
Function for the property Function Inline Option. Otherwise, the code
generated for a graphical function may not appear as you want.

For more information, see “Specifying Graphical Function Properties” on
page 7-47.

Avoid using multiple edge-triggered events in Stateflow charts

If you use more than one edge trigger, you generate multiple source code files
to handle rising or falling edge detections. If multiple triggers are required,
use function-call events instead.

For more information, see Chapter 9, “Defining Events”.

Combine input signals of a chart into a single bus object

When you use a bus object, you reduce the number of parameters in the
parameter list of a generated function. This guideline also applies to output
signals of a chart.

For more information, see Chapter 20, “Working with Structures and Bus
Signals in Stateflow Charts”.

25-30

Using the Command-Line API to Set Parameters for Simulation and Embeddable Code Generation

Using the Command-Line API to Set Parameters for
Simulation and Embeddable Code Generation

In this section...

“How to Set Parameters at the Command Line” on page 25-31

“Simulation Parameters for Nonlibrary Models” on page 25-32

“Simulation Parameters for Library Models” on page 25-35

“Code Generation Parameters for Nonlibrary Models” on page 25-36

“Code Generation Parameters for Library Models” on page 25-38

How to Set Parameters at the Command Line
To programmatically set options in the Configuration Parameters dialog
box for simulation and embeddable code generation, you can use the
command-line API.

1 At the MATLAB command prompt, type:

object_name = getActiveConfigSet(gcs)

This command returns an object handle to the model settings in the
Configuration Parameters dialog box for the current model.

2 To set a parameter for that dialog box, type:

object_name.set_param('parameter_name', value)

This command sets a configuration parameter to the value that you specify.

For example, you can set the Reserved names parameter for simulation
by typing:

cp = getActiveConfigSet(gcs)
cp.set_param('SimReservedNameArray', {'abc','xyz'})

25-31

25 Building Targets

Note You can also get the current value of a configuration parameter by
typing:

object_name.get_param('parameter_name')

For more information about using get_param and set_param, see the
Simulink documentation.

Simulation Parameters for Nonlibrary Models
The following table summarizes the parameters and values in the
Configuration Parameters dialog box that you can set for simulation of
nonlibrary models using the command-line API. The parameters are listed in
the order that they appear in the Configuration Parameters dialog box.

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

SFSimEnableDebug

string – 'off', on

Simulation Target > Enable
debugging / animation

Enable debugging and
animation of a model during
simulation and also enables
the Stateflow Debugger.

SFSimOverflowDetection

string – 'off', on

Simulation Target > Enable
overflow detection (with
debugging)

Enable overflow detection
of data during simulation.
Overflow occurs for data when
a value assigned to it exceeds
the numeric capacity of the
data type.

Note To enable this option,
you must also select the
Data Range check box in the
Stateflow Debugger window.

25-32

Using the Command-Line API to Set Parameters for Simulation and Embeddable Code Generation

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

SimIntegrity

string – 'off', on

Simulation Target > Ensure
memory integrity

Detect violations of memory
integrity in code generated
for MATLAB Function blocks
and stop execution with a
diagnostic.

SFSimEcho

string – 'off', on

Simulation Target >
Echo expressions without
semicolons

Enable run-time output to
appear in the MATLAB
Command Window during
simulation.

SimBlas

string – 'off', on

Simulation Target > Use
BLAS library for faster
simulation

Enable MATLAB Function
blocks in Simulink models
and MATLAB functions in
Stateflow charts to speed up
low-level matrix operations
during simulation.

SimCtrlC

string – 'off', on

Simulation Target > Ensure
responsiveness

Enable responsiveness checks
in code generated for MATLAB
Function blocks.

SimBuildMode

string –
sf_incremental_build ,

'sf_nonincremental_build',
'sf_make', 'sf_make_clean',
'sf_make_clean_objects'

Simulation Target >
Simulation target build
mode

Specify how you build the
simulation target for a model.

SimReservedNameArray

string array – {}

Simulation Target >
Symbols > Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code to avoid naming
conflicts.

SimParseCustomCode

string – 'off', on

Simulation Target >
Custom Code > Parse
custom code symbols

Specify whether or not to parse
the custom code and report
unresolved symbols in a model.

25-33

25 Building Targets

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

SimCustomSourceCode

string –

Simulation Target >
Custom Code > Source file

Enter code lines to appear
near the top of a generated
source code file.

SimCustomHeaderCode

string –

Simulation Target >
Custom Code > Header file

Enter code lines to appear
near the top of a generated
header file.

SimCustomInitializer

string –

Simulation Target >
Custom Code > Initialize
function

Enter code statements that
execute once at the start of
simulation.

SimCustomTerminator

string –

Simulation Target >
Custom Code > Terminate
function

Enter code statements
that execute at the end of
simulation.

SimUserIncludeDirs

string –

Simulation Target >
Custom Code > Include
directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

25-34

Using the Command-Line API to Set Parameters for Simulation and Embeddable Code Generation

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

SimUserSources

string –

Simulation Target >
Custom Code > Source files

Enter a space-separated list of
source files to compile and link
into the target.

SimUserLibraries

string –

Simulation Target >
Custom Code > Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

Simulation Parameters for Library Models
The following table summarizes the simulation parameters that apply to
library models. The parameters are listed in the order that they appear in the
Configuration Parameters dialog box.

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

SimUseLocalCustomCode

string – off , 'on'

Simulation Target > Use
local custom code settings
(do not inherit from main
model)

Specify whether a library
model can use custom code
settings that are unique from
the main model to which the
library is linked.

SimCustomSourceCode

string –

Simulation Target > Source
file

Enter code lines to appear
near the top of a generated
source code file.

SimCustomHeaderCode

string –

Simulation Target >Header
file

Enter code lines to appear
near the top of a generated
header file.

SimCustomInitializer

string –

Simulation Target >
Initialize function

Enter code statements that
execute once at the start of
simulation.

SimCustomTerminator

string –

Simulation Target >
Terminate function

Enter code statements
that execute at the end of
simulation.

25-35

25 Building Targets

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

SimUserIncludeDirs

string –

Simulation Target >
Include directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

SimUserSources

string –

Simulation Target > Source
files

Enter a space-separated list of
source files to compile and link
into the target.

SimUserLibraries

string –

Simulation Target >
Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

Code Generation Parameters for Nonlibrary Models
The following table is a partial list of the parameters and values in the
Configuration Parameters dialog box that you can set for embeddable code
generation using the command-line API. The parameters are listed in the
order that they appear in the Configuration Parameters dialog box.

25-36

Using the Command-Line API to Set Parameters for Simulation and Embeddable Code Generation

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

UseSimReservedNames

string – off , 'on'

Code Generation > Symbols
> Use the same reserved
names as Simulation
Target

Specify whether to use the
same reserved names as
those specified for simulation.
(Applies only if the model
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.)

ReservedNameArray

string array – {}

Code Generation > Symbols
> Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code to avoid naming
conflicts.

RTWUseSimCustomCode

string – off , 'on'

Code Generation > Custom
Code > Use the same
custom code settings as
Simulation Target

Specify whether to use the
same custom code settings as
those specified for simulation.
(Applies only if the model
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.)

CustomSourceCode

string –

Code Generation > Custom
Code > Source file

Enter code lines to appear
near the top of a generated
source code file.

CustomHeaderCode

string –

Code Generation > Custom
Code > Header file

Enter code lines to appear
near the top of a generated
header file.

CustomInitializer

string –

Code Generation > Custom
Code > Initialize function

Enter code statements that
execute once at the start of
simulation.

CustomTerminator

string –

Code Generation > Custom
Code > Terminate function

Enter code statements
that execute at the end of
simulation.

25-37

25 Building Targets

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CustomInclude

string –

Code Generation > Custom
Code > Include directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

CustomSource

string –

Code Generation > Custom
Code > Source files

Enter a space-separated list of
source files to compile and link
into the target.

CustomLibrary

string –

Code Generation > Custom
Code > Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

Code Generation Parameters for Library Models
The following table summarizes the code generation parameters that apply to
library models. The parameters are listed in the order that they appear in the
Configuration Parameters dialog box.

25-38

Using the Command-Line API to Set Parameters for Simulation and Embeddable Code Generation

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

RTWUseSimCustomCode

string – off , 'on'

Code Generation > Use the
same custom code settings
as Simulation Target

Specify whether to use the
same custom code settings as
those specified for simulation.
(Applies only if the model
contains MATLAB Function
blocks, Stateflow charts, or
Truth Table blocks.)

RTWUseLocalCustomCode

string – off , 'on'

Code Generation > Use
local custom code settings
(do not inherit from main
model)

Specify whether a library
model can use custom code
settings that are unique from
the main model to which the
library is linked.

CustomSourceCode

string –

Code Generation > Source
file

Enter code lines to appear
near the top of a generated
source code file.

CustomHeaderCode

string –

Code Generation > Header
file

Enter code lines to appear
near the top of a generated
header file.

CustomInitializer

string –

Code Generation >
Initialize function

Enter code statements that
execute once at the start of
simulation.

CustomTerminator

string –

Code Generation >
Terminate function

Enter code statements
that execute at the end of
simulation.

25-39

25 Building Targets

Parameter and Values Configuration Parameters
Dialog Box Equivalent

Description

CustomInclude

string –

Code Generation > Include
directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

CustomSource

string –

Code Generation > Source
files

Enter a space-separated list of
source files to compile and link
into the target.

CustomLibrary

string –

Code Generation >
Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

For more information about parameters and values you can specify for
embeddable code generation, see “Parameter Command-Line Information
Summary” in the Simulink Coder documentation.

25-40

Specifying Relative Paths for Custom Code

Specifying Relative Paths for Custom Code

In this section...

“Why Use Relative Paths?” on page 25-41

“Searching Relative Paths” on page 25-41

“Path Syntax Rules” on page 25-41

Why Use Relative Paths?
If you specify paths and files with absolute paths and later move them, you
must change these paths to point to new locations. To avoid this problem, use
relative paths for custom code options that specify paths or files.

Searching Relative Paths
Search paths exist relative to these folders:

• The current folder

• The model folder (if different from the current folder)

• The custom list of folders that you specify

• All the folders on the MATLAB search path, excluding the toolbox folders

Path Syntax Rules
When you construct relative paths for custom code, follow these syntax rules:

• You can use the forward slash (/) or backward slash (\) as a file separator,
regardless of whether you are on a UNIX or PC platform. The makefile
generator parses these strings and returns the path names with the correct
platform-specific file separators.

• You can use tokens that evaluate in the MATLAB workspace, if you enclose
them with dollar signs ($...$). For example, consider this path:

$mydir1$\dir1

25-41

25 Building Targets

In this example, mydir1 is a string variable that you define in the MATLAB
workspace as 'd:\work\source\module1'. In the generated code, this
custom include path appears as:

d:\work\source\module1\dir1

• You must enclose paths in double quotes if they contain spaces or other
nonstandard path characters, such as hyphens (-).

25-42

Choosing a Compiler

Choosing a Compiler
You must use a C or C++ compiler for compiling code that you generate. The
Windows version of Stateflow software ships with a C compiler (lcc.exe) and
a make utility (lccmake). Both tools reside in the folder matlabroot\sys\lcc.
If you do not install any other compiler, lcc is the default compiler that builds
your targets.

If you use the UNIX version of Stateflow software or do not wish to use the
default lcc compiler, you must install your own target compiler. You can use
any compiler supported by MATLAB software.

Note For a list of supported compilers, see:

http://www.mathworks.com/support/compilers/current_release/

To install your own target compiler:

1 At the MATLAB prompt, type:

mex -setup

2 Follow the prompts for entering information about your compiler.

Note If you select an unsupported compiler, this warning message appears
when you start a build that requires compilation:

The mex compiler specified using 'mex -setup' is not supported
for simulation builds. Using the lcc compiler instead.

25-43

http://www.mathworks.com/support/compilers/current_release/

25 Building Targets

Examples of Integrating Custom C Code in Nonlibrary
Models

In this section...

“Example of Using Custom C Code to Define Global Constants” on page
25-44

“Example of Using Custom C Code to Define Global Constants, Variables,
and Functions” on page 25-47

Example of Using Custom C Code to Define Global
Constants
This example describes how to use custom C code to define constants that
apply to all charts in your model.

1 Suppose that you have the following model:

25-44

Examples of Integrating Custom C Code in Nonlibrary Models

The chart contains the following logic:

The chart contains two states A and B, along with a Simulink input named
input_data, which you can set to 0 or 1 by toggling the Manual Switch in
the model during simulation.

2 Open the Configuration Parameters dialog box.

3 In the Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

4 Select the Header file subpane.

25-45

25 Building Targets

In this subpane, you can enter #define and #include statements.

In this example, you define two constants named TRUE and FALSE to move
between states in your chart, instead of using the values 1 and 0. These
custom definitions improve the readability of your chart actions. Note that
TRUE and FALSE are not Stateflow data objects.

Because the two custom definitions appear at the top of your generated
machine header file ex_custom_code_global_constants_sfun.h, you
can use TRUE and FALSE in all charts that belong to this model. For more
information about generated files, see “Code Files for a Simulation Target” on
page 25-79.

25-46

Examples of Integrating Custom C Code in Nonlibrary Models

Example of Using Custom C Code to Define Global
Constants, Variables, and Functions
This example describes how to use custom C code to define constants,
variables, and functions that apply to all charts in your model.

1 Suppose that you have the following model:

25-47

25 Building Targets

The chart contains the following logic:

The chart contains two states A and B, along with three data objects:
input_data, local_data, and out_data. The chart accesses a custom
variable named myglobal and calls a custom function named my_function.

2 Open the Configuration Parameters dialog box.

3 In the Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

4 Select the Header file subpane.

25-48

Examples of Integrating Custom C Code in Nonlibrary Models

In this subpane, you can enter #define and #include statements.

Note When you include a custom header file, you must enclose the file
name in double quotes.

The custom header file
ex_custom_code_global_constants_vars_fcns_hdr.h contains the
definitions of three constants:

#define TRUE 1
#define FALSE 0

25-49

25 Building Targets

#define MAYBE 2

This header file also contains declarations for the variable myglobal and
the function my_function:

extern int myglobal;
extern int my_function(int var1, double var2);

5 Select the Include directories subpane.

The single period (.) indicates that all your custom code files reside in the
same folder as ex_custom_code_global_constants_vars_fcns.mdl.

25-50

Examples of Integrating Custom C Code in Nonlibrary Models

Tip To direct your makefile to look for header or source files in a subfolder
relative to the model folder, use this relative path name:

.\subfolder_name

6 Select the Source files subpane.

The custom source file
ex_custom_code_global_constants_vars_fcns_src.c compiles along

25-51

25 Building Targets

with the Stateflow generated code into a single S-function MEX file. See
“S-Function MEX-Files” on page 25-77 for details.

Tip To include a source file that resides in a subfolder relative to the
model folder, use this relative path name:

.\subfolder_name\source_file.c

In this example, you define three constants, a variable, and a
function via custom code options. Because the custom definitions
appear at the top of your generated machine header file
ex_custom_code_global_constants_vars_fcns_sfun.h, you can
access them in all charts that belong to this model. For more information
about generated files, see “Code Files for a Simulation Target” on page 25-79.

25-52

How to Build a Stateflow® Custom Target

How to Build a Stateflow Custom Target

In this section...

“When to Build a Custom Target” on page 25-53

“Adding a Stateflow Custom Target to Your Model” on page 25-53

“Configuring a Custom Target” on page 25-55

“Building a Custom Target” on page 25-62

“Restrictions on Building a Custom Target” on page 25-62

When to Build a Custom Target
If you want to generate standalone code for applications other than production
or rapid prototyping, you can use Simulink Coder code generation software to
build a custom target.

For information on setting custom target options programmatically, see
“Target Properties” and “Target Methods” in the Stateflow API.

Adding a Stateflow Custom Target to Your Model
To add a custom target to your model:

1 In the Model Explorer, select Add > Stateflow Target.

2 In the Contents pane of the Model Explorer, right-click the row of the
custom target and select Properties.

25-53

25 Building Targets

The Stateflow Custom Target dialog box appears.

25-54

How to Build a Stateflow® Custom Target

3 In the Name field, enter any name except the reserved names sfun and
rtw. Then click OK.

Configuring a Custom Target
To configure a custom target:

1 In the editor, select View > Model Explorer.

The chart appears highlighted in the Model Hierarchy pane.

2 In the Model Hierarchy pane, select the main model with the custom
target.

25-55

25 Building Targets

The custom target (in this example, ctarg) appears as an object of the
main model.

3 In the Contents pane, click the row for the custom target.

The Stateflow Custom Target dialog box appears in the pane on the right.

25-56

How to Build a Stateflow® Custom Target

4 In the General pane of the Stateflow Custom Target dialog box, specify
options for your custom target:

• User Comments in generated code — Includes user-defined
comments in the generated code.

• Auto-generated Comments in generated code — Includes
auto-generated comments in the generated code.

• State/Transition Descriptions in generated code — Includes
descriptions of states and transitions in the generated code.

• Use bitsets for storing state configuration— Reduces the amount of
memory that stores the variables. However, it can increase the amount

25-57

25 Building Targets

of memory that stores target code if the target processor does not include
instructions for manipulating bitsets.

• Use bitsets for storing boolean data — Reduces the amount of
memory that stores Boolean variables. However, it can increase the
amount of memory that stores target code if the target processor does
not include instructions for manipulating bitsets.

Note You cannot use bitsets when you generate code for these cases:

– An external mode simulation

– A target that specifies an explicit structure alignment

• Compact nested if-else using logical AND/OR operators —
Improves readability of generated code by compacting nested if-else
statements using logical AND (&&) and OR (||) operators.

For example, the generated code

if(c1) {
if(c1) {

a1();
}

}

becomes

if(c1 && c2) {
a1();

}

and the generated code

if(c1) {
/* fall through to do a1() */

}else if(c2) {
/* fall through to do a1() */

}else{
/* skip doing a1() */
goto label1;

25-58

How to Build a Stateflow® Custom Target

}
a1();
label1:

a2();

becomes

if(c1 || c2) {
a1();

}
a2();

• Recognize if-elseif-else in nested if-else statements — Improves
readability of generated code by creating an if-elseif-else construct
in place of deeply nested if-else statements.

For example, the generated code

if(c1) {
a1();

}else{
if(c2) {

a2();
}else{

if(c3) {
a3();

}
}

}

becomes

if(c1) {
a1();

}else if(c2) {
a2();

}else if(c3) {
a3();

}

25-59

25 Building Targets

• Replace constant expressions by a single constant — Improves
readability by preevaluating constant expressions and replacing them
with a single constant. This optimization also eliminates dead code.

For example, the generated code

if(2+3<2) {
a1();

}else {
a2(4+5);

}

becomes

if(0) {
a1();

}else {
a2(9);

}

in the first phase of this optimization. The second phase eliminates the
if statement, resulting in simply

a2(9);

• Minimize array reads using temporary variables — Minimizes
expensive array read operations by using temporary variables when
possible.

For example, the generated code

a[i] = foo();
if(a[i]<10 && a[i]>1) {

y = a[i]+5;
}else{

z = a[i];
}

becomes

a[i] = foo();
temp = a[i];

25-60

How to Build a Stateflow® Custom Target

if(temp<10 && temp>1) {
y = temp+5;

}else{
z = temp;

}

• Use chart names with no mangling — (See the note below before
using.) Preserves the names of chart entry functions so that you can
invoke them using handwritten C code.

Note When you select this check box, the generated code does not
mangle the chart names to make them unique. Because this option does
not check for name conflicts in generated code, use this option only when
you have unique chart names in your model. Conflicts in generated
names can cause variable aliasing and compilation errors.

• I/O data format— Choose one of these options:

Select Use global input/output data to generate chart input and
output data as global variables.

Select Pack input/output data into structures to generate structures
for chart input data and chart output data.

• Generate chart initializer function — Generates a function
initializer of data.

• Multi-instance capable code— Generates multiple instantiable chart
objects instead of a static definition.

5 Select one of the following build options:

• Generate Code Only (non-incremental) to regenerate code for all
charts in the model.

• Rebuild All (including libraries) to rebuild the target, including
chart libraries, from scratch. Use this option if you have changed your
compiler or updated your object files since the last build.

• Make without generating code to invoke the make process without
generating code. Use this option when you have custom source files that

25-61

25 Building Targets

you must recompile in an incremental build mechanism that does not
detect changes in custom code files.

6 Specify any custom code options in the Custom Code pane.

Building a Custom Target
To build a custom target, click Execute in the General pane of the Stateflow
Custom Target dialog box. See “Generated Code Files for Targets You Build”
on page 25-77 for details about the code you generate for this target and the
folder structure.

Restrictions on Building a Custom Target
You cannot build a custom target if your chart contains any of the following
items:

• Enumerated data (see Chapter 15, “Using Enumerated Data in Stateflow
Charts”)

• Atomic subcharts (see Chapter 11, “Making States Reusable with Atomic
Subcharts”)

25-62

What Happens During the Target Building Process?

What Happens During the Target Building Process?
The target building process takes place as follows:

1 The charts in your model parse to ensure that their logic is valid.

2 If any errors are found, diagnostic error messages appear in the Build
window, and the building process stops. See “Parsing Stateflow Charts” on
page 25-64 for more details.

3 If your charts parse without error, code generation software generates C
code from your charts.

You can specify code generation options when you configure your targets.

4 Code generation software produces a makefile to build the generated source
code into an executable program.

The makefile can optionally build your custom code into the target.

5 The specified C compiler for the MATLAB environment and a make utility
build the code into an application for your target.

25-63

25 Building Targets

Parsing Stateflow Charts

In this section...

“How the Stateflow Parser Works” on page 25-64

“Calling the Stateflow Parser” on page 25-64

“Parser Error Checking” on page 25-64

“Parsing Chart Example” on page 25-65

How the Stateflow Parser Works
When you begin a build for a target, the parser evaluates the graphical
and nongraphical objects in each Stateflow machine against the supported
Stateflow chart notation and the action language syntax.

Calling the Stateflow Parser
Apart from building a target, you can call the Stateflow parser to check the
syntax of your Stateflow charts in one of these ways:

• Parse an individual chart in the Stateflow Editor by selecting
Tools > Parse Diagram.

• Parse a Stateflow machine (that is, all the charts in a model), by selecting
Tools > Parse in the Stateflow Editor.

• When you simulate a model, build a target, or generate code for a target,
you automatically parse the Stateflow machine.

In all cases, the Stateflow Builder window appears when parsing is complete.
If parsing is unsuccessful (that is, an error appears), the chart automatically
appears with the highlighted object causing the first parse error. In the
Stateflow Builder window, each error appears with a leading red button icon.
You can double-click any error in this window to bring its source chart to the
front with the source object highlighted.

Parser Error Checking
Using the Debugger, you can detect the following errors during simulation:

25-64

Parsing Stateflow® Charts

• State Inconsistency — Most commonly caused by the omission of a default
transition to a substate in superstates with exclusive (OR) decomposition.
See “Debugging State Inconsistencies in a Chart” on page 26-29.

• Transition Conflict — Occurs when there are two equally valid transition
paths from the same source. See “Debugging Conflicting Transitions in a
Chart” on page 26-32.

• Data Range Violation — Occurs when minimum and maximum values
specified for a data in its properties dialog box exceed their limits or when
fixed-point data overflows its base word size. See “Debugging Data Range
Violations in a Chart” on page 26-35.

• Cyclic Behavior — Occurs when a step or sequence of steps repeats itself
indefinitely. See “Debugging Cyclic Behavior in a Chart” on page 26-37.

You can modify the notation to resolve run-time errors. See Chapter 26,
“Debugging and Testing Stateflow Charts” for more information on debugging
run-time errors.

Parsing Chart Example
For this chart, the steps that follow describe the parsing process and its
reported results.

25-65

25 Building Targets

1 In the Stateflow Editor, select Tools > Parse Diagram to parse the chart.

State A appears highlighted in the chart and a parsing error message
indicates that the name A is not unique.

2 Fix the parse error.

In this example, two states with the name A exist. Edit the chart and label
the duplicate state with the text B.

3 In the Stateflow Editor, select Tools > Parse Diagram to reparse the
chart.

State ? appears highlighted in the chart and a parsing error message
indicates that the name ? is invalid.

4 Fix the parse error.

You must label the state with the question mark with at least a state name.
Edit the chart and label the state with the text C.

25-66

Parsing Stateflow® Charts

5 In the Stateflow Editor, select Tools > Parse Diagram to reparse the
chart.

The transition for E_one [C_one appears highlighted in the chart and a
parsing error message indicates that the transition label contains a syntax
error.

6 Fix the parse error.

The closing bracket of the condition is missing on the transition label. Edit
the chart and add the closing bracket so that the label is E_one [C_one].

25-67

25 Building Targets

7 In the Stateflow Editor, select Tools > Parse Diagram to reparse the
chart.

The chart now has no parse errors.

25-68

Resolving Event, Data, and Function Symbols in Stateflow® Action Language

Resolving Event, Data, and Function Symbols in Stateflow
Action Language

In this section...

“Resolving Symbols” on page 25-69

“Symbol Autocreation Wizard” on page 25-72

Resolving Symbols
To check for unresolved symbol errors, you can use one of these methods:

• Start simulation (for example, by selecting Simulation > Start in the
model window)

• Update the model diagram (for example, by selecting Edit > Update
Diagram in the model window)

Each method triggers parsing of the Stateflow machine (see “Parsing
Stateflow Charts” on page 25-64). The parser behaves differently depending
on the setting of Parse custom code symbols in the Simulation
Target > Custom Code pane of the Configuration Parameters dialog box.

• If you select this check box, the parser tries to find unresolved chart
symbols in the custom code. If the custom code does not define these
symbols, a parse error appears.

• If you do not select this check box, the parser automatically assumes that
unresolved chart symbols are defined in the custom code. If the custom code
does not define these symbols, an error does not appear until make time.

During parsing, if your chart does not resolve some of its symbols, the
following process determines whether to report errors for the unresolved
symbols or to continue generating code.

25-69

25 Building Targets

�������

����
���
�
�%���

��

����
���%
����������
��	�����

���

���

���

�����
��
��	�

3���
�
���������	
���&��

9�����
�%��
�
���������
��	��

��

�����
��
�
����������

�	��
������
���&��

!������
���
D/
�	

��

�
���
�������5
��	�

���3
	����	��
������
��	��

�����

25-70

Resolving Event, Data, and Function Symbols in Stateflow® Action Language

Note In versions R2010a and earlier, the following process for resolving
symbols applies:

When you parse a chart without simulation or diagram updates, the Stateflow
parser does not have access to all the information needed to check for
unresolved symbols, such as exported graphical functions from other charts
and enumerated data types. However, if you start simulation or update the
model diagram, you invoke the model compilation process, which has full
access to the information needed.

For information about Simulink symbol resolution, see “Resolving Symbols”
and “Hierarchical Symbol Resolution” in the Simulink documentation.

25-71

25 Building Targets

Symbol Autocreation Wizard
You can use the Symbol Autocreation Wizard to add missing data and events
to your chart. When you start simulation or update the model diagram, the
Wizard detects references to undefined data and events and presents a list of
the recommended data or events that you must define.

To accept, reject, or change a recommended item, perform one of these steps:

• To accept an item, click on the space in front of the item under the check
mark column.

To accept all items, click CheckAll.

25-72

Resolving Event, Data, and Function Symbols in Stateflow® Action Language

• To reject an item, leave it unchecked.

• To change an item, click on the icon under the T (type) column, or click on
the string under the Scope or Proposed Parent column for that item.

Each time you click on an icon or a string, the Wizard replaces the entry
with a different one. Keep clicking until the desired icon or string appears.

Column in the Wizard Choices When You Toggle
Between Entries

T Data, Event

Scope Local, Input, Output

Proposed Parent Chart, Machine

After you finish editing the symbol definitions, click Create to add the
symbols to the Stateflow hierarchy.

25-73

25 Building Targets

Error Messages When Parsing Charts and Generating
Code

In this section...

“How Error Messages Appear” on page 25-74

“Parser Error Messages” on page 25-74

“Code Generation Error Messages” on page 25-75

“Compilation Error Messages” on page 25-76

How Error Messages Appear
Error messages appear in a dialog box and in the MATLAB Command
Window. Double-clicking a message in the error dialog box zooms the source
Stateflow chart to the object that caused the error.

Parser Error Messages
The Stateflow parser flags syntax errors in a chart. For example, using a
backward slash (\) instead of a forward slash (/) to separate the transition
action from the condition action generates a general parser error.

Typical parser errors include:

Message Reason for Parser Error

"Invalid state name xxx" or "Invalid
event name yyy" or "Invalid data
name zzz"

A state, data, or event name contains
a nonalphanumeric character other
than underscore.

"State name xxx is not unique in
objects #yyy and #zzz"

Two or more states at the same
hierarchy level have the same name.

"Invalid transition out of AND state
xxx (#yy)"

A transition originates from a
parallel (AND) state.

25-74

Error Messages When Parsing Charts and Generating Code

Message Reason for Parser Error

"Invalid intersection between states
xxx and yyy"

Neighboring state borders intersect.
If the intersection is not apparent,
consider the state to be a cornered
rectangle instead of a rounded
rectangle.

"Junction #x is sourcing more than
one unconditional transition"

More than one unconditional
transition originates from a
connective junction.

"Multiple history junctions in the
same state #xxx"

A state contains more than one
history junction.

Code Generation Error Messages
Typical code generation errors include:

Message Reason for Code Generation
Error

"Failed to create file:
modelName_sfun.c"

Code generation software does not
have permission to generate files in
the current folder.

"Another unconditional transition of
higher priority shadows transition
#xx"

More than one unconditional
inner, default, or outer transition
originates from the same source.

"Default transition cannot end on a
state that is not a substate of the
originating state"

A transition path starting from a
default transition segment in one
state completes at a destination
state that is not a substate of the
original state.

"Input data xxx on left hand side of
an expression in yyy"

A Stateflow expression assigns a
value to an Input from Simulink
data object. By definition, a
Stateflow expression cannot change
the value of a Simulink input.

25-75

25 Building Targets

Compilation Error Messages
If compilation errors indicate undeclared identifiers, verify that variable
expressions in state, condition, and transition actions are defined.

Consider, for example, an action language expression such as a=b+c. In
addition to entering this expression in the Stateflow chart, you must create
data objects for a, b, and c using the Model Explorer. If you do not define
the data objects, the parser assumes that these unknown variables appear
in the Custom code portion of the target, at the beginning of the generated
code. Because of this assumption, error messages appear at compile time and
not at code generation time.

25-76

Generated Code Files for Targets You Build

Generated Code Files for Targets You Build

In this section...

“S-Function MEX-Files” on page 25-77

“Folder Structure of Generated Files” on page 25-77

“Code Files for a Simulation Target” on page 25-79

“Code Files for an Embeddable Target” on page 25-80

“Code Files for a Custom Target” on page 25-81

“Makefiles” on page 25-81

S-Function MEX-Files
If you have a Simulink model named mainModel.mdl, which contains two
Stateflow blocks named chart1 and chart2, you have a machine named
mainModel that parents two charts named chart1 and chart2.

When you simulate the Stateflow chart for mainModel.mdl, you generate
code for mainModel.mdl that compiles into an S-function MEX-file. MEX-file
extensions are platform-specific, as described in the MATLAB software
documentation. For example, on 32-bit Windows PC platforms, you generate
a MEX-file for mainModel named mainModel_sfun.mexw32. On Linux® x86-64
platforms, you generate mainModel_sfun.mexa64.

S-function MEX files appear in the current MATLAB folder. You can change
this location at the MATLAB command prompt with a cd command.

Folder Structure of Generated Files
Most of the code files that you generate reside in a subfolder of the current
MATLAB folder. This table summarizes the default folder structure for
different targets.

25-77

25 Building Targets

Target Type Model Type Folder Under
<pwd>/slprj/_sfprj/<mainModel>

Simulation Main
(nonlibrary)

/_self/sfun/src

Simulation Library /<libModel>/sfun/src

Embeddable Main
(nonlibrary)

/_self/rtw/<sys_targ>/src

Embeddable Library /<libModel>/rtw/<sys_targ>/src

Custom Main
(nonlibrary)

/_self/<custom>/src

Custom Library /<libModel>/<custom>/src

These definitions apply to the table:

• <pwd> is the current working folder.

• <mainModel> is the name of the main model.

• <libModel> is the name of the library model.

• <sys_targ> is the type of embeddable target (for example, grt or ert).

• <custom> is the name of the custom target.

For embeddable targets, the integrated C code for the entire model resides in
the subfolder <mainModel>_<sys_targ>_rtw of the current MATLAB folder.
The executable file generated for the entire model resides in the current
MATLAB folder.

25-78

Generated Code Files for Targets You Build

Tip To use a root folder different from <pwd> for storing generated files, open
the Simulink Preferences Window and update the File generation control
section.

• For simulation targets, specify Simulation cache folder.

• For embeddable targets, specify Code generation folder.

For more information, see “File generation control” in the Simulink
documentation.

Code Files for a Simulation Target
For a simulation target, you generate these files:

• <model>_sfun.h is the machine header file. It contains:

- All the defined global variables needed for the generated code

- Type definition of the Stateflow machine-specific data structure that
holds machine-parented local data

- External declarations of any Stateflow machine-specific global variables
and functions

- Custom code strings that you specify

• <model>_sfun.c is the machine source file. It includes the machine header
file and all the chart header files (described below) and contains Simulink
interface code.

• <model>_sfun_registry.c is a machine registry file that contains
Simulink interface code.

• cn_<model>.h is the chart header file for the chart chartn, where n = 1, 2, 3,
and so on, depending on how many charts your model has (see the following
note). This header file contains type definitions of the chart-specific data
structures that hold chart-parented local data and states.

• cn_<model>.c is the chart source file for chartn, where n = 1, 2, 3, and so
on, depending on how many charts your model has (see the following note).
This source file includes the machine header file and the corresponding
chart header file and also contains:

25-79

25 Building Targets

- Chart-parented data initialization code

- Chart execution code (state entry, during, and exit actions, and so on)

- Chart-specific Simulink interface code

Note Every chart is assigned a unique number at creation time. This
number appears as a suffix for the chart source and chart header file
names for every chart (where n = 1, 2, 3, and so on, depending on how
many charts your model has).

For library models, a static library file named <libModel>_sfun resides in the
same folder as the source code. The file extension depends on the platform.
On a Windows operating system, the library file is <libModel>_sfun.lib,
but on a UNIX operating system, the library file is <libModel>_sfun.a.

Code Files for an Embeddable Target
For an embeddable target, you generate integrated C code for the entire model:

• <model>.h

• <model>.c

You also generate intermediate code files during the target building process:

• <model>_rtw.tlh

• <model>_rtw.tlc

• cn_<model>.tlh, where n = 1, 2, 3, and so on, depending on how many
charts your model has

• cn_<model>.tlc, where n = 1, 2, 3, and so on, depending on how many
charts your model has

Other auxiliary files can appear depending on the type of embeddable target
you choose for code generation.

25-80

Generated Code Files for Targets You Build

Code Files for a Custom Target
For a custom target, you generate these files:

• <model>_<custom>.h where <custom> is the name of the custom target.

• <model>_<custom>.c where <custom> is the name of the custom target.

• cn_<model>.h is the chart header file for the chart chartn, where n = 1,
2, 3, and so on, depending on how many charts your model has. This file
contains type definitions of the chart-specific data structures that hold
chart-parented local data and states.

• cn_<model>.c is the chart source file for chartn, where n = 1, 2, 3, and so
on, depending on how many charts your model has. This chart source file
includes the machine header file and the corresponding chart header file.

Makefiles
You generate makefiles for your model that are platform and compiler-specific.
On UNIX platforms, you generate a gmake-compatible makefile named
<mainModel>_sfun.mku that compiles all your generated code into an
executable. On PC platforms, you generate an ANSI-C compiler-specific
makefile based on your C-MEX setup:

Compiler Makefile Symbol Definition
File

Microsoft® Visual C++® <mainModel>_sfun.mak <mainModel>_sfun.def
(required to build
S-function MEX-files)

Open Watcom <mainModel>_sfun.wmk None

lcc-win32 (default
ANSI-C compiler)

<mainModel>_sfun.lmk None

Note For a list of supported compilers, see:

http://www.mathworks.com/support/compilers/current_release/

25-81

http://www.mathworks.com/support/compilers/current_release/

25 Building Targets

Traceability of Stateflow Objects in Generated Code

In this section...

“What Is Traceability?” on page 25-82

“Traceability Requirements” on page 25-82

“Traceable Stateflow Objects” on page 25-82

“When to Use Traceability” on page 25-83

“Basic Workflow for Using Traceability” on page 25-84

“Examples of Using Traceability” on page 25-84

“Format of Traceability Comments” on page 25-94

What Is Traceability?
Traceability is the ability to navigate between a line of generated code and its
corresponding object. For example, you can click a hyperlink in a traceability
comment to go from that line of code to the object in the model. You can also
right-click an object in your model to find the line in the code that corresponds
to the object. This two-way navigation is known as bidirectional traceability.

See “Tracing Generated Code” in the Simulink Coder documentation for
information about how traceability works for Simulink blocks.

Traceability Requirements
To enable traceability comments, you must have a license for Embedded
Coder software. These comments appear only in code that you generate for an
embedded real-time (ert) based target.

Traceable Stateflow Objects
Bidirectional traceability is supported for these Stateflow objects:

• States

• Transitions

• MATLAB functions

25-82

Traceability of Stateflow® Objects in Generated Code

Note Traceability is not supported for external code that you call from
a MATLAB function.

• Truth Table blocks and truth table functions

• Graphical functions

• Simulink functions

Traceability in one direction is supported for these Stateflow objects:

• Events (code-to-model)

Code-to-model traceability works for explicit events, but not implicit events.
Clicking a hyperlink for an explicit event in the generated code highlights
that item in the Contents pane of the Model Explorer.

• Junctions (model-to-code)

Model-to-code traceability works for junctions with at least one outgoing
transition. Right-clicking such a junction in the Stateflow Editor highlights
the line of code that corresponds to the first outgoing transition for that
junction.

Note MATLAB Function blocks that you insert directly in a Simulink model
are also traceable. For more information, see “Using Traceability in MATLAB
Function Blocks” in the Simulink documentation.

When to Use Traceability

Comments for Large-Scale Models
Use traceability when you want to generate commented code for a large-scale
model. You can identify chart objects in the code and avoid manually entering
comments or descriptions.

25-83

25 Building Targets

Validation of Generated Code
Use traceability when you want to validate generated code. You can identify
which chart object corresponds to a particular line of code and keep track of
code from different objects that you have or have not reviewed.

Basic Workflow for Using Traceability
The basic workflow for using traceability is:

1 Open your model, if necessary.

2 Define your system target file to be an embedded real-time (ert) target.

3 Enable and configure the traceability options.

4 Generate the source code and header files for your model.

5 Do one or both of these steps:

• Trace a line of generated code to the model.

• Trace an object in the model to a line of code.

Examples of Using Traceability

Bidirectional Traceability for States and Transitions
You can see how bidirectional traceability works for states and transitions by
following these steps:

1 Type old_sf_car at the MATLAB prompt.

2 Open the Configuration Parameters dialog box.

3 In the Code Generation pane, go to the Target selection section and
enter ert.tlc for the system target file. Click Apply in the lower right
corner of the window.

Note Traceability comments appear in generated code only for embedded
real-time targets.

25-84

Traceability of Stateflow® Objects in Generated Code

4 In the Code Generation > Report pane, select Create code generation
report.

This step automatically selects Launch report automatically and
Code-to-model.

5 SelectModel-to-code in the Navigation section. Then click Apply.

This step automatically selects all check boxes in the Traceability Report
Contents section.

Tip For large models that contain over 1000 blocks, clear the
Model-to-code check box to speed up code generation.

6 Go to the Code Generation > Interface pane. In the Software
environment section, select continuous time. Then click Apply.

Note Because this demo model contains a block with a continuous sample
time, you must perform this step before generating code.

7 In the Code Generation pane, click Build in the lower right corner.

This step generates source code and header files for the old_sf_car model
that contains the shift_logic chart. After the code generation process is
complete, the code generation report appears automatically.

8 Click the old_sf_car.c hyperlink in the report.

9 Scroll down through the code to see the traceability comments.

25-85

25 Building Targets

.�
��
&���
�����������

���
��

.�
��
&���
�����������

���
�����

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

10 Click the <S5>:2 hyperlink in this traceability comment:

/* During 'gear_state': '<S5>:2' */

The corresponding state appears highlighted in the chart.

11 Click the <S5>:12 hyperlink in this traceability comment:

/* Transition: '<S5>:12' */

The corresponding transition appears highlighted in the chart.

Tip To remove highlighting from an object in the chart, select
View > Remove Highlighting.

12 You can also trace an object in the model to a line of generated
code. In the chart, right-click the object gear_state and select Code
Generation > Navigate to Code.

The code for that state appears highlighted in old_sf_car.c.

25-86

Traceability of Stateflow® Objects in Generated Code

 %��%���	
���������	�

13 In the chart, right-click the transition with the condition [speed > up_th]
and select Code Generation > Navigate to Code.

The code for that transition appears highlighted in old_sf_car.c.

 %��%���	
���������	�

Note For a list of all Stateflow objects in your model that are traceable, click
the Traceability Report hyperlink in the code generation report.

For more information about the code generation report, see “Viewing
Generated Code in Generated HTML Reports” in the Simulink Coder
documentation.

Bidirectional Traceability for Truth Table Blocks
You can see how bidirectional traceability works for a Truth Table block by
following these steps:

1 Type sf_climate_control at the MATLAB prompt.

2 Complete steps 2 through 5 in “Bidirectional Traceability for States and
Transitions” on page 25-84.

3 In the Code Generation pane of the Configuration Parameters dialog box,
click Build in the lower right corner.

The code generation report appears automatically.

25-87

25 Building Targets

4 Click the sf_climate_control.c hyperlink in the report.

5 Scroll down through the code to see the traceability comments.

.�
��
&���
������������

�������
&���	�����

.�
��
&���
������������

�������
&���
����

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

6 Click the <S1>:1:47 hyperlink in this traceability comment:

/* Action '3': '<S1>:1:47' */

In the Truth Table Editor, row 3 of the Action Table appears highlighted.

25-88

Traceability of Stateflow® Objects in Generated Code

7 You can also trace a condition, decision, or action in the table to a line of
generated code. For example, right-click a cell in the column D2 and select
Code Generation > Navigate to Code.

The code for that decision appears highlighted in sf_climate_control.c.

 %��%���	
���������	�

25-89

25 Building Targets

Tip To select Code Generation > Navigate to Code for a condition,
decision, or action, right-click a cell in the row or column that corresponds
to that truth table element.

Bidirectional Traceability for Graphical Functions
You can see how bidirectional traceability works for graphical functions by
following these steps:

1 Type sf_clutch at the MATLAB prompt.

2 Complete steps 2 through 6 in “Bidirectional Traceability for States and
Transitions” on page 25-84.

3 Go to the Solver pane in the Configuration Parameters dialog box. In the
Solver options section, select Fixed-step in the Type field. Then click
Apply.

Note Because this demo model does not work with variable-step solvers,
you must perform this step before generating code.

4 In the Code Generation pane of the Configuration Parameters dialog box,
click Build in the lower right corner.

The code generation report appears automatically.

5 Click the sf_clutch.c hyperlink in the report.

6 Scroll down through the code to see the traceability comments.

.�
��
&���
������������

%�
���
���������

25-90

Traceability of Stateflow® Objects in Generated Code

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

7 Click the <S1>:3 hyperlink in this traceability comment:

/* Graphical Function 'getSlipTorque': '<S1>:3' */

In the chart, the graphical function getSlipTorque appears highlighted.

8 You can also trace a graphical function in the chart to a line of generated
code. For example, right-click the graphical function detectSlip and select
Code Generation > Navigate to Code.

The code for that graphical function appears highlighted in sf_clutch.c.

 %��%���	
���������	�

Code-to-Model Traceability for Events
You can see how code-to-model traceability works for events by following
these steps:

1 Type sf_security at the MATLAB prompt.

2 Complete steps 2 through 6 in “Bidirectional Traceability for States and
Transitions” on page 25-84.

3 In the Code Generation pane of the Configuration Parameters dialog box,
click Build in the lower right corner.

The code generation report appears automatically.

4 Click the sf_security.c hyperlink in the report.

5 Scroll down through the code to see the following traceability comment.

25-91

25 Building Targets

.�
��
&���
�����������

�������

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

6 Click the <S8>:56 hyperlink in this traceability comment:

/* Event: '<S8>:56' */

In the Contents pane of the Model Explorer, the event Sound appears
highlighted.

25-92

Traceability of Stateflow® Objects in Generated Code

Model-to-Code Traceability for Junctions
You can see how model-to-code traceability works for junctions by following
these steps:

1 Type sf_abs at the MATLAB prompt.

2 Complete steps 2 through 6 in “Bidirectional Traceability for States and
Transitions” on page 25-84.

3 Go to the Solver pane in the Configuration Parameters dialog box. In the
Solver options section, select Fixed-step in the Type field. Then click
Apply.

25-93

25 Building Targets

Note Because this demo model does not work with variable-step solvers,
you must perform this step before generating code.

4 In the Code Generation pane, click Build in the lower right corner.

The code generation report appears automatically.

5 Open the AbsoluteValue chart.

6 Right-click the left junction and select Code Generation > Navigate
to Code.

The code for the first outgoing transition of that junction appears
highlighted in sf_abs.c.

 %��%���	
���������	�

Format of Traceability Comments
The format of a traceability comment depends on the Stateflow object type.

State

Syntax.

/* <ActionType> '<StateName>': '<ObjectHyperlink>' */

Example.

/* During 'gear_state': '<S5>:2' */

25-94

Traceability of Stateflow® Objects in Generated Code

This comment refers to the during action of the state gear_state, which has
the hyperlink <S5>:2.

Transition

Syntax.

/* Transition: '<ObjectHyperlink>' */

Example.

/* Transition: '<S5>:12' */

This comment refers to a transition, which has the hyperlink <S5>:12.

MATLAB Function

Syntax.

/* MATLAB Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a MATLAB function, comments that link to
individual lines of the function have the following syntax:

/* '<ObjectHyperlink>' */

Examples.

/* MATLAB Function 'test_function': '<S50>:99' */

/* '<S50>:99:20' */

The first comment refers to the MATLAB function named test_function,
which has the hyperlink <S50>:99.

The second comment refers to line 20 of the MATLAB function in your chart.

25-95

25 Building Targets

Truth Table Block

Syntax.

/* Truth Table Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a Truth Table block, comments for conditions,
decisions, and actions have the following syntax:

/* Condition '#<Num>': '<ObjectHyperlink>' */
/* Decision 'D<Num>': '<ObjectHyperlink>' */
/* Action '<Num>': '<ObjectHyperlink>' */

<Num> is the row or column number that appears in the Truth Table Editor.

Examples.

/* Truth Table Function 'truth_table_default': '<S10>:100' */

/* Condition '#1': '<S10>:100:8' */
/* Decision 'D1': '<S10>:100:16' */
/* Action '1': '<S10>:100:31' */

The first comment refers to a Truth Table block named truth_table_default,
which has the hyperlink <S10>:100.

The other three comments refer to elements of that Truth Table block.
Each condition, decision, and action in the Truth Table block has a unique
hyperlink.

Truth Table Function
See “Truth Table Block” on page 25-96 for syntax and examples.

Graphical Function

Syntax.

/* Graphical Function '<Name>': '<ObjectHyperlink>' */

25-96

Traceability of Stateflow® Objects in Generated Code

Example.

/* Graphical Function 'hello': '<S1>:123' */

This comment refers to a graphical function named hello, which has the
hyperlink <S1>:123.

Simulink Function

Syntax.

/* Simulink Function '<Name>': '<ObjectHyperlink>' */

Example.

/* Simulink Function 'simfcn': '<S4>:10' */

This comment refers to a Simulink function named simfcn, which has the
hyperlink <S4>:10.

Event

Syntax.

/* Event: '<ObjectHyperlink>' */

Example.

/* Event: '<S3>:33' */

This comment refers to an event, which has the hyperlink <S3>:33.

25-97

25 Building Targets

Controlling Inlining of State Functions in Generated Code

In this section...

“How Stateflow Software Inlines Generated Code for State Functions” on
page 25-98

“How to Set the State Function Inline Option” on page 25-100

“Best Practices for Controlling State Function Inlining” on page 25-101

How Stateflow Software Inlines Generated Code for
State Functions
By default, Stateflow software uses an internal heuristic to determine
whether or not to inline state functions in code generated with Simulink
Coder software. The heuristic takes into consideration an inlining threshold,
so as your code grows and shrinks in size, the generated code for state
functions can be unpredictable.

However, if you have rigorous requirements for traceability between generated
code and the corresponding state functions, you can override this default
behavior. Stateflow software provides a state property Function Inline
Option that helps you explicitly force or prevent inlining of state functions.

What Happens When You Force Inlining
If you force inlining for a state, all code generated for its state actions will
be inlined into the parent function. The parent function contains code for
executing the state actions, outer transitions, and flow graphs. It does not
include code for empty state actions.

What Happens When You Prevent Inlining
If you prevent inlining for a state, Simulink Coder software generates the
following static functions, as in this example for state foo:

25-98

Controlling Inlining of State Functions in Generated Code

Function Description

enter_atomic_foo Marks foo active and performs entry
actions

enter_internal_foo Calls default paths

inner_default_foo Executes flow graphs that originate
when an inner transition and default
transition reach the same junction
inside a state.

Stateflow software generates this
function only when the flow graph
is complex enough to exceed the
inlining threshold.

In generated code, Stateflow
software calls this function from
both the enter_internal_foo and
foo functions.

foo Checks for valid outer transitions
and if none, performs during actions

exit_atomic_foo Performs exit actions and marks foo
inactive

exit_internal_foo Performs exit actions of the child
substates and then exits foo

25-99

25 Building Targets

Suppose that you explicitly prevent inlining for the following state A in model
M:

Stateflow software generates the following functions:

static void M_inner_default_A(void);
static void M_exit_atomic_A(void);
static void M_A(void);
static void M_enter_atomic_A(void);
static void M_enter_internal_A(void);

How to Set the State Function Inline Option
To set the function inlining property for a state:

1 Right-click inside the state and select Properties from the context menu.

The State properties dialog box opens.

2 In the Function Inline Option field, select one of these options:

25-100

Controlling Inlining of State Functions in Generated Code

Option Behavior

Inline Forces inlining of state functions into the parent function,
as long as the function is not part of a recursion. See “What
Happens When You Force Inlining” on page 25-98.

Function Prevents inlining of state functions. Generates up to six
static functions for the state. See “What Happens When
You Prevent Inlining” on page 25-98.

Auto Uses internal heuristics to determine whether or not to
inline the state functions.

3 Click Apply.

Best Practices for Controlling State Function Inlining

To... Set the Function Inline Option
property to...

Generate a separate function for
each action of a state and a separate
function for each action of its
substates

Function for the state and each
substate

Generate a separate function for
each action of a state, but include
code for the associated action of its
substates

Function for the state and Inline
for each substate

25-101

25 Building Targets

25-102

26

Debugging and Testing
Stateflow Charts

• “Using the Stateflow Debugger” on page 26-2

• “Example of Debugging Run-Time Errors in a Chart” on page 26-24

• “Debugging State Inconsistencies in a Chart” on page 26-29

• “Debugging Conflicting Transitions in a Chart” on page 26-32

• “Debugging Data Range Violations in a Chart” on page 26-35

• “Debugging Cyclic Behavior in a Chart” on page 26-37

• “Guidelines for Avoiding Unwanted Recursion in a Chart” on page 26-41

• “Watching Data Values During Simulation” on page 26-42

• “Changing Data Values During Simulation” on page 26-47

• “Monitoring Test Points in Stateflow Charts” on page 26-53

• “Logging Data Values and State Activity” on page 26-60

26 Debugging and Testing Stateflow® Charts

Using the Stateflow Debugger

In this section...

“Opening the Stateflow Debugger” on page 26-2

“Animating Stateflow Charts” on page 26-3

“Setting Breakpoints to Debug Charts” on page 26-7

“How to Enable Debugging for Charts” on page 26-12

“Options for Controlling the Debugger” on page 26-19

Opening the Stateflow Debugger
To open the debugger, use the menu item or enter the command-line function.

26-2

Using the Stateflow® Debugger

How to Open the Debugger Using the Editor
In the editor, select Debug > Stateflow Debugger.

How to Open the Debugger at the Command Line
At the MATLAB command line, enter sfdebugger.

Animating Stateflow Charts
During simulation, you can animate a chart in your model to provide visual
verification that your chart behaves as expected. Animation highlights objects
in a chart as execution progresses.

You can animate a chart during simulation in one of two contexts:

26-3

26 Debugging and Testing Stateflow® Charts

• In normalmode on the host machine where you run MATLAB and Simulink
software (see “Animating Stateflow Charts in Normal Mode” on page 26-4)

• In external mode on a target machine where your generated code runs (see
“Animating Stateflow Charts in External Mode” on page 26-4)

Animating Stateflow Charts in Normal Mode
During simulation in normal mode on a host machine, you can animate states
and transitions in a chart.

1 Open the chart you want to animate.

2 In the editor, select Debug > Stateflow Debugger to open the debugger.

3 In the Animation section of the debugger, select Enabled.

4 Control the speed of animation by entering a value in the Delay field:

• For the fastest animation, select a value of 0 seconds.

• For the slowest animation, select a value of 1 second.

5 To maintain highlighting of active states in the chart after simulation ends,
select the Maintain Highlighting check box.

By default, active state highlighting disappears after chart simulation ends.

6 Start simulation.

The chart highlights states and transitions as they execute.

7 To remove highlighting of active states after simulation ends, select
View > Remove Highlighting in the chart.

Animating Stateflow Charts in External Mode
You can animate a chart in external mode — the mode in which Simulink
Coder code generation software establishes communication between a
Simulink model and code executing on a target system (see “Communicating
With Code Executing on a Target System Using Simulink External Mode” in
the Simulink Coder User’s Guide). In external mode, you can animate states
in a chart, and view test point signals in a floating scope or signal viewer.

26-4

Using the Stateflow® Debugger

• “Animating States During Simulation in External Mode” on page 26-5

• “Viewing Test Point Data in Floating Scopes and Signal Viewers” on page
26-6

Animating States During Simulation in External Mode. To animate
states in a chart in external mode:

1 Load the chart you want to animate to the target machine.

2 In the Stateflow Editor, select Debug > Stateflow Debugger to open
the debugger.

3 In the Animation section of the debugger, select Enabled.

4 In the Stateflow Editor, select Simulation > Configuration
Parameters.

5 In the left Select pane, select Code Generation > Interface.

6 In the Data exchange section of the right pane, select External mode from
the drop-down menu in the Interface field and click OK.

7 In the Simulink model editor, select Tools > External Mode Control
Panel.

8 In the External Mode Control Panel dialog box, click Signal & Triggering.

9 In the External Signal & Triggering dialog box, set these parameters:

In: Select:

Signal selection
pane

Chart you want to animate

Trigger pane Arm when connecting to target check box

Trigger pane normal from drop-down menu in Mode field

10 Build the model to generate an executable file.

11 Start the target in the background by typing this command at the MATLAB
prompt:

26-5

26 Debugging and Testing Stateflow® Charts

!model_name.exe -w &

For example, if the name of your model is my_control_sys, enter this
command:

!my_control_sys.exe -w &

Note -w allows the target code to wait for the Simulink model connection.

12 In the Model Editor, select Simulation > External, and then select
Simulation > Connect to Target.

13 Start simulation.

The chart highlights states as they execute.

Viewing Test Point Data in Floating Scopes and Signal Viewers.
When you simulate a chart in external mode, you can view test point data in
floating scopes and signal viewers. You can designate local data and states
to be test points.

To view test point data during simulation in external mode:

1 Open the Model Explorer and for each data you want to view, follow these
steps:

a In the left Model Hierarchy pane, select the state or local data of
interest.

b In the right Dialog pane, select the Test point check box.

2 From a floating scope or signal viewer, click the signal selection button:

The Signal Selector dialog box opens.

3 In the Signal Selector Model hierarchy pane, select the chart.

26-6

Using the Stateflow® Debugger

4 In the Signal Selector List contents menu, select Testpointed/Logged
signals only and then select the signals you want to view.

5 Simulate the model in external mode as described in “Animating States
During Simulation in External Mode” on page 26-5.

The scope or viewer displays the values of the test point signals as the
simulation runs.

For more information, see “Behavior of Scopes and Viewers with Rapid
Accelerator Mode” in the Simulink documentation.

Setting Breakpoints to Debug Charts
A breakpoint indicates a point at which the Stateflow debugger halts
execution of a simulating chart. At this time, you can inspect Stateflow data
and the MATLAB workspace to examine the status of a simulating chart.

The debugger supports global and local breakpoints. Global breakpoints
halt execution on any occurrence of the specific type of breakpoint. Local
breakpoints halt execution on a specific object.

Setting Global Breakpoints
Use the Breakpoint controls in the Stateflow debugger to specify global
breakpoints. When a global breakpoint occurs during simulation, execution
stops and the debugger takes control. Select any or all of these breakpoints:

• Chart Entry — Simulation halts on any chart entry.

• Event Broadcast— Simulation halts for any event broadcast.

• State Entry — Simulation halts for any state entry.

Global breakpoints can be changed during run time and are immediately
enforced. When you save the chart, all the Stateflow debugger settings
(including breakpoints) are saved, so that the next time you open the model,
the breakpoints are as you left them.

Setting Local Breakpoints
You can set local breakpoints for:

26-7

26 Debugging and Testing Stateflow® Charts

• Charts

• States

• Transitions

• Graphical functions

• Truth table functions

• Events

For graphical objects, you can set local breakpoints using the right-click
context menu in the chart or the properties dialog box for that object. To set
local breakpoints for events, you must use the properties dialog box because
events are not graphical objects.

To set local breakpoints using the right-click context menu:

1 Right-click the graphical object (chart, state, transition, graphical function,
or truth table function) and select Breakpoints.

2 Depending on the object that you right-click, you can set different
breakpoints:

For: Select:

Charts Chart Entry— Stop execution before entering the chart.

States State Entry — Stop execution before performing the
state entry actions.

State During — Stop execution before performing the
state during actions.

State Exit— Stop execution before performing the state
exit actions.

26-8

Using the Stateflow® Debugger

For: Select:

Transitions When Tested — Stop execution before testing the
transition to see if it is a valid path.

When Valid— Stop execution after the transition tests
valid, but before taking the transition.

Graphical or
truth table
functions

Function Call — Stop execution before calling the
function.

To set local breakpoints using the properties dialog box of the chart object:

1 Use one of the following tools to open the dialog box:

Tool Action

Stateflow
Editor

For a chart, select File > Chart Properties.

For a state, transition, graphical function, or truth table
function, right-click the object and select Properties.

What if my chart objects are grouped?

Double-click the chart to ungroup objects so you can
access them individually.

Model
Explorer

1 Show all Stateflow objects by selecting View > Row
Filter > All Stateflow Objects.

2 Right-click a chart, state, transition, graphical
function, truth table function, or event and select
Properties.

A dialog box appears for setting the properties of the object.

2 In the properties dialog box, select from the following breakpoint options:

26-9

26 Debugging and Testing Stateflow® Charts

For: Select:

Charts On chart entry — Stop execution before entering the
chart.

States State During — Stop execution before performing the
state during actions.

State Entry — Stop execution before performing the
state entry actions.

State Exit— Stop execution before performing the state
exit actions.

Transitions When Tested — Stop execution before testing the
transition to see if it is a valid path.

When Valid— Stop execution after the transition tests
valid, but before taking the transition.

Graphical or
truth table
functions

Function Call — Stop execution before calling the
function.

Events Start of Broadcast — Stop execution before
broadcasting the event.

End of Broadcast — Stop execution after a Stateflow
object reads the event.

Disabling All Breakpoints
To disable all breakpoints in the debugger, select the Disable all check box.

Clearing All Breakpoints
To find and clear all breakpoints without disabling them, use the Debug
menu in the chart editor or enter Stateflow API commands.

How to Clear Breakpoints Using the Editor. In the chart editor, select
Debug > Clear All Breakpoints.

26-10

Using the Stateflow® Debugger

How to Clear Breakpoints at the Command Line. Use the following
Stateflow API commands. (For more information, see the Stateflow API
documentation.)

% get a handle for the root object
rootObj = find(sfroot,'-isa','Stateflow.Machine','Name',model);

% find all states, transitions, data, events, and charts
stateObjects = rootObj.find('-isa','Stateflow.State');
transitionObjects =rootObj.find('-isa','Stateflow.Transition');
dataObjects = rootObj.find('-isa','Stateflow.Data');
eventObjects = rootObj.find('-isa', 'Stateflow.Event');
chartObjects = rootObj.find('-isa','Stateflow.Chart');

% for all states, clear their breakpoints
for i = 1:size(stateObjects,1)
stateObjects(i).Debug.Breakpoints.OnEntry = 0;
stateObjects(i).Debug.Breakpoints.OnDuring = 0;
stateObjects(i).Debug.Breakpoints.OnExit = 0;
stateObjects(i).Machine.Debug.BreakOn.ChartEntry = 0;
stateObjects(i).Machine.Debug.BreakOn.EventBroadcast = 0;
stateObjects(i).Machine.Debug.BreakOn.StateEntry = 0;
end

% for all transitions, clear their breakpoints
for i = 1:size(transitionObjects,1)
transitionObjects(i).Debug.Breakpoints.WhenTested = 0;
transitionObjects(i).Debug.Breakpoints.WhenValid = 0;
end

% for all data, clear their breakpoints
for i = 1:size(dataObjects,1)
dataObjects(i).Debug.Watch = 0;
end

% for all events, clear their breakpoints
for i = 1:size(eventObjects,1)
eventObjects(i).Debug.Breakpoints.StartBroadcast = 0;
eventObjects(i).Debug.Breakpoints.EndBroadcast = 0;
end

26-11

26 Debugging and Testing Stateflow® Charts

% for all charts, clear their breakpoints
for i = 1:size(chartObjects,1)
chartObjects(i).Debug.Breakpoints.OnEntry = 0;
end

The first command returns a handle to the machine object that represents
the top level of the Stateflow hierarchy. The next five commands use the API
method find to specify the type of object to find. For example, the command

stateObjects = rootObj.find(`-isa','Stateflow.State')

searches through the rootObj and returns an array listing of all state objects
in your model. (See Finding Objects and Properties in the Stateflow API
documentation.)

You can also define the properties of Stateflow objects. For example, you can
clear all breakpoints in your model by setting those property values to zero for
all states, transitions, data, events, and charts as shown in the code.

How to Enable Debugging for Charts
You can enable debugging for all charts in a model or do so on a chart-by-chart
basis.

How to Enable Debugging for All Charts in a Model
Follow these steps to ensure that debugging applies to all charts in a model.

1 Open the Configuration Parameters dialog box.

2 On the Simulation Target pane, select Enable debugging/animation.

If you open each chart in its own editor, you see that Debug > Enable
Debugging is selected by default. To see instructions for library link charts,
go to “How to Enable or Disable Debugging for Library Link Charts” on
page 26-19.

How to Enable Debugging for Only One Chart
Follow these steps to ensure that debugging occurs for only one chart.

26-12

Using the Stateflow® Debugger

1 Open the Configuration Parameters dialog box.

2 On the Simulation Target pane, select Enable debugging/animation.

3 Enable debugging for the chart you want to debug:

a Open the chart.

b In the editor, select Debug > Enable Debugging.

4 For all other charts in your model, follow these steps to disable debugging:

a Open the chart.

b In the editor, verify that Debug > Enable Debugging is not selected.

To see instructions for library link charts, go to “How to Enable or Disable
Debugging for Library Link Charts” on page 26-19.

Example of Configuring a Model to Debug a Single Chart
The sf_cdplayer model contains three charts:

• UserRequest

• CdPlayerModeManager

• CdPlayerBehaviorModel

Suppose that you want to focus on debugging the CdPlayerModeManager
chart. Follow these steps:

26-13

26 Debugging and Testing Stateflow® Charts

1 Open the sf_cdplayer model.

26-14

Using the Stateflow® Debugger

2 Open the Configuration Parameters dialog box.

3 On the Simulation Target pane, select Enable debugging/animation.

This step enables debugging and animation for all charts in your model. In
the steps that follow, you specify debugging on a chart-by-chart basis.

26-15

26 Debugging and Testing Stateflow® Charts

4 Enable debugging for the chart you want to debug:

a Open the CdPlayerModeManager chart.

b In the editor, select Debug > Enable Debugging.

26-16

Using the Stateflow® Debugger

5 Disable debugging for the other two charts:

a Open the UserRequest chart.

b In the editor, verify that Debug > Enable Debugging is not selected.

26-17

26 Debugging and Testing Stateflow® Charts

c Open the CdPlayerBehaviorModel chart.

d In the editor, verify that Debug > Enable Debugging is not selected.

If you start simulation of sf_cdplayer in the Stateflow debugger (see
“Starting Simulation in the Debugger” on page 26-19 for details), the debugger
ignores execution of all charts except for CdPlayerModeManager.

26-18

Using the Stateflow® Debugger

How to Enable or Disable Debugging for Library Link Charts
Whether debugging is enabled or disabled for a library link chart depends
on the setting specified for the chart in the library model. The Enable
debugging/animation parameter in the Configuration Parameters dialog
box does not control debugging preferences for library link charts.

To enable debugging for a library link chart in your model:

1 Open the library model.

2 Unlock the library.

3 Open the chart in that library.

4 Verify that Debug > Enable Debugging is selected.

This step ensures that all linked instances of that library chart have
debugging enabled.

To disable debugging for a library link chart in your model:

1 Open the library model.

2 Unlock the library.

3 Open the chart in that library.

4 Verify that Debug > Enable Debugging is not selected.

This step ensures that all linked instances of that library chart have
debugging disabled.

Options for Controlling the Debugger

Starting Simulation in the Debugger
To debug the charts in a model, you start simulation in the debugger:

1 Click the Start button.

26-19

26 Debugging and Testing Stateflow® Charts

A debugging simulation session starts. When simulation reaches a
breakpoint that you set, the Stateflow debugger appears as follows:

At the breakpoint, the following status items appear in the upper portion of
the Debugger window:

• Stopped— Displays the step executed just prior to breaking execution.

• Executing — Displays the currently executing chart.

• Current Event— Displays the event that the chart is processing.

• Simulink Time — Displays the current simulation time.

During simulation, the chart is in read-only mode. The toolbar and menus
change so that object creation is not possible. In this read-only mode, the
chart is iced.

26-20

Using the Stateflow® Debugger

Options to Control Execution Rate in the Debugger
When the chart reaches a breakpoint, you can control the execution rate using
single-step mode or continuous execution until the chart reaches another
breakpoint. Use the following buttons in the Stateflow debugger to control
the execution rate:

• Continue — After simulation starts and the chart reaches a breakpoint,
the Start button becomes Continue. Click Continue to continue
simulation.

• Step— Execute the next execution step, and suspend the simulation.

• Break— Suspend the simulation and transfer control to the debugger.

• Stop Simulation — Stop simulation and relinquish debugging control.
When simulation stops, the Stateflow Editor toolbar and menus return to
their normal appearance and operation so that object creation is again
possible.

During single-step mode, the debugger does not zoom automatically to the
chart object that is executing. Instead, the debugger opens the subviewer that
contains that object. This behavior minimizes visual disruptions as you step
through your analysis of a simulation.

Options for Error Checking in the Debugger
The options in the Error checking options section of the Stateflow debugger
insert generated code in the simulation target to provide breakpoints to catch
different types of errors that might occur during simulation. Select any of
the following error checking options:

• State Inconsistency— Check for state inconsistency errors that are most
commonly caused by the omission of a default transition to a substate in
superstates with XOR decomposition. See “Debugging State Inconsistencies
in a Chart” on page 26-29 for a complete description and example.

• Transition Conflict — Check whether there are two equally valid
transition paths from the same source at any step in the simulation.
See “Debugging Conflicting Transitions in a Chart” on page 26-32 for a
complete description and example.

26-21

26 Debugging and Testing Stateflow® Charts

• Data Range — Check whether the minimum and maximum values you
specified for a data in its properties dialog box are exceeded. Also check
whether fixed-point data overflows its base word size. See “Debugging
Data Range Violations in a Chart” on page 26-35 for a complete description
and example.

• Detect Cycles — Check whether a step or sequence of steps indefinitely
repeats itself. See “Debugging Cyclic Behavior in a Chart” on page 26-37
for a complete description and example.

To include the supporting code designated for these debugging options in the
simulation application, select the Enable debugging/animation check box
in the Simulation Target pane of the Configuration Parameters dialog box.
This option is described in “Speeding Up Simulation” on page 25-17.

Note You must rebuild the target for any changes to the settings referenced
above to take effect.

Options to Control Chart Animation
You can enable animation of the chart to show which states and transitions
execute during a particular time step. Use the following controls:

• Animation— Select Enabled to turn on animation for the chart.

• Delay— Enter the speed of animation for the chart: 0 for fastest animation
and 1 for slowest animation.

• Maintain Highlighting— Select this check box to maintain highlighting
of active states at the end of chart simulation.

The options for Delay andMaintain Highlighting are available only when
you enable animation. For more information, see “Animating Stateflow
Charts” on page 26-3.

Options to Control the Output Display Pane
During simulation, the debugger monitors several execution indicators in the
output display in the bottom pane of the debugger. You select the contents

26-22

Using the Stateflow® Debugger

of this display with the following pull-down menus, which are available only
after chart execution reaches a breakpoint.

• Breakpoints — Display a list of the set breakpoints. You can set
breakpoints in the debugger and in the properties dialog boxes of individual
objects such as states, transitions, and functions. See “Setting Breakpoints
to Debug Charts” on page 26-7 for details. This option lists breakpoints for
the currently executing chart or for all charts in the model.

• Browse Data — Display the current values of defined data objects. This
pull-down list lets you filter displayed data between all data and watched
data. Watched data has the Data property Watch in Debugger enabled
for it. Each of these categories is further filtered by data for the currently
executing chart, or all charts in the model. For more details see “Watching
Data in the Stateflow Debugger” on page 26-42.

• Active States — Display a list of active states in the display area.
Double-clicking any state causes the Stateflow Editor to display that state.
This pull-down menu lets you display active states in the current chart, or
active states for all charts in the model.

• Call Stack—Display a sequential list of the Stopped and Current Event
status items that occur with each single-step through the simulation.

After you make a selection, the pull-down menu for the current display
appears highlighted. When you select an output display button, that type of
output appears until you choose a different display type. You can clear the
display by selecting File > Clear Display in the Stateflow debugger.

26-23

26 Debugging and Testing Stateflow® Charts

Example of Debugging Run-Time Errors in a Chart

In this section...

“Creating the Model and the Stateflow Chart” on page 26-24

“Debugging the Stateflow Chart” on page 26-26

“Correcting the Run-Time Error” on page 26-27

“Identifying Stateflow Objects in Error Messages” on page 26-28

Creating the Model and the Stateflow Chart
In this topic, you create a model with a Stateflow chart to debug. Follow
these steps:

1 Create the following Simulink model:

2 Add the following states and transitions to your chart:

26-24

Example of Debugging Run-Time Errors in a Chart

3 In your chart, add an event Switch with a scope of Input from Simulink
and a Rising edge trigger.

4 Add a data Shift with a scope of Input from Simulink.

The chart has two states at the highest level in the hierarchy, Power_off
and Power_on. By default, Power_off is active. The event Switch toggles
the system between the Power_off and Power_on states. Power_on has
three substates: First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system
transitions from First to Second, Second to Third, Third to First, for each
occurrence of the event Switch, and then the pattern repeats.

In the model, there is an event input and a data input. A Sine Wave block
generates a repeating input event that corresponds with the Stateflow
event Switch. The Step block generates a repeating pattern of 1 and 0 that
corresponds with the Stateflow data object Shift. Ideally, the Switch event

26-25

26 Debugging and Testing Stateflow® Charts

occurs at a frequency that allows at least one cycle through First, Second,
and Third.

Debugging the Stateflow Chart
To debug the chart in “Creating the Model and the Stateflow Chart” on page
26-24, follow these steps:

1 Open the Configuration Parameters dialog box.

2 In the Simulation Target pane, verify that Enable
debugging/animation is selected.

3 Click OK to close the Configuration Parameters dialog box.

4 Open the Stateflow debugger.

5 In the Breakpoints section, select the Chart Entry check box.

6 Under Animation, select Enabled to enable animation of the chart during
simulation.

7 Click Start to start the simulation.

Because you specified a breakpoint on chart entry, execution stops at that
point and the debugger shows you informational messages.

8 Click Step.

The Step button executes the next step and stops.

9 Continue clicking the Step button and watching the animating chart.

After each step, watch the chart animation and the debugger status area to
see the sequence of execution.

Single-stepping shows that the chart does not exhibit the desired behavior.
The transitions from First to Second to Third inside the state Power_on
are not occurring because the transition from Power_on to Power_off takes
priority. The output display of code coverage also confirms this observation.

26-26

Example of Debugging Run-Time Errors in a Chart

Correcting the Run-Time Error
In “Debugging the Stateflow Chart” on page 26-26, you step through a
simulation of a chart and find an error: the event Switch drives the
simulation but the simulation time passes too quickly for the input data
object Shift to have an effect.

Correct this error as follows:

1 Stop the simulation so that you can edit the chart.

2 Add the condition [t > 20.0] to the transition from Power_on to
Power_off.

Now the transition from Power_on to Power_off does not occur until
simulation time is greater than 20.0.

3 In the Stateflow debugger, click Start to begin simulation again.

26-27

26 Debugging and Testing Stateflow® Charts

4 Click Step repeatedly to observe the new behavior.

Identifying Stateflow Objects in Error Messages
When an error message appears during simulation, the error refers to the
relevant Stateflow object using its name and ID number. An example of an
error message is: Unresolved event 'Switch' in transition Switch
(#100).

The ID number of a Stateflow object is unique, but not its name. To identify
an object using its ID number, enter the following Stateflow API commands at
the MATLAB prompt:

theObject = find(sfroot, 'Id', <id number>);
theObject.view

The first command finds the Stateflow object that matches the <id number>
you specify. The second command highlights the chosen object in your chart.
(See the Stateflow API documentation for information about the find and
view methods.)

26-28

Debugging State Inconsistencies in a Chart

Debugging State Inconsistencies in a Chart

In this section...

“Definition of State Inconsistency” on page 26-29

“Causes of State Inconsistency” on page 26-29

“Detecting State Inconsistency with the Debugger” on page 26-30

“State Inconsistency Example” on page 26-30

Definition of State Inconsistency
States in a Stateflow chart are inconsistent if they violate any of these rules:

• An active state (consisting of at least one substate) with exclusive (OR)
decomposition has exactly one active substate.

• All substates of an active state with parallel (AND) decomposition are
active.

• All substates of an inactive state with either exclusive (OR) or parallel
(AND) decomposition are inactive.

Causes of State Inconsistency
An error occurs at compile time when the following conditions are all true:

• A transition leads to a state that has exclusive (OR) decomposition and
multiple substates. There are no default paths that lead to the entry of any
substate. This condition results in a state inconsistency error. (However, if
all transitions into that state are supertransitions leading directly to the
substates, there is no error.)

• The state with multiple substates does not contain a history junction.

You can control the level of diagnostic action that occurs due to omission of a
default transition in the Diagnostics > Stateflow pane of the Configuration
Parameters dialog box. For more information, see the documentation for the
“No unconditional default transitions” diagnostic.

26-29

26 Debugging and Testing Stateflow® Charts

Detecting State Inconsistency with the Debugger

1 Open the chart you want to debug.

2 Open the debugger and select State Inconsistency.

3 Start the simulation.

State Inconsistency Example
The following chart has a state inconsistency.

In the absence of a default transition indicating which substate is to become
active, the chart has a state inconsistency error.

Adding a default transition to one of the substates resolves the state
inconsistency.

26-30

Debugging State Inconsistencies in a Chart

26-31

26 Debugging and Testing Stateflow® Charts

Debugging Conflicting Transitions in a Chart

In this section...

“What Are Conflicting Transitions?” on page 26-32

“Detecting Conflicting Transitions” on page 26-32

“Example of Conflicting Transitions” on page 26-32

What Are Conflicting Transitions?
Conflicting transitions are two equally valid paths from the same source
in a Stateflow chart during simulation. In the case of a conflict, Stateflow
software evaluates equally valid transitions based on ordering mode in the
chart: explicit or implicit.

• For explicit ordering (the default mode), evaluation of conflicting transitions
occurs based on the order you specify for each transition. For details, see
“Explicit Ordering of Outgoing Transitions” on page 3-56.

• For implicit ordering, evaluation of conflicting transitions occurs based on
internal rules described in “Implicit Ordering of Outgoing Transitions”
on page 3-60.

Detecting Conflicting Transitions
To detect conflicting transitions during a simulation:

1 Build the target with debugging enabled.

2 Open the debugger and select Transition Conflict.

3 Start the simulation.

Example of Conflicting Transitions
The following chart has two conflicting transitions:

26-32

Debugging Conflicting Transitions in a Chart

How the Transition Conflict Occurs
The default transition to state A assigns data a equal to 1 and data b equal to
10. The during action of state A increments a and decrements b during each
time step. The transition from state A to state B is valid if the condition [a >
4] is true. The transition from state A to state C is valid if the condition [b <
7] is true. During simulation, there is a time step where state A is active and
both conditions are true. This issue is a transition conflict.

If you select the Transition Conflict check box in the debugger, you get a
run-time error. If you do not select the check box, resolution of the transition
conflict depends on the ordering you use for evaluation of outgoing transitions.

Conflict Resolution for Explicit Ordering When Check Box Is
Not Selected
For explicit ordering, the chart resolves the conflict by evaluating outgoing
transitions in the order that you specify explicitly. For example, if you
right-click the transition from state A to state C and select Execution
Order > 1 from the context menu, the chart evaluates that transition first. In
this case, the transition from state A to state C occurs.

26-33

26 Debugging and Testing Stateflow® Charts

Conflict Resolution for Implicit Ordering When Check Box Is
Not Selected
For implicit ordering, the chart evaluates multiple outgoing transitions with
equal label priority in a clockwise progression starting from the twelve o’clock
position on the state. In this case, the transition from state A to state B occurs.

26-34

Debugging Data Range Violations in a Chart

Debugging Data Range Violations in a Chart

In this section...

“Types of Data Range Violations” on page 26-35

“Detecting Data Range Violations” on page 26-35

“Data Range Violation Example” on page 26-35

Types of Data Range Violations
Stateflow software detects the following data range violations during
simulation:

• When a data object equals a value outside the range of the values set in
the Initial value, Minimum, and Maximum fields specified in the Data
properties dialog box

See “Setting Data Properties in the Data Dialog Box” on page 8-5 for a
description of the Initial value, Minimum, and Maximum fields in the
Data properties dialog box.

• When the result of a fixed-point operation overflows its bit size

See “Detecting Overflow for Fixed-Point Types” on page 17-11 for a
description of the overflow condition in fixed-point numbers.

Detecting Data Range Violations
To detect data range violations during a simulation:

1 Build the target with debugging enabled.

2 Open the debugger and select Data Range.

3 Start the simulation.

Data Range Violation Example
The following chart has a data range violation.

26-35

26 Debugging and Testing Stateflow® Charts

Assume that the data a has an Initial value andMinimum value of 0 and a
Maximum value of 2. Each time an event awakens this chart and state A is
active, a increments. The value of a quickly becomes a data range violation.

26-36

Debugging Cyclic Behavior in a Chart

Debugging Cyclic Behavior in a Chart

In this section...

“What Is Cyclic Behavior?” on page 26-37

“Detecting Cyclic Behavior During Simulation” on page 26-37

“Cyclic Behavior Example” on page 26-37

“Flow Cyclic Behavior Not Detected Example” on page 26-38

“Noncyclic Behavior Flagged as a Cycle Example” on page 26-39

What Is Cyclic Behavior?
Cyclic behavior is a step or sequence of steps that is repeated indefinitely
(recursive). The Stateflow debugger uses cycle detection algorithms to detect
a class of infinite recursions caused by event broadcasts.

Detecting Cyclic Behavior During Simulation
To detect cyclic behavior during a simulation:

1 Build the target with debugging enabled.

2 Open the debugger and select Detect Cycles.

3 Start the simulation.

Cyclic Behavior Example
This chart shows how an event broadcast can cause infinite recursive cycles.

26-37

26 Debugging and Testing Stateflow® Charts

When the state C during action executes, event E1 is broadcast. The transition
from state A.A1 to state A.A2 becomes valid when event E1 is broadcast. Event
E2 is broadcast as a condition action of that transition. The transition from
state B.B1 to state B.B2 becomes valid when event E2 is broadcast. Event E1
is broadcast as a condition action of the transition from state B.B1 to state
B.B2. Because these event broadcasts of E1 and E2 are in condition actions, a
recursive event broadcast situation occurs. Neither transition can complete.

Flow Cyclic Behavior Not Detected Example
This chart shows an example of cyclic behavior in a flow graph that the
debugger cannot detect.

26-38

Debugging Cyclic Behavior in a Chart

The data object i is set to 0 in the condition action of the default transition. i
increments in the next transition segment condition action. The transition to
the third connective junction is valid only when the condition [i < 0] is true.
This condition is never true in this flow graph, resulting in a cycle.

The debugger cannot detect this cycle because it does not involve recursion
due to event broadcasts. Although the debugger cannot detect cycles that
depend on data values, a separate diagnostic error does appear during
simulation, for example:

Junction is part of a cycle and does not have an
unconditional path leading to termination.

For information on fixing cyclic behavior in flow graphs, type the following
at the MATLAB command prompt:

sfhelp('cycle_error');

Noncyclic Behavior Flagged as a Cycle Example
This chart shows an example of noncyclic behavior that the debugger flags as
being cyclic.

26-39

26 Debugging and Testing Stateflow® Charts

State A becomes active and i is initialized to 0. When the transition is tested,
the condition [i < 5] is true. The condition actions that increment i and
broadcast the event E are executed. The broadcast of E when state A is active
causes a repetitive testing (and incrementing of i) until the condition is no
longer true. The debugger flags this behavior as a cycle, but the so-called cycle
breaks when i becomes greater than 5.

26-40

Guidelines for Avoiding Unwanted Recursion in a Chart

Guidelines for Avoiding Unwanted Recursion in a Chart
Recursion can be useful for controlling substate transitions among parallel
states at the same level of the chart hierarchy. For example, you can send a
directed event broadcast from one parallel state to a sibling parallel state to
specify a substate transition. (For details, see “Directed Event Broadcasting”
on page 10-59.) This type of recursive behavior is desirable and efficient.

However, unwanted recursion can also occur during chart execution. To avoid
unwanted recursion, follow these guidelines:

Do not call functions recursively

Suppose that you have functions named f, g, and h in a chart. These functions
can be any combination of graphical functions, truth table functions, MATLAB
functions, or Simulink functions.

To avoid recursive behavior, do not:

• Have f calling g calling h calling f

• Have f, g, or h calling itself

Do not use undirected event broadcasts

Follow these rules:

• Use directed event broadcasts with the syntax send(event,state). The
event is a chart local event and the state is the destination state that you
want to wake up using the event broadcast.

• If the source of the event broadcast is a state action, ensure that the
destination state is not an ancestor of the source state in the chart
hierarchy.

• If the source of the event broadcast is a transition, ensure that the
destination state is not an ancestor of the transition in the chart hierarchy.

Also, ensure that the transition does not connect to the destination state.

26-41

26 Debugging and Testing Stateflow® Charts

Watching Data Values During Simulation

In this section...

“Watching Data in the Stateflow Debugger” on page 26-42

“Watching Stateflow Data in the MATLAB Command Window” on page
26-44

Watching Data in the Stateflow Debugger
The Browse Data pull-down menu in the Stateflow debugger lets you display
selected data in the bottom output display pane of the Stateflow debugger
during simulation, after a breakpoint is reached. The debugger can filter
the display between:

• Watched data and all data

• Watched data in the currently executing chart and watched data for all
charts in a model

Note You designate Stateflow data to be watched data by enabling the
property “Watch in debugger” on page 8-15, as described in “Properties You
Can Set in the General Pane” on page 8-8.

The following example displays All Data (All Charts) for a chart named Air
Controller. This chart has two data values: airflow and temp.

26-42

Watching Data Values During Simulation

Each displayed object (chart, state, data, and so on) appears with a unique
identifier of the form (#id(xx:yy:zz)), which links the listed object to its
appearance in the chart. In the Browse Data section, data appears in
alphabetical order, regardless of its scope in a chart.

Note Fixed-point data appears with two values: the quantized integer
value (stored integer) and the scaled real-world (actual) value. For more
information, see “How Fixed-Point Data Works in Stateflow Charts” on page
17-6.

26-43

26 Debugging and Testing Stateflow® Charts

Watching Stateflow Data in the MATLAB Command
Window
When simulation reaches a breakpoint, you can view the values of Stateflow
data in the MATLAB Command Window. In the following chart, a default
transition calls a MATLAB function:

A breakpoint is set at the last executable line of the function:

function stats(vals)
%#codegen

% calculates a statistical mean and standard deviation
% for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
coder.extrinsic('plot');
plot(vals,'-+'); % Breakpoint set at this line

When simulation reaches the breakpoint, you can display Stateflow data
in the MATLAB Command Window.

1 At the MATLAB prompt, press Enter.

A debug>> prompt appears.

2 Type whos to view the data that is visible at the current scope.

26-44

Watching Data Values During Simulation

3 Enter the name of data array vals at the prompt to display its value.

4 Enter vals(2:3) to view specific values of that array.

The Command Line Debugger provides these commands during simulation:

Command Description

dbstep Advance to next executable line of code.

dbstep
[in/out]

When debugging MATLAB functions in a chart:

• dbstep [in] advances to the next executable line of
code. If that line contains a call to another function,
execution continues to the first executable line of the
function.

• dbstep [out] executes the rest of the function and
stops just after leaving the function.

dbcont Continue execution to next breakpoint.

dbquit
(ctrl-c)

Stop simulation of the model. Press Enter after this
command to return to the command prompt.

help Display help for command-line debugging.

print var

...or...

var

Display the value of the variable var.

var (i) Display the value of the ith element of the vector or
matrix var.

var (i:j) Display the value of a submatrix of the vector or matrix
var.

save Saves all variables to the specified file. Follows the syntax
of the MATLAB save command. To retrieve variables in
the MATLAB base workspace, use the load command
after simulation has ended.

whos Display the size and class (type) of all variables in the
scope of the halted MATLAB function in your chart.

26-45

26 Debugging and Testing Stateflow® Charts

You can issue any other MATLAB command at the debug>> prompt but the
results are executed in the Stateflow workspace. For example, you can issue
the MATLAB command plot(var) to plot the values of the variable var.

To issue a command in the MATLAB base workspace at the debug>> prompt,
use the evalin command with the first argument 'base' followed by the
second argument command string, for example, evalin('base','whos').

Note To return to the MATLAB base workspace, use the dbquit command.

26-46

Changing Data Values During Simulation

Changing Data Values During Simulation

In this section...

“How to Change Values of Stateflow Data” on page 26-47

“Examples of Changing Data Values” on page 26-47

“Limitations on Changing Data Values” on page 26-50

How to Change Values of Stateflow Data
When your chart is in debug mode, you can test the simulation by changing
the values of data in the chart. After the debug>> prompt appears, as
described in “Watching Stateflow Data in the MATLAB Command Window”
on page 26-44, you can assign a different value to your data. To change a data
value, enter the new value at the prompt using the following format:

data_name = new_value

For a list of data that you cannot change, see “Data That Is Read-Only During
Simulation” on page 26-50.

Examples of Changing Data Values

Scalar Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

airflow 1x1 1 uint8 array
temp 1x1 8 double array

To change... To this value... Enter...

airflow 2 airflow = uint8(2)

temp 68.75 temp = 68.75

26-47

26 Debugging and Testing Stateflow® Charts

If you try to enter airflow = 2, you get an error message because MATLAB
interprets that expression as the assignment of a double value to data of
uint8 type. For reference, see “Cases When Casting Is Necessary” on page
26-51.

Multidimensional Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

ball_interaction 16x16 256 int8 array
last_vel 16x2 256 double array
stopped 16x1 16 int16 array

To change... To this value... Enter...

The element in
row 8, column 8 of
ball_interaction

1 ball_interaction(8,8)
= int8(1)

The element in row 16,
column 1 of last_vel

120.52 last_vel(16,1) =
120.52

The last element in
stopped

0 stopped(16) =
int16(0)

One-based indexing applies when you change values of Stateflow data while
the chart is in debug mode.

Variable-Size Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

y1 1x1 8 double array (variable sized: MAX 16x16)
y2 1x1 8 double array (variable sized: MAX 16x4)

26-48

Changing Data Values During Simulation

To change... To... Enter...

y1 A 10-by-5 array of ones y1 = ones(10,5)

y2 A 6-by-4 array of zeros y2 = zeros(6,4)

Changing the dimensions of variable-size data works only when the new size
does not exceed the dimension bounds.

Fixed-Point Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

y_n1 1x1 2 fixpt (int16 array (2^-10)*SI)
x_n1 1x1 2 fixpt (int16 array (2^-12)*SI)

Both y_n1 and x_n1 have signed fixed-point types, with a word length of 16.
y_n1 has a fraction length of 10 and x_n1 has a fraction length of 12.

To change... To this fixed-point
value...

Enter...

y_n1 0.5410 y_n1 =
fi(0.5412,1,16,10)

x_n1 0.4143 x_n1 =
fi(0.4142,1,16,12)

For more information about using fi objects, see the Fixed-Point Toolbox™
documentation.

26-49

26 Debugging and Testing Stateflow® Charts

Enumerated Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

CurrentRadioMode 1x1 4 int32 array
MechCmd 1x1 4 int32 array

Assume that CurrentRadioMode and MechCmd use the enumerated types
RadioRequestMode and CdRequestMode, respectively.

To change... To this enumerated
value...

Enter...

CurrentRadioMode CD CurrentRadioMode =
RadioRequestMode.CD

MechCmd PLAY MechCmd =
CdRequestMode.PLAY

You must include the enumerated type explicitly in the assignment.
Otherwise, an error appears at the debug>> prompt.

Limitations on Changing Data Values

Data That Is Read-Only During Simulation
You cannot change data of the following scopes while the chart is in debug
mode:

• Constant

• Input

Limitations on Changing Type and Size
The following data properties cannot change:

• Data type

• Size

26-50

Changing Data Values During Simulation

However, for variable-size data, you can change the dimensions of the
data as long as the size falls within the dimension bounds. For example,
varsizedData = ones(5,7); is a valid assignment for a variable-size
10-by-10 array.

Limitations for Fixed-Point Data

• Do not assign a value that falls outside the range of values that the
fixed-point type can represent. Avoid selecting a value that causes overflow.

• Sign, word length, fraction length, slope, and bias cannot change.

Limitations for Structures

• You cannot change the data type or size of any fields.

• Addition or deletion of fields does not work because the size of the structure
cannot change.

Cases When Casting Is Necessary
When you change a data value, you must explicitly cast values for data of
the following built-in types:

• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

For example, the following assignments are valid:

• my_data1 = uint8(2)

• my_data2 = single(5.3)

26-51

26 Debugging and Testing Stateflow® Charts

Casting is not necessary when you change the value of data that is of type
double.

26-52

Monitoring Test Points in Stateflow® Charts

Monitoring Test Points in Stateflow Charts

In this section...

“About Test Points in Stateflow Charts” on page 26-53

“Setting Test Points for Stateflow States and Local Data with the Model
Explorer” on page 26-53

“Using a Floating Scope to Monitor Data Values and State Activity” on
page 26-56

About Test Points in Stateflow Charts
A Stateflow test point is a signal that you can observe during simulation —
for example, by using a Floating Scope block. You can designate the following
Stateflow objects as test points:

• Any state

• Local data with the following characteristics:

- Can be scalar, one-dimensional, or two-dimensional in size

- Can be any data type except ml

- Must be a descendant of a Stateflow chart

You can specify individual data or states as test points by setting their
TestPoint property via the Stateflow API or in the Model Explorer (see
“Setting Test Points for Stateflow States and Local Data with the Model
Explorer” on page 26-53).

You can monitor individual Stateflow test points with a floating scope during
model simulation. You can also log test point values into MATLAB workspace
objects.

Setting Test Points for Stateflow States and Local
Data with the Model Explorer
You can explicitly set individual states or local data as test points in the
Model Explorer. The following procedure shows how to set individual test
points for Stateflow states and data.

26-53

26 Debugging and Testing Stateflow® Charts

1 Create this model:

The model consists of a Sine Wave block that triggers a Stateflow chart
using the input trigger event tic.

2 Add the following states and transitions to your chart:

The state A and its substate X are entered on the first tic event. State A
and substate X stay active until 10 tic events have occurred, and then

26-54

Monitoring Test Points in Stateflow® Charts

state B is entered. On the next event, state A and substate X are entered
and the cycle continues.

The data x belongs to substate X. The entry and during actions for substate
X increment x while X is active for 10 tic events. When state B is entered, x
reinitializes to zero, and then the cycle repeats.

3 Save the model as myModel.mdl.

4 Open the Configuration Parameters dialog box.

5 In the Solver pane, specify solver options:

a Set Type to Fixed-step.

b Set Solver to discrete (no continuous states).

c Set Fixed-step size (fundamental sample time) to 0.1.

d Click OK.

6 Open the Model Explorer.

7 In the Model Explorer, expand the myModel node and then the Chart1 node.

8 Right-click A and select Properties.

9 In the properties dialog box, select the Test point check box and then
click OK.

This step creates a test point for the state A.

10 Repeat the previous step for states A.X and B.

11 In the Model Explorer, select state X again.

12 Right-click the local data x and select Properties.

13 In the properties dialog box, select the Test point check box and then
click OK.

14 Close the Model Explorer and save the model.

26-55

26 Debugging and Testing Stateflow® Charts

You can also log these test points. See “Logging Chart Signals Using the
Signal Logging Dialog Box” on page 26-63 for instructions on using the
Signal Logging dialog box. See “Logging Chart Signals Using the Command
Line API” on page 26-64 for instructions on logging signals at the MATLAB
command line.

Using a Floating Scope to Monitor Data Values and
State Activity
In this section, you configure a Floating Scope block to monitor a data value
and the activity of a state.

1 Create this model:

The model consists of a Floating Scope block and a Stateflow chart.

2 Add the following states and transitions to your chart:

26-56

Monitoring Test Points in Stateflow® Charts

The chart starts by adding an increment of 0.02 for 10 samples to the data
x1. For the next 10 samples, x1 increments by 0.2, and then the cycle
repeats.

3 Save the model.

4 Open the Configuration Parameters dialog box.

5 In the Solver pane, specify solver options:

a Set Type to Fixed-step.

b Set Solver to discrete (no continuous states).

c Set Fixed-step size (fundamental sample time) to 0.1.

d Click OK.

6 Specify states A and B as test points:

a In the chart, right-click each state and select Properties.

b In the State properties dialog box, select Test point.

c Click OK.

7 Specify data x1 as a test point:

26-57

26 Debugging and Testing Stateflow® Charts

a Open the Model Explorer.

b In the Model Hierarchy pane, navigate to the chart.

c In the Contents pane, right-click x1 and select Properties.

d In the Data properties dialog box, select Test point.

e Click OK.

f Close the Model Explorer.

8 Double-click the Floating Scope block to open the window.

9 In the Floating Scope window, click the Signal Selection icon .

The Signal Selector dialog box appears with a hierarchy of Simulink blocks
for the model.

10 In theModel hierarchy pane, select the chart whose signals you want to
monitor and in the List contents pane, select the signals.

11 Simulate the model.

You see a signal trace for x1 and the activity of state A.

26-58

Monitoring Test Points in Stateflow® Charts

When state A is active, the signal value is 1. When that state is inactive,
the signal value is 0. Because this value can be very low or high compared
to other data, you might want to add a second Floating Scope block to
compare the activity signal with other data.

26-59

26 Debugging and Testing Stateflow® Charts

Logging Data Values and State Activity

In this section...

“What You Can Log During Chart Simulation” on page 26-60

“Supported Formats for Logged Data” on page 26-60

“Workflow for Logging States and Local Data” on page 26-61

“Example for Illustrating Logging Workflow” on page 26-62

“Configuring States and Local Data for Logging” on page 26-63

“Enabling Signal Logging for Charts” on page 26-66

“Specifying a Format for Logged Data” on page 26-67

“Accessing Logged Data” on page 26-67

“Viewing Logged Data” on page 26-73

“Logging Data in Library Charts” on page 26-73

“Logging Multidimensional Data” on page 26-74

What You Can Log During Chart Simulation
When you simulate a chart, you can log values for local data and state activity
into Simulink objects. After simulation, you can access these objects in the
MATLAB workspace and use them to report and analyze the values.

When you log a state, its value is 1 when active and 0 when inactive.

Logging Stateflow data and state activity follows the same general guidelines
as for logging signals in Simulink models.

See Also

• “Exporting Signal Data Using Signal Logging” in the Simulink
documentation.

Supported Formats for Logged Data
Stateflow charts support the same formats for logged data as Simulink models:

26-60

Logging Data Values and State Activity

Format Description

Dataset Stores logged data as
MATLAB timeseries objects
in objects of the value class
Simulink.SimulationData.Dataset

ModelDataLogs Stores logged data in
objects of the handle class
Simulink.ModelDataLogs

How to Choose a Format for Logged Data
The Dataset format offers several advantages over the ModelDataLogs format
for logging chart data and state activity:

• Supports logging multiple changes to data values for a given time step.

• Provides a getElement function for easy access to logged data in charts
with deep hierarchies.

• Provides consistent logging output when charts appear in referenced
models.

• Represents model hierarchy as a flat list for easy access by index to nested
elements.

See Also

• “Specifying the Signal Logging Data Format” in the Simulink
documentation

• “Benefits of Using the Dataset Format for Signal Logging” in the Simulink
documentation

Workflow for Logging States and Local Data
The workflow for logging chart local data and state activity is similar to the
workflow for logging signals in a model:

26-61

26 Debugging and Testing Stateflow® Charts

1 Configure states and local data for signal logging, including controlling how
much output the simulation generates. See “Configuring States and Local
Data for Logging” on page 26-63.

2 Enable signal logging for the chart. See “Enabling Signal Logging for
Charts” on page 26-66.

3 Specify a format for the logged data. See “Specifying a Format for Logged
Data” on page 26-67.

4 Simulate the chart.

5 Access the logged data. See “Accessing Logged Data” on page 26-67.

For more information about logging signals in a model, see “Exporting Signal
Data Using Signal Logging” in the Simulink documentation.

Example for Illustrating Logging Workflow
The procedures that take you through the logging workflow use as an example
the model sf_semantics_hotel_checkin, which models a hotel check-in
process. The model contains the chart Hotel which controls activities that
trigger transitions to different rooms in the hotel. to demonstrate the
dynamics of a bouncing ball. The chart contains a hierarchy of nested states
and uses two local variables:

Local Variable Description

move_bags Indicates whether bags should
move to another room or stay in the
current room.

service Accumulates the number of room
service calls.

Open the model by typing sf_semantics_hotel_checkin at the MATLAB
command prompt.

26-62

Logging Data Values and State Activity

Configuring States and Local Data for Logging

Logging Chart Signals Using the Signal Logging Dialog Box

1 Right-click the Stateflow chart of interest and select Log Chart Signals.

The Stateflow Signal Logging dialog box opens, showing all states and local
data. These chart objects are signals you can log.

2 Select the check box next to each signal you want to log.

The Log signal data check box is selected automatically for each signal you
log. For example, in the Hotel chart of the sf_semantics_hotel_checkin
model, log the Check_in.Checked_in.Executive_suite.Dining_area
state and local variable service:

26-63

26 Debugging and Testing Stateflow® Charts

3 Modify properties of each signal you select, as needed:

Signal Properties Description

Signal name Name of the state or local data as it appears in
the chart.

Log signal data Selects the highlighted signal in the Signals
pane.

Logging name Name of the logged signal. By default, the
logging name is the original name of the state or
local data. To rename the logged signal, select
Custom and enter a new name. For guidance
on when to use a different name for a logged
signal, see “Specifying a Logging Name” in the
Simulink documentation.

Limit data points to
last

Limits the amount of data logged to the most
recent samples. For more information see
“Limit Data Points to Last” in the Simulink
documentation.

Decimation Limits the amount of data logged by skipping
samples. For example, a decimation factor
of 2 saves every other sample. For more
information, see “Decimation” in the Simulink
documentation.

For example, change the logging name of
Check_in.Checked_in.Executive_suite.Dining_area to Dining_Room.

See Also. “Logging Chart Signals Using the Command Line API” on page
26-64

Logging Chart Signals Using the Command Line API

1 Open the model that contains the chart.

For example, open the sf_semantics_hotel_checkin model, which has
a chart called Hotel.

26-64

Logging Data Values and State Activity

2 Define a Simulink object of type SigPropNode for the chart.

For example:

sig_props = get_param('sf_semantics_hotel_checkin/Hotel', ...
'AvailSigsInstanceProps')

The result is:

sig_props = Simulink.SigPropNode

3 Retrieve the contents of this object with the get method.

For example:

sig_props.get

The result is:

Path: 'StateflowChart'
Name: 'Hotel@StateflowChart'
Type: 'Stateflow'

Signals: [13x1 Simulink.SigProp]

You can log 13 signals in the Hotel chart.

4 Index into the Signals array to view and modify the properties of each
signal.

For example, the Check_in.Checked_in.Executive_suite.Dining_area
state is the seventh signal you can log in this chart. To view its properties,
enter:

sig_props.Signals(7).get

The result is:

SigName: 'Check_in.Checked_in.Executive_suite.Dining_area'
BlockPath: [1x62 char]
PortIndex: 1
LogSignal: 0
UseCustomName: 0
LogName: 'Check_in.Checked_in.Executive_suite.Dining_area'

26-65

26 Debugging and Testing Stateflow® Charts

LimitDataPoints: 0
MaxPoints: 5000
Decimate: 0
Decimation: 2
LogFramesIndv: 0
Children: [0x1 double]

5 Modify properties as needed.

For example:

a To log the values for the activity of the
Check_in.Checked_in.Executive_suite.Dining_area state and for
local variable service, enable their LogSignal properties:

sig_props.Signals(7).LogSignal = 1
sig_props.Signals(2).LogSignal = 1

b Change the logged name of the
Check_in.Checked_in.Executive_suite.Dining_area state and
enable the custom name:

sig_props.Signals(7).LogName = 'Dining_Room';
sig_props.Signals(7).UseCustomName = 1;

c Update the chart parameters with the modified sig_props object:

set_param('sf_semantics_hotel_checkin/Hotel', ...
'AvailSigsInstanceProps', sig_props)

See Also. “Logging Chart Signals Using the Signal Logging Dialog Box”
on page 26-63

Enabling Signal Logging for Charts
Signal logging is enabled by default for models and charts. To modify this
setting:

1 Open the chart and select Simulation > Configuration Parameters.

2 Select Data Import/Export.

26-66

Logging Data Values and State Activity

3 In the right-hand Signals pane, select the Signal logging check box to
enable logging for the chart.

To disable logging, clear the check box.

4 Optionally, specify a custom name for the signal logging object.

The default name is logsout. Using this object, you can access the logging
data in a MATLAB workspace variable (see “Signal Logging Object” on
page 26-67).

Specifying a Format for Logged Data
Charts support the same formats for logged data as models (see “Supported
Formats for Logged Data” on page 26-60). To specify a format for all logged
data in the chart:

1 Open the chart and select Simulation > Configuration Parameters.

2 Select Data Import/Export.

3 In the right-hand Signals pane, select a format from the Signal logging
format drop-down menu.

See “Supported Formats for Logged Data” on page 26-60.

Accessing Logged Data

• “Signal Logging Object” on page 26-67

• “Accessing Logged Data Saved in Dataset Format” on page 26-68

• “Accessing Logged Data Saved in ModelDataLogs Format” on page 26-71

Signal Logging Object
During simulation, Stateflow saves logged data in a signal logging object,
which you can access in the MATLAB workspace. The type of signal logging
object depends on the signal logging format that you choose:

26-67

26 Debugging and Testing Stateflow® Charts

Format Signal Logging Object

Dataset Simulink.SimulationData.Dataset

ModelDataLogs Simulink.ModelDataLogs

The default name of the signal logging object is logsout.

See Also.

• “Supported Formats for Logged Data” on page 26-60

• “Specifying a Format for Logged Data” on page 26-67

• “Enabling Signal Logging for Charts” on page 26-66 to learn how to change
the name of the signal logging object

• Simulink.SimulationData.Dataset reference page in the Simulink
documentation

• Simulink.ModelDataLogs reference page in the Simulink documentation

Accessing Logged Data Saved in Dataset Format

1 View the signal logging object in the MATLAB environment.

For example:

a Start simulating the sf_semantics_hotel_checkin model using the
Dataset signal logging format.

b When the Front_desk state becomes active, check in to the hotel by
toggling the first switch.

c When the Bedroom state in the Executive_suite state becomes active,
order room service multiple times, for example, by toggling the second
switch 10 times.

d Stop simulation.

e Enter:

logsout

Result:

26-68

Logging Data Values and State Activity

Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Characteristics:
Name: 'logsout'

Total Elements: 2

Elements:
1: 'Dining_Room'
2: 'service'

The output indicates:

• logsout is a Simulink object of type SimulationData.Dataset.

• Two elements were logged.

2 Use the getElement method to access logged elements by index and by
name.

For example:

• To access logged activity for the
Check_in.Checked_in.Executive_suite.Dining_area state:

By: Enter:

Index logsout.getElement(1)

Name logsout.getElement('Dining_Room')

Block path 1 logsout.getElement(1).BlockPath

Returns:

• Block Path: 'sf_semantics_hotel_checkin/Hotel'

• SubPath: 'Check_in.Checked_in.Executive_suite.Dining_area'
2 bp = Simulink.BlockPath('sf_semantics_hotel_checkin/Hotel');
3 bp.SubPath = 'Check_in.Checked_in.Executive_suite.Dining_area';
4 logsout.getElement(bp)

Result is a Stateflow.SimulationData.State object:

Stateflow.SimulationData.State

26-69

26 Debugging and Testing Stateflow® Charts

Package: Stateflow.SimulationData

Properties:
Name: 'Dining_Room'

BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]

• To access logged activity for local service data:

By: Enter:

Index logsout.getElement(2)

Name logsout.getElement('service')

Block path 1 logsout.getElement(2).BlockPath

Returns:

• Block Path: 'sf_semantics_hotel_checkin/Hotel'

• SubPath: 'service'
2 bp = Simulink.BlockPath('sf_semantics_hotel_checkin/Hotel');
3 bp.SubPath = 'service';
4 logsout.getElement(bp)

Result is a Stateflow.SimulationData.Data object:

Stateflow.SimulationData.Data
Package: Stateflow.SimulationData

Properties:
Name: 'service'

BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]

The logged values for Stateflow.SimulationData.State and
Stateflow.SimulationData.Data objects are stored in the Values
property as Simulink objects of type Timeseries.

3 Access logged data and time through the Values property.

For example:

26-70

Logging Data Values and State Activity

For: Enter:

Data logsout.getElement(1).Values.Data;

Time logsout.getElement(1).Values.Time;

4 View the logged data.

See “Viewing Logged Data” on page 26-73.

Accessing Logged Data Saved in ModelDataLogs Format

1 View the signal logging object in the MATLAB environment.

For example:

a Start simulating the sf_semantics_hotel_checkin model using the
ModelDataLogs signal logging format.

b When the Front_desk state becomes active, check in to the hotel by
toggling the first switch.

c When the Bedroom state in the Executive_suite state becomes active,
order room service multiple times, for example, by toggling the second
switch 10 times.

d Stop simulation.

e Enter:

logsout

Result:

Simulink.ModelDataLogs (sf_semantics_hotel_checkin):
Name Elements Simulink Class

Hotel 2 StateflowDataLogs

The output indicates:

• logsout is a Simulink object of type Simulink.ModelDataLogs.

• Two elements were logged, all in the Hotel chart.

26-71

26 Debugging and Testing Stateflow® Charts

2 List the logged states and local data.

For example:

logsout.Hotel

Result:

Simulink.StateflowDataLogs (Hotel):
Name Elements Simulink Class

service 1 Timeseries
Dining_Room 1 Timeseries

The logged signals are stored as Simulink objects of type Timeseries.

3 Use dot notation to access logged values for data or state activity.

Because of the way Simulink stores logged signals in ModelDataLogs
format, you must use dot notation to access logged data for Stateflow
objects below the chart level in the model hierarchy.

For example, to access logged values for service data, enter:

logsout.Hotel.service

Result:

Name: 'service'
BlockPath: 'sf_semantics_hotel_checkin/Hotel/service'
PortIndex: 1

SignalName: 'service'
ParentName: 'service'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [560498x1 double]
Data: [560498x1 double]

All logging information is stored in a structure. The logged data values
reside in the Data field and the associated logged times reside in the Time

26-72

Logging Data Values and State Activity

field. The size of your Time and Data vectors might differ from those shown
here, depending on how you interact with the switches in the model.

4 View the logged data.

See “Viewing Logged Data” on page 26-73.

Viewing Logged Data
There are many ways to view logged data. Here are some approaches:

To: Do This:

View logged
data in
a figure
window

Use the plot function for the Timeseries object.
For example in the Hotel chart, plot logged values over time in ModelDataLogs
format for the local variable service by entering:

logsout.Hotel.service.plot

View logged
data in a
spreadsheet

Pass a numeric, cell, or logical array of logged values to the xlswrite function.
For example in the Hotel chart, to view logged activity over time in Dataset
format for the Check_in.Checked_in.Executive_suite.Dining_area state:

1 Assign logged Dining_Room time and data values to an array A:

A = [logsout.getElement('Dining_Room').Values.Time ...
logsout.getElement('Dining_Room').Values.Data];

2 Export the data to an Excel® file named dining_log.xls:

xlswrite('dining_log.xls',A);

3 Open dining_log.xls in Excel.

Logging Data in Library Charts
To reconcile logging parameters for library charts, Stateflow takes the union
of the settings for the library chart and the instance whose signals are logged.

26-73

26 Debugging and Testing Stateflow® Charts

Logging Multidimensional Data
Stateflow logs each update to a multidimensional signal as a single change.
For example, an update to a 2-by-2 matrix during simulation is logged as a
single change, not as four changes (one for each element). For example, for
the 2-by-2 matrix A:

Update: Is Logged As:

A = 1; A single change, even though the
statement implies all A[i] = 1.

A[1][1] = 1;
A[1][2] = 1;

Two different changes

26-74

27

Exploring and Modifying
Charts

• “Using the Model Explorer with Stateflow Objects” on page 27-2

• “Using the Stateflow Search & Replace Tool” on page 27-12

• “Finding Stateflow Objects” on page 27-28

27 Exploring and Modifying Charts

Using the Model Explorer with Stateflow Objects

In this section...

“Viewing Stateflow Objects in the Model Explorer” on page 27-2

“Editing Chart Objects in the Model Explorer” on page 27-4

“Adding Data and Events in the Model Explorer” on page 27-4

“Adding Custom Targets in the Model Explorer” on page 27-5

“Renaming Objects in the Model Explorer” on page 27-8

“Setting Properties for Chart Objects in the Model Explorer” on page 27-8

“Moving and Copying Data, Events, and Targets in the Model Explorer”
on page 27-9

“Changing the Port Order of Input and Output Data and Events” on page
27-10

“Deleting Data, Events, and Targets in the Model Explorer” on page 27-11

Viewing Stateflow Objects in the Model Explorer
You can use one of these methods for opening the Model Explorer:

• In the model window, select View > Model Explorer.

• Right-click an empty area in the chart and select Explore.

• In the Truth Table Editor, select Tools > Explore.

27-2

Using the Model Explorer with Stateflow® Objects

The Model Explorer appears something like this:

The main window has two panes: a Model Hierarchy pane on the left
and a Contents pane on the right. When you open the Model Explorer, the
Stateflow object you are editing appears highlighted in theModel Hierarchy
pane and its objects appear in the Contents pane. This example shows how
the Model Explorer appears when opened from the chart.

The Model Hierarchy pane displays the elements of all loaded Simulink
models, which includes Stateflow charts. A preceding plus (+) character for
an object indicates that you can expand the display of its child objects by
double-clicking the entry or by clicking the plus (+). A preceding minus (-)
character for an object indicates that it has no child objects.

27-3

27 Exploring and Modifying Charts

Clicking an entry in the Model Hierarchy pane selects that entry and
displays its child objects in the Contents pane. A hypertext link to the
currently selected object in the Model Hierarchy pane appears after the
Contents of: label at the top of the Contents pane. Click this link to display
that object in its native editor. In the preceding example, clicking the link
sfbus_demo/Chart displays the contents of the chart in its editor.

Each type of object, whether in the Model Hierarchy or Contents pane,
appears with an adjacent icon. Subcharted objects (states, boxes, or graphical
functions) appear altered with shading.

The display of child objects in the Contents pane includes properties for each
object, most of which are directly editable. You can also access the properties
dialog box for an object from the Model Explorer. See “Setting Properties for
Chart Objects in the Model Explorer” on page 27-8 for more details.

Editing Chart Objects in the Model Explorer
To edit a chart object that appears in the Model Hierarchy pane of the
Model Explorer:

1 Right-click the object.

2 Select Open from the context menu.

The selected object appears highlighted in the chart.

Adding Data and Events in the Model Explorer
Charts, states, subcharts, boxes, and functions can parent data and events.
To add data or events to a Stateflow object:

1 In theModel Hierarchy pane of the Model Explorer, select a chart, state,
subchart, box, or function.

2 From the Add menu, select Data or Event.

A new data or event appears in the Contents pane with the default name
data or event. If you continue adding more data, each new data or event is
named with an integer suffix (data1, event1, data2, event2, and so on).

27-4

Using the Model Explorer with Stateflow® Objects

You can change the properties for data or events directly in the Model
Explorer. You can also access the complete list of properties for data or
events from the Model Explorer. See “Setting Properties for Chart Objects
in the Model Explorer” on page 27-8.

For more detailed examples of creating data and events in the Model Explorer,
see “Adding Events Using the Model Explorer” on page 9-5 and “Adding Data
Using the Model Explorer” on page 8-3.

Adding Custom Targets in the Model Explorer
Custom targets belong to a model, not a chart. In the Model Explorer, you can
add custom targets to a model as follows:

1 In the Model Explorer, in the left Model Hierarchy pane, select the
Simulink model to receive the custom target.

2 In the Model Explorer, select Add > Stateflow Target.

27-5

27 Exploring and Modifying Charts

The Contents pane of the Model Explorer displays the new custom target
with the default name untitled.

3 In the Contents pane, right-click the row of the custom target and select
Properties from the context menu.

27-6

Using the Model Explorer with Stateflow® Objects

The Stateflow Custom Target dialog box appears.

4 Enter the name of the custom target.

27-7

27 Exploring and Modifying Charts

You can use any string except the reserved names sfun and rtw.

5 Specify other properties in the dialog box.

6 Click Apply.

For more information, see “How to Build a Stateflow Custom Target” on
page 25-53.

Renaming Objects in the Model Explorer
To rename a chart object in the Model Explorer:

1 Right-click the object row in the Contents pane of the Model Explorer
and select Rename.

The name of the selected object appears in a text edit box.

2 Change the name of the object and click outside the edit box.

Setting Properties for Chart Objects in the Model
Explorer
To change the property of an object in the Contents pane of the Model
Explorer:

1 In the Contents pane, click in the row of the displayed object.

2 Click an individual entry for a property column in the highlighted row.

• For text properties, such as the Name property, a text editing field with
the current text value overlays the displayed value. Edit the field and
press the Return key or click anywhere outside the edit field to apply
the changes.

• For properties with enumerated entries, such as the Scope, Trigger, or
Type properties, select from a drop-down combo box that overlays the
displayed value.

• For Boolean properties (properties that are set on or off), select or clear
the box that appears in place of the displayed value.

27-8

Using the Model Explorer with Stateflow® Objects

To set all the properties for an object displayed in the Model Hierarchy or
Contents pane of the Model Explorer:

1 Right-click the object and select Properties.

The properties dialog box for the object appears.

2 Edit the appropriate properties and click Apply or OK.

To display the properties dialog box dynamically for the selected object in the
Model Hierarchy or Contents pane of the Model Explorer:

1 Select View > Show Dialog Pane.

The properties dialog box for the selected object appears in the far right
pane of the Model Explorer.

Moving and Copying Data, Events, and Targets in
the Model Explorer

Note If you move an object to a level in the hierarchy that does not support
the Scope property for that object, the Scope automatically changes to Local.

To move data, event, or target objects to another parent:

1 Select the data, event, or target to move in the Contents pane of the
Model Explorer.

You can select a contiguous block of items by highlighting the first (or
last) item in the block and then using Shift + click for highlighting the
last (or first) item.

2 Click and drag the highlighted objects from the Contents pane to a new
location in the Model Hierarchy pane to change its parent.

A shadow copy of the selected objects accompanies the mouse cursor during
dragging. If no parent is chosen or the parent chosen is the current parent,
the mouse cursor changes to an X enclosed in a circle, indicating an invalid
choice.

27-9

27 Exploring and Modifying Charts

To cut or copy the selected data, events, and targets:

1 Select the event, data, and targets to cut or copy in the Contents pane of
the Model Explorer.

2 In the Model Explorer, select Edit > Cut or Edit > Copy.

If you select Cut, the selected items are deleted and then copied to the
clipboard for copying elsewhere. If you select Copy, the selected items
are left unchanged.

You can also right-click a single selection and select Cut or Copy from the
context menu. The Model Explorer also uses the keyboard equivalents
of Ctrl+X (Cut) and Ctrl+C (Copy) on a computer running the UNIX or
Windows operating system.

3 Select a new parent object in the Model Hierarchy pane of the Model
Explorer.

4 Select Edit > Paste. The cut items appear in the Contents pane of the
Model Explorer.

You can also paste the cut items by right-clicking an empty part of the
Contents pane and selecting Paste from the context menu. The Model
Explorer also uses the keyboard equivalent of Ctrl+V (Paste) on a computer
running the UNIX or Windows operating system.

Changing the Port Order of Input and Output Data
and Events
Input data, output data, input events, and output events each have numerical
sequences of port index numbers. You can change the order of indexing
for event or data objects with a scope of Input to Simulink or Output to
Simulink in the Contents pane of the Model Explorer as follows:

1 Select one of the input or output data or event objects.

2 Click the Port property for the object.

3 Enter a new value for the Port property for the object.

27-10

Using the Model Explorer with Stateflow® Objects

The remaining objects in the affected sequence are automatically assigned
a new value for their Port property.

Deleting Data, Events, and Targets in the Model
Explorer
Delete data, event, and target objects in the Contents pane of the Model
Explorer as follows:

1 Select the object.

2 Press the Delete key.

You can also select Edit > Cut or Ctrl+X from the keyboard to delete an
object.

27-11

27 Exploring and Modifying Charts

Using the Stateflow Search & Replace Tool

In this section...

“Opening the Search & Replace Tool” on page 27-12

“Using Different Search Types” on page 27-15

“Specifying the Search Scope” on page 27-17

“Using the Search Button and View Area” on page 27-19

“Specifying the Replacement Text” on page 27-23

“Using the Replace Buttons” on page 27-24

“Search and Replace Messages” on page 27-25

Opening the Search & Replace Tool
To open the Search & Replace dialog box:

1 Open a chart.

2 Select Tools > Search & Replace.

27-12

Using the Stateflow® Search & Replace Tool

The Search & Replace dialog box contains the following fields:

• Search for

Enter search pattern text in the Search for text box. You can select the
interpretation of the search pattern with the Match case check box and
the Match options field (unlabeled and just to the right of the Search
in field).

27-13

27 Exploring and Modifying Charts

• Match case

If you select this check box, the search is case sensitive and the Search
& Replace tool finds only text matching the search pattern exactly. See
“Match case (Case Sensitive)” on page 27-15.

• Replace with

Specify the text to replace the text found when you select any of the
Replace buttons (Replace, Replace All, Replace All in This Object).
See “Using the Replace Buttons” on page 27-24.

• Preserve case

This option modifies replacement text. For an understanding of this option,
see “Replacing with Case Preservation” on page 27-23.

• Search in

By default, the Search & Replace tool searches for and replaces text only
within the current Stateflow chart that you are editing in the Stateflow
Editor. You can select to search the machine owning the current Stateflow
chart or any other loaded machine or chart by accessing this selection box.

• Match options

This field is unlabeled and just to the right of the Search in field. You can
modify the meaning of your search text by entering one of the selectable
search options. See “Using Different Search Types” on page 27-15.

• Object types and Field types

Under the Search in field are the selection boxes for Object types and
Field types. These selections further refine your search and are described
below. By default, these boxes are hidden. Only current selections appear
next to their titles.

27-14

Using the Stateflow® Search & Replace Tool

• Search and Replace buttons

These are described in “Using the Search Button and View Area” on page
27-19 and “Using the Replace Buttons” on page 27-24.

• View Area

The bottom half of the Search & Replace dialog box displays the result of
a search. This area is described in “A Breakdown of the View Area” on
page 27-20.

Using Different Search Types
Enter search pattern text in the Search for text box. You can use one of the
following settings in theMatch options field (unlabeled and just to the right
of the Search in field) to further refine the meaning of the text entered.

Contains word
Select this option to specify that the search pattern text is a whole word
expression used in a Stateflow chart with no specific beginning and end
delimiters. In other words, find the specified text in any setting.

Suppose that you have a state with this label and entry action:

Searching for the string fail with the Contains word option finds two
occurrences of the string fail.

Match case (Case Sensitive)
By selecting the Match case option, you enable case-sensitive searching.
In this case, the Search & Replace tool finds only text matching the search
pattern exactly.

By clearing the Match case option, you enable case-insensitive searching.
In this case, search pattern characters entered in lower- or uppercase find

27-15

27 Exploring and Modifying Charts

matching text strings with the same sequence of base characters in lower- or
uppercase. For example, the search string "AnDrEw" finds the matching text
"andrew" or "Andrew" or "ANDREW".

Match whole word
Select this option to specify that the search pattern text in the Search for
field is a whole word expression used in a Stateflow chart with beginning
and end delimiters consisting of a blank space or a character that is not
alphanumeric and not an underscore character (_).

In the previous example of a state named throt_fail, if Match whole
word is selected, searching for the string fail finds no text within that
state. However, searching for the string "fail_state" does find the text
"fail_state" as part of the second line since it is delimited by a space at the
beginning and a left square bracket ([) at the end.

Regular expression
Set theMatch options field to Regular expression to search for text that
varies from character to character within defined limits.

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more string candidates. Some characters have
special meaning when used in a regular expression, while other characters
are interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a back slash (\) character precedes it.

If the Match options field is set to Regular expression in the previous
example of a state named throt_fail, searching for the string "fail_"
matches the "fail_" string that is part of the second line, character for
character. Searching with the regular expression "\w*_" also finds the string
"fail_". This search string uses the regular expression shorthand "\w" that
represents any part-of-word character, an asterisk (*) that represents any
number of any characters, and an underscore (_) that represents itself.

For a list of regular expression meta characters, see “Regular Expressions” in
the MATLAB software documentation.

27-16

Using the Stateflow® Search & Replace Tool

Searching with Regular Expression Tokens
Within a regular expression, you use parentheses to group characters or
expressions. For example, the regular expression "and(y|rew)" matches
the text "andy" or "andrew". Parentheses also have the side effect of
remembering what they match so that you can recall and reuse the found
text with a special variable in the Search for field. These variables are
called tokens.

For details on how to use tokens in the Search & Replace tool, see “Tokens” in
the MATLAB software documentation.

You can also use tokens in the Replace with field. See “Replacing with
Tokens” on page 27-24 for a description of using regular expression tokens
for replacing.

Preserve case
This option modifies replacement text and not search text. For details, see
“Replacing with Case Preservation” on page 27-23.

Specifying the Search Scope
You specify the scope of your search by selecting from the field regions
discussed in the topics that follow.

Search in
You can select a whole machine or individual Stateflow chart for searching
in the Search in field. By default, the current Stateflow chart in which you
entered the Search & Replace tool is selected.

To select a machine, follow these steps:

1 Select the down arrow of the Search in field.

A list of the currently loaded machines appears with the current machine
expanded to reveal its Stateflow charts.

2 Select a machine.

To select a Stateflow chart for searching, follow these steps:

27-17

27 Exploring and Modifying Charts

1 Select the down arrow of the Search in field again.

This list contains the previously selected machine expanded to reveal its
Stateflow charts.

2 Select a chart from the expanded machine.

Object Types
Limit your search to text matches in the selected object types by following
these steps:

1 Expand the Object types field.

2 Select one or more object types.

Field Types
Limit your search to text matches for the specified fields by following these
steps:

1 Expand the Field types field.

2 Select one or more field types

Available field types are as follows.

Names. Machines, charts, data, and events have valid Name fields. States
have a Name defined as the top line of their labels. You can search and
replace text belonging to the Name field of a state in this sense. However, if
the Search & Replace tool finds matching text in a state’s Name field, the rest
of the label is subject to later searches for the specified text whether or not
the label is chosen as a search target.

Note The Name field of machines and charts is an invalid target for the
Search & Replace tool. Use the Simulink model window to change the names
of machines and charts.

Labels. Only states and transitions have labels.

27-18

Using the Stateflow® Search & Replace Tool

Descriptions. All objects have searchable Description fields.

Document links. All objects have searchable Link fields.

Custom code. Only target objects contain custom code.

Using the Search Button and View Area
This topic contains the following subtopics:

• “A Breakdown of the View Area” on page 27-20

• “The Search Order” on page 27-21

• “Additional Display Options” on page 27-22

Click Search to initiate a single-search operation. If an object match is
made, its text fields appear in the Viewer pane in the middle of the Search
& Replace dialog box. If the object is graphical (state, transition, junction,
chart), the matching object appears highlighted in a Portal pane below the
Viewer pane.

27-19

27 Exploring and Modifying Charts

0������
��

����
���
��

A Breakdown of the View Area
The view area of the Search & Replace dialog box displays matching text and
its containing object, if viewable. In the previous example, taken from the
sf_pool model, a search for the word "friction" finds the Description field
for the state TotalDynamics. The resulting view area consists of these parts:

27-20

Using the Stateflow® Search & Replace Tool

Icon. Displays an icon appropriate to the object containing the matching text.
These icons are identical to the icons in the Model Explorer that represent
Stateflow objects displayed in “Viewing Stateflow Objects in the Model
Explorer” on page 27-2.

Full Path Name of Containing Object. This area displays the full path
name for the object that contains the matching text:

(<type>) <machine name>/<subsystem>/<chart
name>.[p1]...[pn].<object name> (<id>)

where p1 through pn denote the object’s parent states.

To display the object, click the mouse once on the full path name of the object.
If the object is a graphical member of a Stateflow chart, it appears in the
Stateflow Editor. Otherwise, it appears as a member of its Stateflow chart in
the Model Explorer.

Viewer. This area displays the matching text as a highlighted part of all
search-qualified text fields for the owner object. If other occurrences exist in
these fields, they too are highlighted, but in lighter shades.

To invoke the properties dialog box for the owner object, double-click
anywhere in the Viewer pane.

Portal. This area contains a graphic display of the object that contains the
matching text. That object appears highlighted.

To display the highlighted object in the Stateflow Editor, double-click
anywhere in the Portal pane.

The Search Order
If you specify an entire machine as your search scope in the Search in field,
the Search & Replace tool starts searching at the beginning of the first chart
of the model, regardless of the Stateflow chart that appears in the Stateflow
Editor when you begin your search. After searching the first chart, the Search
& Replace tool continues searching each chart in model order until all charts
for the model have been searched.

27-21

27 Exploring and Modifying Charts

If you specify a Stateflow chart as your search scope, the Search & Replace
tool begins searching at the beginning of the chart. The Search & Replace tool
continues searching the chart until all the chart objects have been searched.

The search order when searching an individual chart for matching text
is equivalent to a depth-first search of the Model Explorer. Starting at
the highest level of the chart, the Model Explorer hierarchy is traversed
downward from parent to child until an object with no child is encountered.
At this point, the hierarchy is traversed upward through objects already
searched until an unsearched sibling is found and the process repeats.

Additional Display Options
Right-click anywhere in the Search & Replace dialog box to display a menu
with these selections.

Selection Result

Show portal A toggle switch that hides or displays the portal.

Edit Displays the object with matching text in the
Stateflow Editor. Applies to states, junctions,
transitions, and charts.

Explore Displays the object with matching text in the Model
Explorer. Applies to states, data, events, machines,
charts, and targets.

Properties Displays the properties dialog box for the object with
matching text.

Note The Edit, Explore, and Properties selections are available only after
a successful search.

If the portal is not visible, you can select the Show portal option to display it.
You can also click and drag the border between the viewer and the portal (the
cursor turns to a vertical double arrow), which resides just above the bottom
boundary of the Search & Replace dialog box. Moving this border allows you
to exchange area between the portal and the viewer. If you click and drag
the border with the left mouse button, the graphic display resizes after you

27-22

Using the Stateflow® Search & Replace Tool

reposition the border. If you click and drag the border with the right mouse
button, the graphic display continuously resizes as you move the border.

Specifying the Replacement Text
The Search & Replace tool replaces matching text with the exact
(case-sensitive) text you entered in the Replace With field unless you choose
one of the dynamic replacement options described below.

Replacing with Case Preservation
If you choose the Case Preservation option, matching text is replaced based
on one of these conditions:

• Whisper

Matching text has only lowercase characters. Matching text is replaced
entirely with the lowercase equivalent of all replacement characters. For
example, if the replacement text is "ANDREW", the matching text "bill" is
replaced by "andrew".

• Shout

Matching text has only uppercase characters. Matching text is replaced
entirely with the uppercase equivalent of all replacement characters. For
example, if the replacement text is "Andrew", the matching text "BILL" is
replaced by "ANDREW".

• Proper

Matching text has uppercase characters in the first character position of
each word. Matching text is replaced entirely with the case equivalent
of all replacement characters. For example, if the replacement text is
"andrew johnson", the matching text "Bill Monroe" is replaced by
"Andrew Johnson".

• Sentence

Matching text has an uppercase character in the first character position of
a sentence with all other sentence characters in lowercase. Matching text
is replaced in like manner, with the first character of the sentence given an
uppercase equivalent and all other sentence characters set to lowercase.
For example, if the replacement text is "andrew is tall.", the matching
text "Bill is tall." is replaced by "Andrew is tall.".

27-23

27 Exploring and Modifying Charts

Replacing with Tokens
Within a regular expression, you use parentheses to group characters or
expressions. For example, the regular expression "and(y|rew)" matches
the text "andy" or "andrew". Parentheses also have the side effect of
remembering what they matched so that you can recall and reuse the
matching text with a special variable in the Replace with field. These
variables are called tokens.

Tokens outside the search pattern have the form $1,$2,...,$n (n<17) and
are assigned left to right from parenthetical expressions in the search string.

For example, the search pattern "(\w*)_(\w*)" finds all word expressions
with a single underscore separating the left and right sides of the word. If you
specify an accompanying replacement string of "$2_$1", you can replace all
these expressions by their reverse expression with a single Replace all. For
example, the expression "Bill_Jones" is replaced by "Jones_Bill", and the
expression "fuel_system" is replaced by "system_fuel".

For details on how to use tokens in regular expression search patterns, see
“Regular Expressions” in the MATLAB software documentation.

Using the Replace Buttons
You can activate the replace buttons (Replace, Replace All, Replace All in
This Object) only after a search that finds text.

Replace
When you select the Replace button, the current instance of text matching
the text string in the Search for field is replaced by the text string you
entered in the Replace with field. The Search & Replace tool then searches
for the next occurrence of the Search for text string.

Replace All
When you select the Replace All button, all instances of text matching the
Search for field are replaced by the text string entered in the Replace
with field. Replacement starts at the point of invocation to the end of the
current Stateflow chart. If you initially skip through some search matches

27-24

Using the Stateflow® Search & Replace Tool

with the Search button, these matches are also skipped when you select the
Replace All button.

If the search scope is set to Search Whole Machine, then after finishing
the current Stateflow chart, replacement continues to the completion of all
other charts in your Simulink model.

Replace All in This Object
When you select the Replace All in This Object button, all instances of
text matching the Search for field are replaced by text you entered in the
Replace with field everywhere in the current Stateflow object regardless
of previous searches.

Search and Replace Messages
Informational and warning messages appear in the Full Path Name
Containing Object field along with a defining icon.

– Informational Messages

– Warnings

The following messages are informational:

Please specify a search string
A search was attempted without a search string specified.

No Matches Found
No matches exist in the selected search scope.

Search Completed
No more matches exist in the selected search scope.

The following warnings refer to invalid conditions for searching or replacing:

27-25

27 Exploring and Modifying Charts

Invalid option set
The object types and field types that you selected are incompatible. For
example, a search on Custom Code fields without selecting target objects is
invalid.

Match object not currently editable
The matching object is not editable by replacement due to one of these
problems.

Problem Solution

A simulation is running. Stop the simulation.

You are editing a locked library
block.

Unlock the library.

The current object or its parent has
been manually locked.

Unlock the object or its parent.

The following warnings appear if the Search & Replace tool must find the
object again and its matching text field. If the original matching object is
deleted or changed before an ensuing search or replacement, the Search &
Replace tool cannot continue.

Search object not found
If you search for text, find it, and then delete the containing object, this
warning appears if you continue to search.

Match object not found
If you search for text, find it, and then delete the containing object, this
warning appears if you perform a replacement.

Match not found
If you search for text, find it, and then change the object containing the text,
this warning appears if you perform a replacement.

27-26

Using the Stateflow® Search & Replace Tool

Search string changed
If you search for text, find it, and then change the Search For field, this
warning appears if you perform a replacement.

27-27

27 Exploring and Modifying Charts

Finding Stateflow Objects

In this section...

“Types of Finder Tools” on page 27-28

“Using the Stateflow Finder” on page 27-29

“Finder Display Area” on page 27-32

Types of Finder Tools
Two types of finder tools can search for Stateflow objects.

• On most platforms, when you select Tools > Find in the Stateflow Editor,
the Simulink Find dialog box appears. You can use this tool to search for
Simulink and Stateflow objects that meet criteria you specify. Any objects
that meet your criteria appear in the search results pane of the dialog box.

For details, see “The Finder” in the Simulink documentation.

• On platforms that do not support the Simulink Find tool, the original
Stateflow Finder appears when you right-click inside a chart and select
Find.

Note If you launch a MATLAB session by typing matlab nojvm, the
original Stateflow Finder appears when you right-click inside a chart and
select Find.

27-28

Finding Stateflow® Objects

Using the Stateflow Finder

• “String Criteria” on page 27-29

• “Search Method” on page 27-30

• “Object Type” on page 27-31

• “Matches” on page 27-31

• “Search History” on page 27-31

• “Find Button” on page 27-31

• “Refine Button” on page 27-32

• “Clear Button” on page 27-32

• “Help Button” on page 27-32

• “Close Button” on page 27-32

String Criteria
You specify the string by entering the text to search for in the Look for text
box. The search is case sensitive. All text fields are included in the search by
default. Alternatively, you can search in specific text fields by using the Look
in list box to choose one of these options:

Any. Search the state and transition labels, object names, and descriptions of
the specified object types for the string specified in the Look for field.

27-29

27 Exploring and Modifying Charts

Label. Search the state and transition labels of the specified object types for
the string specified in the Look for field.

Name. Search the Name fields of the specified object types for the string
specified in the Look for field.

Description. Search the Description fields of the specified object types for
the string specified in the Look for field.

Document Link. Search the Document link fields of the specified object
types for the string specified in the Look for field.

Custom Code. Search custom code for the string specified in the Look for
field.

Search Method
By default the Search Method is Normal/Wildcard (regular expression).
Alternatively, you can click the Exact Word match option if you are
searching for a particular sequence of one or more words.

A regular expression is a string composed of letters, numbers, and special
symbols that define one or more strings. Some characters have special
meaning when used in a regular expression, while other characters are
interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a \ precedes it.

Special characters supported by Stateflow Finder are as follows.

Character Description

^ Start of string

$ End of string

. Any character

\ Quote the next character

* Match zero or more

27-30

Finding Stateflow® Objects

Character Description

+ Match one or more

[] Set of characters

Object Type
Specify the object types to search by toggling the check boxes. A check mark
indicates that the object is included in the search criteria. By default, all
object types are included in the search criteria. Object Type options include:

• States

• Transitions

• Junctions

• Events

• Data

• Targets

Matches
The Matches field displays the number of objects that match the specified
search criteria.

Search History
The Search History text box displays the current search criteria. Click the
pull-down list to display search refinements. An ampersand is prefixed to the
search criteria to indicate a logical AND with any previously specified search
criteria. You can undo a previously specified search refinement by selecting
a previous entry in the search history. By changing the Search History
selection, you force the Finder to use the specified criteria as the current,
most refined, search output.

Find Button
Click the Find button to initiate the search operation. The results appear in
the display area.

27-31

27 Exploring and Modifying Charts

Refine Button
After the results of a search appear, enter additional search criteria and click
Refine to narrow the previously entered search criteria. An ampersand (&)
is prefixed to the search criteria in the Search History field to indicate a
logical AND with any previously specified search criteria.

Clear Button
Click Clear to clear any previously specified search criteria. By doing so, you
remove the results and reset the search criteria to the default settings.

Help Button
Click Help to display the Stateflow software documentation in an HTML
browser window.

Close Button
Click Close to close the Finder.

Finder Display Area
The Stateflow Finder display area looks something like this.

27-32

Finding Stateflow® Objects

The display area shows matching entries with these columns:

Field Description

Type The object type appears in this field. States with exclusive
(OR) decomposition are followed by an (O). States with
parallel (AND) decomposition are followed by (A).

Label The string label of the object appears in this field.

Chart The title of the Stateflow chart appears in this field.

Parent The parent of this object in the hierarchy.

Source Source object of a transition.

Destination Destination object of a transition.

27-33

27 Exploring and Modifying Charts

All fields are truncated to maintain column widths. The Parent, Source, and
Destination fields are truncated from the left so that the name at the end of
the hierarchy is readable. The entire field contents, including the truncated
portion, are used for resorting.

Each field label is also a button. Click the button to have the list sorted based
on that field. If the same button is pressed twice in a row, the sort ordering
is reversed.

You can resize the Finder vertically to display more output rows, but you
cannot expand it horizontally.

Click a graphical entry to highlight that object in the Stateflow Editor.
Double-click an entry to invoke the Properties dialog box for that object.
Right-click the entry to display a menu that allows you to explore, edit, or
display the properties of that entry.

Representing Hierarchy
The Stateflow Finder shows Parent, Source, and Destination fields to
represent the hierarchy. The Stateflow chart is the root of the hierarchy and
is represented by the / character. Each level in the hierarchy is delimited
by a period (.) character. The Source and Destination fields use the
combination of the tilde (~) and the period (.) characters to denote that the
state listed is relative to the Parent hierarchy.

27-34

A

Semantic Rules Summary

• “Entering a Chart” on page A-2

• “Executing an Active Chart” on page A-2

• “Entering a State” on page A-2

• “Executing an Active State” on page A-3

• “Exiting an Active State” on page A-3

• “Executing a Set of Flow Graphs” on page A-4

• “Executing an Event Broadcast” on page A-5

A Semantic Rules Summary

Entering a Chart
The set of default flow paths execute (see “Executing a Set of Flow Graphs”
on page A-4). If this action does not cause a state entry and the chart has
parallel decomposition, then each parallel state becomes active (see “Entering
a State” on page A-2).

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Executing an Active Chart
If the chart has no states, each execution is equivalent to initializing a chart.
Otherwise, the active children execute. Parallel states execute in the same
order that they become active.

Entering a State
1 If the parent of the state is not active, perform steps 1 through 4 for the
parent.

2 If this state is a parallel state, check that all siblings with a higher (that
is, earlier) entry order are active. If not, perform steps 1 through 5 for
these states first.

Parallel (AND) states are ordered for entry based on whether you use
explicit ordering (default) or implicit ordering. For details, see “Explicit
Ordering of Parallel States” on page 3-76 and “Implicit Ordering of Parallel
States” on page 3-77.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

A-2

Executing an Active State

a If the state contains a history junction and there was an active child
of this state at some point after the most recent chart initialization,
perform the entry actions for that child. Otherwise, execute the default
flow paths for the state.

b If this state has children that are parallel states (parallel decomposition),
perform entry steps 1 through 5 for each state according to its entry
order.

c If this state has only one child substate, the substate becomes active
when the parent becomes active, regardless of whether a default
transition is present. Entering the parent state automatically makes the
substate active. The presence of any inner transition has no effect on
determining the active substate.

6 If this state is a parallel state, perform all entry steps for the sibling state
next in entry order if one exists.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Executing an Active State
1 The set of outer flow graphs execute (see “Executing a Set of Flow Graphs”
on page A-4). If this action causes a state transition, execution stops. (Note
that this step never occurs for parallel states.)

2 During actions and valid on-event actions are performed.

3 The set of inner flow graphs execute. If this action does not cause a state
transition, the active children execute, starting at step 1. Parallel states
execute in the same order that they become active.

Exiting an Active State
1 If this is a parallel state, make sure that all sibling states that became
active after this state have already become inactive. Otherwise, perform all
exiting steps on those sibling states.

2 If there are any active children, perform the exit steps on these states in
the reverse order that they became active.

A-3

A Semantic Rules Summary

3 Perform any exit actions.

4 Mark the state as inactive.

Executing a Set of Flow Graphs
Flow graphs execute by starting at step 1 below with a set of starting
transitions. The starting transitions for inner flow graphs are all transition
segments that originate on the respective state and reside entirely within
that state. The starting transitions for outer flow graphs are all transition
segments that originate on the respective state but reside at least partially
outside that state. The starting transitions for default flow graphs are all
default transition segments that have starting points with the same parent:

1 Ordering of a set of transition segments occurs.

2 While there are remaining segments to test, testing a segment for validity
occurs. If the segment is invalid, testing of the next segment occurs. If the
segment is valid, execution depends on the destination:

States

a Testing of transition segments stops and a transition path forms by
backing up and including the transition segment from each preceding
junction until the respective starting transition.

b The states that are the immediate children of the parent of the transition
path exit (see “Exiting an Active State” on page A-3).

c The transition action from the final transition segment executes.

d The destination state becomes active (see “Entering a State” on page
A-2).

Junctions with no outgoing transition segments

Testing stops without any state exits or entries.

Junctions with outgoing transition segments

Step 1 is repeated with the set of outgoing segments from the junction.

A-4

Executing an Event Broadcast

3 After testing all outgoing transition segments at a junction, backtrack
the incoming transition segment that brought you to the junction and
continue at step 2, starting with the next transition segment after the
backtrack segment. The set of flow graphs finishes execution when testing
of all starting transitions is complete.

Executing an Event Broadcast
Output edge-trigger event execution is equivalent to changing the value of an
output data value. All other events have the following execution:

1 If the receiver of the event is active, then it executes (see “Executing
an Active Chart” on page A-2 and “Executing an Active State” on page
A-3). (The event receiver is the parent of the event unless a direct event
broadcast occurs using the send() function.)

If the receiver of the event is not active, nothing happens.

2 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

Action Type Early Return Logic

State Entry If the state is no longer active at the end of the event
broadcast, any remaining steps in entering a state do
not occur.

State Exit If the state is no longer active at the end of the event
broadcast, any remaining exit actions and steps in
state transitioning do not occur.

State During If the state is no longer active at the end of the event
broadcast, any remaining steps in executing an active
state do not occur.

A-5

A Semantic Rules Summary

Action Type Early Return Logic

Condition If the origin state of the inner or outer flow graph or
parent state of the default flow graph is no longer active
at the end of the event broadcast, the remaining steps
in the execution of the set of flow graphs do not occur.

Transition If the parent of the transition path is not active or
if that parent has an active child, the remaining
transition actions and state entry do not occur.

A-6

B

Semantic Examples

• “Categories of Semantic Examples” on page B-2

• “Transitions to and from Exclusive (OR) States Examples” on page B-4

• “Condition Action Examples” on page B-11

• “Default Transition Examples” on page B-18

• “Inner Transition Examples” on page B-25

• “Connective Junction Examples” on page B-34

• “Event Actions in a Superstate Example” on page B-48

• “Parallel (AND) State Examples” on page B-50

• “Directed Event Broadcasting Examples” on page B-60

B Semantic Examples

Categories of Semantic Examples
The following examples show the detailed semantics (behavior) of Stateflow
charts.

“Transitions to and from Exclusive (OR) States Examples” on page B-4

• “Transitioning from State to State with Events Example” on page B-5

• “Transitioning from a Substate to a Substate with Events Example” on
page B-9

“Condition Action Examples” on page B-11

• “Condition Action Example” on page B-11

• “Condition and Transition Actions Example” on page B-12

• “Condition Actions in For-Loop Construct Example” on page B-15

• “Condition Actions to Broadcast Events to Parallel (AND) States Example”
on page B-16

• “Cyclic Behavior to Avoid with Condition Actions Example” on page B-17

“Default Transition Examples” on page B-18

• “Default Transition in Exclusive (OR) Decomposition Example” on page
B-18

• “Default Transition to a Junction Example” on page B-19

• “Default Transition and a History Junction Example” on page B-20

• “Labeled Default Transitions Example” on page B-22

“Inner Transition Examples” on page B-25

• “Processing One Event in an Exclusive (OR) State” on page B-25

• “Processing a Second Event in an Exclusive (OR) State” on page B-26

• “Processing a Third Event in an Exclusive (OR) State” on page B-27

B-2

Categories of Semantic Examples

• “Processing the First Event with an Inner Transition to a Connective
Junction” on page B-28

• “Processing a Second Event with an Inner Transition to a Connective
Junction” on page B-30

• “Inner Transition to a History Junction Example” on page B-31

“Connective Junction Examples” on page B-34

• “If-Then-Else Decision Construct Example” on page B-36

• “Self-Loop Transition Example” on page B-37

• “For-Loop Construct Example” on page B-39

• “Flow Graph Notation Example” on page B-40

• “Transitions from a Common Source to Multiple Destinations Example”
on page B-42

• “Transitions from Multiple Sources to a Common Destination Example”
on page B-44

• “Transitions from a Source to a Destination Based on a Common Event
Example” on page B-45

“Event Actions in a Superstate Example” on page B-48

“Parallel (AND) State Examples” on page B-50

• “Event Broadcast State Action Example” on page B-50

• “Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page B-53

• “Event Broadcast Condition Action Example” on page B-56

“Directed Event Broadcasting Examples” on page B-60

• “Directed Event Broadcast Using Send Example” on page B-60

• “Directed Event Broadcast Using Qualified Event Name Example” on page
B-62

B-3

B Semantic Examples

Transitions to and from Exclusive (OR) States Examples

In this section...

“Label Format for a State-to-State Transition Example” on page B-4

“Transitioning from State to State with Events Example” on page B-5

“Transitioning from a Substate to a Substate with Events Example” on
page B-9

Label Format for a State-to-State Transition Example
The following example shows the general label format for a transition
entering a state.

A chart executes this transition as follows:

1 When an event occurs, state S1 checks for an outgoing transition with a
matching event specified.

B-4

Transitions to and from Exclusive (OR) States Examples

2 If a transition with a matching event is found, the condition for that
transition ([condition]) is evaluated.

3 If the condition is true, condition_action is executed.

4 If there is a valid transition to the destination state, the transition is taken.

5 State S1 is exited.

6 The transition_action is executed when the transition is taken.

7 State S2 is entered.

Transitioning from State to State with Events Example
The following example shows the behavior of a simple transition focusing on
the implications of whether states are active or inactive.

B-5

B Semantic Examples

Processing of a First Event
Initially, the chart is asleep. State On and state Off are OR states. State On is
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition from state On to state Off is detected.

2 State On exit actions (exitOn()) execute and complete.

3 State On is marked inactive.

4 The event E_one is broadcast as the transition action.

This second event E_one is processed, but because neither state is active, it
has no effect. If the second broadcast of E_one resulted in a valid transition,
it would preempt the processing of the first broadcast of E_one. See “Early
Return Logic for Event Broadcasts” on page 3-85.

5 State Off is marked active.

6 State Off entry actions (entOff()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with
event E_one when state On is initially active.

Processing of a Second Event
Using the same example, what happens when the next event, E_one, occurs
while state Off is active?

B-6

Transitions to and from Exclusive (OR) States Examples

Initially, the chart is asleep. State Off is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition from state Off to state On is detected.

2 State Off exit actions (exitOff()) execute and complete.

3 State Off is marked inactive.

4 State On is marked active.

5 State On entry actions (entOn()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with
the second event E_one when state Off is initially active.

B-7

B Semantic Examples

Processing of a Third Event
Using the same example, what happens when a third event, E_two, occurs?

Notice that the event E_two is not used explicitly in this example. However,
its occurrence (or the occurrence of any event) does result in behavior.
Initially, the chart is asleep and state On is active.

1 Event E_two occurs and awakens the chart.

Event E_two is processed from the root of the chart down through the
hierarchy of the chart.

2 The chart root checks to see if there is a valid transition as a result of
E_two. There is none.

3 State On during actions (durOn()) execute and complete.

4 The chart goes back to sleep.

B-8

Transitions to and from Exclusive (OR) States Examples

This sequence completes the execution of the Stateflow chart associated with
event E_two when state On is initially active.

Transitioning from a Substate to a Substate with
Events Example
This example shows the behavior of a transition from an OR substate to an
OR substate.

Initially, the chart is asleep. State A.A1 is active. Condition C_one is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is a valid transition from state A.A1 to state B.B1. (Condition
C_one is true.)

2 State A during actions (durA()) execute and complete.

3 State A.A1 exit actions (exitA1()) execute and complete.

4 State A.A1 is marked inactive.

5 State A exit actions (exitA()) execute and complete.

B-9

B Semantic Examples

6 State A is marked inactive.

7 The transition action, A, is executed and completed.

8 State B is marked active.

9 State B entry actions (entB()) execute and complete.

10 State B.B1 is marked active.

11 State B.B1 entry actions (entB1()) execute and complete.

12 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

B-10

Condition Action Examples

Condition Action Examples

In this section...

“Condition Action Example” on page B-11

“Condition and Transition Actions Example” on page B-12

“Condition Actions in For-Loop Construct Example” on page B-15

“Condition Actions to Broadcast Events to Parallel (AND) States Example”
on page B-16

“Cyclic Behavior to Avoid with Condition Actions Example” on page B-17

Condition Action Example
This example shows the behavior of a simple condition action in a transition
path with multiple segments. The chart uses implicit ordering of outgoing
transitions (see “Implicit Ordering of Outgoing Transitions” on page 3-60).

B-11

B Semantic Examples

Initially, the chart is asleep. State A is active. Conditions C_one and C_two
are false. Event E_one occurs and awakens the chart, which processes the
event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment from state A to a connective junction is
detected. The condition action A_one is detected on the valid transition
segment and is immediately executed and completed. State A is still active.

2 Because the conditions on the transition segments to possible destinations
are false, none of the complete transitions is valid.

3 State A during actions (durA()) execute and complete.

State A remains active.

4 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

Condition and Transition Actions Example
This example shows the behavior of a simple condition and transition action
specified on a transition from one exclusive (OR) state to another.

B-12

Condition Action Examples

Initially, the chart is asleep. State A is active. Condition C_one is true. Event
E_one occurs and awakens the chart, which processes the event from the root
down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition from state A to state B is detected. The condition
C_one is true. The condition action A_one is detected on the valid transition
and is immediately executed and completed. State A is still active.

2 State A exit actions (ExitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The chart goes back to sleep.

B-13

B Semantic Examples

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

B-14

Condition Action Examples

Condition Actions in For-Loop Construct Example
Condition actions and connective junctions are used to design a for loop
construct. This example shows the use of a condition action and connective
junction to create a for loop construct. The chart uses implicit ordering of
outgoing transitions (see “Implicit Ordering of Outgoing Transitions” on page
3-60).

See “For-Loop Construct Example” on page B-39 to see the behavior of this
example.

B-15

B Semantic Examples

Condition Actions to Broadcast Events to Parallel
(AND) States Example
This example shows how to use condition actions to broadcast events
immediately to parallel (AND) states. The chart uses implicit ordering of
parallel states (see “Implicit Ordering of Parallel States” on page 3-77).

B-16

Condition Action Examples

See “Event Broadcast Condition Action Example” on page B-56 to see the
behavior of this example.

Cyclic Behavior to Avoid with Condition Actions
Example
This example shows a notation to avoid when using event broadcasts as
condition actions because the semantics results in cyclic behavior.

Initially, the chart is asleep. State On is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition from state On to state Off is detected.

2 The condition action on the transition broadcasts event E_one.

3 Event E_one is detected on the valid transition, which is immediately
executed. State On is still active.

4 The broadcast of event E_one awakens the chart a second time.

5 Go to step 1.

Steps 1 through 5 continue to execute in a cyclical manner. The transition
label indicating a trigger on the same event as the condition action broadcast
event results in unrecoverable cyclic behavior. This sequence never completes
when event E_one is broadcast and state On is active.

B-17

B Semantic Examples

Default Transition Examples

In this section...

“Default Transition in Exclusive (OR) Decomposition Example” on page
B-18

“Default Transition to a Junction Example” on page B-19

“Default Transition and a History Junction Example” on page B-20

“Labeled Default Transitions Example” on page B-22

Default Transition in Exclusive (OR) Decomposition
Example
This example shows a transition from an OR state to a superstate with
exclusive (OR) decomposition, where a default transition to a substate is
defined.

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

B-18

Default Transition Examples

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is a valid transition from state A to superstate B.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action, A, is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 State B detects a valid default transition to state B.B1.

8 State B.B1 is marked active.

9 State B.B1 entry actions (entB1()) execute and complete.

10 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

Default Transition to a Junction Example
The following example shows the behavior of a default transition to a
connective junction. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-60).

B-19

B Semantic Examples

Initially, the chart is asleep. State B.B1 is active. Condition [C_two] is true.
An event occurs and awakens the chart, which processes the event from the
root down through the hierarchy:

1 State B checks to see if there is a valid transition as a result of any event.
There is none.

2 State B1 during actions (durB1()) execute and complete.

This sequence completes the execution of this Stateflow chart associated with
the occurrence of any event.

Default Transition and a History Junction Example
This example shows the behavior of a superstate with a default transition and
a history junction. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-60).

B-20

Default Transition Examples

Initially, the chart is asleep. State A is active. A history junction records the
fact that state B4 is the previously active substate of superstate B. Event
E_one occurs and awakens the chart, which processes the event from the root
down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

There is a valid transition from state A to superstate B.

B-21

B Semantic Examples

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions (entB()) execute and complete.

6 State B uses the history junction to determine the substate destination of
the transition into the superstate.

The history junction indicates that substate B.B4 was the last active
substate, which becomes the destination of the transition.

7 State B.B4 is marked active.

8 State B.B4 entry actions (entB4()) execute and complete.

9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Labeled Default Transitions Example
This example shows the use of a default transition with a label. The chart
uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-60).

B-22

Default Transition Examples

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

There is a valid transition from state A to superstate B. The transition is
valid if event E_one or E_two occurs.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

B-23

B Semantic Examples

4 State B is marked active.

5 State B entry actions execute and complete (entB()).

6 State B detects a valid default transition to state B.B1. The default
transition is valid as a result of E_one.

7 State B.B1 is marked active.

8 State B.B1 entry actions execute and complete (entB1()).

9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

B-24

Inner Transition Examples

Inner Transition Examples

In this section...

“Processing Events with an Inner Transition in an Exclusive (OR) State
Example” on page B-25

“Processing Events with an Inner Transition to a Connective Junction
Example” on page B-28

“Inner Transition to a History Junction Example” on page B-31

Processing Events with an Inner Transition in an
Exclusive (OR) State Example
This example shows what happens when processing three events using an
inner transition in an exclusive (OR) state.

Processing One Event in an Exclusive (OR) State
This example shows the behavior of an inner transition. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-60).

Initially, the chart is asleep. State A is active. Condition [C_one] is false.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

B-25

B Semantic Examples

1 The chart root checks to see if there is a valid transition as a result of
E_one. A potentially valid transition from state A to state B is detected.
However, the transition is not valid, because [C_one] is false.

2 State A during actions (durA()) execute and complete.

3 State A checks its children for a valid transition and detects a valid inner
transition.

4 State A remains active. The inner transition action A_two is executed and
completed. Because it is an inner transition, state A’s exit and entry actions
are not executed.

5 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Processing a Second Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a second
event E_one occurs. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-60).

Initially, the chart is asleep. State A is still active. Condition [C_one] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

B-26

Inner Transition Examples

1 The chart root checks to see if there is a valid transition as a result of E_one.

The transition from state A to state B is now valid because [C_one] is true.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_one is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Processing a Third Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a third
event, E_two, occurs. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-60).

Initially, the chart is asleep. State B is now active. Condition [C_two] is false.
Event E_two occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

B-27

B Semantic Examples

1 The chart root checks to see if there is a valid transition as a result of E_two.

A potentially valid transition from state B to state A is detected. The
transition is not valid because [C_two] is false. However, active state B has
a valid self-loop transition.

2 State B exit actions (exitB()) execute and complete.

3 State B is marked inactive.

4 The self-loop transition action, A_four, executes and completes.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_two. This example shows the difference in behavior between inner
and self-loop transitions.

Processing Events with an Inner Transition to a
Connective Junction Example
This example shows the behavior of handling repeated events using an inner
transition to a connective junction.

Processing the First Event with an Inner Transition to a
Connective Junction
This example shows the behavior of an inner transition to a connective
junction for the first event. The chart uses implicit ordering of outgoing
transitions (see “Implicit Ordering of Outgoing Transitions” on page 3-60).

B-28

Inner Transition Examples

Initially, the chart is asleep. State A1 is active. Condition [C_two] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as
a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a connective junction.

The conditions are evaluated to determine whether one of the transitions
is valid. Because implicit ordering applies, the segments labeled with a
condition are evaluated before the unlabeled segment. The evaluation
starts from a 12 o’clock position on the junction and progresses in a
clockwise manner. Because [C_two] is true, the inner transition to the
junction and then to state A.A2 is valid.

4 State A.A1 exit actions (exitA1()) execute and complete.

B-29

B Semantic Examples

5 State A.A1 is marked inactive.

6 State A.A2 is marked active.

7 State A.A2 entry actions (entA2()) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A1 is active and condition [C_two] is true.

Processing a Second Event with an Inner Transition to a
Connective Junction
Continuing the previous example, this example shows the behavior of an
inner transition to a junction when a second event E_one occurs. The chart
uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-60).

B-30

Inner Transition Examples

Initially, the chart is asleep. State A2 is active. Condition [C_two] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as
a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction.

The conditions are evaluated to determine whether one of the transitions
is valid. Because implicit ordering applies, the segments labeled with a
condition are evaluated before the unlabeled segment. The evaluation
starts from a 12 o’clock position on the junction and progresses in a
clockwise manner. Because [C_two] is true, the inner transition to the
junction and then to state A.A2 is valid.

4 State A.A2 exit actions (exitA2()) execute and complete.

5 State A.A2 is marked inactive.

6 State A.A2 is marked active.

7 State A.A2 entry actions (entA2()) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A2 is active and condition [C_two] is true. For a state
with a valid inner transition, an active substate can be exited and reentered
immediately.

Inner Transition to a History Junction Example
This example shows the behavior of an inner transition to a history junction.

B-31

B Semantic Examples

Initially, the chart is asleep. State A.A1 is active. History information exists
because superstate A is active. Event E_one occurs and awakens the chart,
which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A during actions execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a history junction. Based on the history information, the
last active state, A.A1, is the destination state.

4 State A.A1 exit actions execute and complete.

5 State A.A1 is marked inactive.

6 State A.A1 is marked active.

7 State A.A1 entry actions execute and complete.

8 The chart goes back to sleep.

B-32

Inner Transition Examples

This sequence completes the execution of this Stateflow chart associated with
event E_one when there is an inner transition to a history junction and state
A.A1 is active. For a state with a valid inner transition, an active substate can
be exited and reentered immediately.

B-33

B Semantic Examples

Connective Junction Examples

In this section...

“Label Format for Transition Segments Example” on page B-34

“If-Then-Else Decision Construct Example” on page B-36

“Self-Loop Transition Example” on page B-37

“For-Loop Construct Example” on page B-39

“Flow Graph Notation Example” on page B-40

“Transitions from a Common Source to Multiple Destinations Example”
on page B-42

“Transitions from Multiple Sources to a Common Destination Example”
on page B-44

“Transitions from a Source to a Destination Based on a Common Event
Example” on page B-45

“Backtracking Behavior in Flow Graphs Example” on page B-46

Label Format for Transition Segments Example
The label format for a transition segment entering a junction is the same
as for transitions entering states, as shown in the following example. The
chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-60).

B-34

Connective Junction Examples

Execution of a transition in this example occurs as follows:

1 When an event occurs, state S1 is checked for an outgoing transition with
a matching event specified.

2 If a transition with a matching event is found, the transition condition for
that transition (in brackets) is evaluated.

3 If condition_1 evaluates to true, the condition action condition_action
(in braces) is executed.

4 The outgoing transitions from the junction are checked for a valid
transition. Since condition_2 is true, a valid state-to-state transition
from S1 to S2 exists.

5 State S1 exit actions execute and complete.

6 State S1 is marked inactive.

7 The transition action transition_action executes and completes.

B-35

B Semantic Examples

8 The completed state-to-state transition from S1 to S2 occurs.

9 State S2 is marked active.

10 State S2 entry actions execute and complete.

If-Then-Else Decision Construct Example
This example shows the behavior of an if-then-else decision construct. The
chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-60).

Initially, the chart is asleep. State A is active. Condition [C_two] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition segment from state A to the connective junction exists.
Because implicit ordering applies, the transition segments beginning from
a 12 o’clock position on the connective junction are evaluated for validity.

B-36

Connective Junction Examples

The first transition segment, labeled with condition [C_one], is not valid.
The next transition segment, labeled with the condition [C_two], is valid.
The complete transition from state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Self-Loop Transition Example
This example shows the behavior of a self-loop transition using a connective
junction. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering of Outgoing Transitions” on page 3-60).

B-37

B Semantic Examples

Initially, the chart is asleep. State A is active. Condition [C_one] is false.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment from state A to the connective junction
exists. Because implicit ordering applies, the transition segment labeled
with a condition is evaluated for validity. Because the condition [C_one] is
not valid, the complete transition from state A to state B is not valid. The
transition segment from the connective junction back to state A is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State A is marked active.

B-38

Connective Junction Examples

6 State A entry actions (entA()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

For-Loop Construct Example
This example shows the behavior of a for loop using a connective junction.
The chart uses implicit ordering of outgoing transitions (see “Implicit
Ordering of Outgoing Transitions” on page 3-60).

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.
There is a valid transition segment from state A to the connective junction.
The transition segment condition action, i = 0, executes and completes. Of
the two transition segments leaving the connective junction, the transition
segment that is a self-loop back to the connective junction evaluates next
for validity. That segment takes priority in evaluation because it has
a condition, whereas the other segment is unlabeled. This evaluation
behavior reflects implicit ordering of outgoing transitions in the chart.

B-39

B Semantic Examples

2 The condition [i < 10] evaluates as true. The condition actions i++ and
a call to func1 execute and complete until the condition becomes false.
Because a connective junction is not a final destination, the transition
destination is still unknown.

3 The unconditional segment to state B is now valid. The complete transition
from state A to state B is valid.

4 State A exit actions (exitA()) execute and complete.

5 State A is marked inactive.

6 State B is marked active.

7 State B entry actions (entB()) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this chart associated with event
E_one.

Flow Graph Notation Example
This example shows the behavior of a Stateflow chart that uses flow graph
notation. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering of Outgoing Transitions” on page 3-60).

B-40

Connective Junction Examples

Initially, the chart is asleep. State A.A1 is active. The condition [C_one()] is
initially true. Event E_one occurs and awakens the chart, which processes the
event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction.

3 The next possible segments of the transition are evaluated. Only one
outgoing transition exists, and it has a condition action defined. The
condition action executes and completes.

4 The next possible segments are evaluated. Two outgoing transitions exist:
a conditional self-loop transition and an unconditional transition segment.
Because implicit ordering applies, the conditional transition segment takes
precedence. Since the condition [C_one()] is true, the self-loop transition
is taken. Since a final transition destination has not been reached, this
self-loop continues until [C_one()] is false.

Assume that after five iterations, [C_one()] is false.

B-41

B Semantic Examples

5 The next possible transition segment (to the next connective junction) is
evaluated. It is an unconditional transition segment with a condition
action. The transition segment is taken and the condition action,
{d=my_func()}, executes and completes. The returned value of d is 84.

6 The next possible transition segment is evaluated. Three outgoing
transition segments exist: two conditional and one unconditional. Because
implicit ordering applies, the segment labeled with the condition [d <
100] evaluates first based on the geometry of the two outgoing conditional
transition segments. Because the returned value of d is 84, the condition [d
< 100] is true and this transition to the destination state A.A1 is valid.

7 State A.A1 exit actions (exitA1()) execute and complete.

8 State A.A1 is marked inactive.

9 State A.A1 is marked active.

10 State A.A1 entry actions (entA1()) execute and complete.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Transitions from a Common Source to Multiple
Destinations Example
This example shows the behavior of transitions from a common source to
multiple conditional destinations using a connective junction. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-60).

B-42

Connective Junction Examples

Initially, the chart is asleep. State A is active. Event E_two occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_two.
A valid transition segment exists from state A to the connective junction.
Because implicit ordering applies, evaluation of segments with equivalent
label priority begins from a 12 o’clock position on the connective junction
and progresses clockwise. The first transition segment, labeled with event
E_one, is not valid. The next transition segment, labeled with event E_two,
is valid. The complete transition from state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_two.

B-43

B Semantic Examples

Transitions from Multiple Sources to a Common
Destination Example
This example shows the behavior of transitions from multiple sources to a
single destination using a connective junction.

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment exists from state A to the connective
junction and from the junction to state C.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

B-44

Connective Junction Examples

Transitions from a Source to a Destination Based on
a Common Event Example
This example shows the behavior of transitions from multiple sources to a
single destination based on the same event using a connective junction.

Initially, the chart is asleep. State B is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment exists from state B to the connective
junction and from the junction to state C.

2 State B exit actions (exitB()) execute and complete.

3 State B is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

B-45

B Semantic Examples

Backtracking Behavior in Flow Graphs Example
This example shows the behavior of transitions with junctions that force
backtracking behavior in flow graphs. The chart uses implicit ordering of
outgoing transitions (see “Implicit Ordering of Outgoing Transitions” on page
3-60).

Initially, state A is active and conditions c1, c2, and c3 are true:

1 The chart root checks to see if there is a valid transition from state A.

There is a valid transition segment marked with the condition c1 from
state A to a connective junction.

2 Condition c1 is true and action a1 executes.

3 Condition c3 is true and action a3 executes.

4 Condition c4 is not true and control flow backtracks to state A.

5 The chart root checks to see if there is another valid transition from state A.

There is a valid transition segment marked with the condition c2 from
state A to a connective junction.

6 Condition c2 is true and action a2 executes.

7 Condition c3 is true and action a3 executes.

8 Condition c4 is not true and control flow backtracks to state A.

B-46

Connective Junction Examples

9 The chart goes to sleep.

The preceding example shows the unexpected behavior of executing both
actions a1 and a2. Another unexpected behavior is the execution of action a3
twice. To resolve this problem, consider adding unconditional transitions to
terminating junctions.

The terminating junctions allow flow to end if either c3 or c4 is not true. This
design leaves state A active without executing unnecessary actions.

B-47

B Semantic Examples

Event Actions in a Superstate Example
The following example shows the use of event actions in a superstate.

Initially, the chart is asleep. State A.A1 is active. Event E_three occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_three. No valid transition exists.

2 State A during actions (durA()) execute and complete.

3 State A executes and completes the on event E_three action (A_one).

4 State A checks its children for valid transitions. No valid transitions exist.

5 State A1 during actions (durA1()) execute and complete.

B-48

Event Actions in a Superstate Example

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated
with event E_three.

B-49

B Semantic Examples

Parallel (AND) State Examples

In this section...

“Event Broadcast State Action Example” on page B-50

“Event Broadcast Transition Action with a Nested Event Broadcast
Example” on page B-53

“Event Broadcast Condition Action Example” on page B-56

Event Broadcast State Action Example
This example shows the behavior of event broadcast actions in parallel states.
The chart uses implicit ordering of parallel states (see “Implicit Ordering of
Parallel States” on page 3-77).

B-50

Parallel (AND) State Examples

Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

B-51

B Semantic Examples

1 The chart root checks to see if there is a valid transition at the root level
as a result of E_one. No valid transition exists.

2 State A during actions (durA()) execute and complete.

3 The children of state A are parallel (AND) states. Because implicit ordering
applies, the states are evaluated and executed from left to right and top to
bottom. State A.A1 is evaluated first. State A.A1 during actions (durA1())
execute and complete. State A.A1 executes and completes the on E_one
action and broadcasts event E_two. The during and on event_name actions
are processed based on their order of appearance in the state label:

a The broadcast of event E_two awakens the chart a second time. The
chart root checks to see if there is a valid transition as a result of E_two.
No valid transition exists.

b State A during actions (durA()) execute and complete.

c State A checks its children for valid transitions. No valid transitions
exist.

d State A’s children are evaluated starting with state A.A1. State A.A1
during actions (durA1()) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

e State A1a’s during actions (durA1a()) execute.

f State A.A2 is evaluated. State A.A2 during actions (durA2()) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b.

g State A.A2.A2a exit actions (exitA2a()) execute and complete.

h State A.A2.A2a is marked inactive.

i State A.A2.A2b is marked active.

j State A.A2.A2b entry actions (entA2b()) execute and complete.

4 State A.A1.A1a executes and completes exit actions (exitA1a).

5 The processing of E_one continues once the on event broadcast of E_two
has been processed. State A.A1 checks for any valid transitions as a result

B-52

Parallel (AND) State Examples

of event E_one. A valid transition exists from state A.A1.A1a to state
A.A1.A1b.

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b is marked active.

8 State A.A1.A1b entry actions (entA1b()) execute and complete.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the on event
broadcast of E_two.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the on event broadcast to a parallel state of event E_two.
The final chart activity is that parallel substates A.A1.A1b and A.A2.A2b
are active.

Event Broadcast Transition Action with a Nested
Event Broadcast Example
This example shows the behavior of an event broadcast transition action
that includes a nested event broadcast in a parallel state. The chart uses
implicit ordering of parallel states (see “Implicit Ordering of Parallel States”
on page 3-77).

B-53

B Semantic Examples

Start of Event E_one Processing
Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

B-54

Parallel (AND) State Examples

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. Because implicit ordering
applies, the states are evaluated and executed from left to right and top to
bottom. State A.A1 is evaluated first. State A.A1during actions (durA1())
execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one.
There is a valid transition from state A.A1.A1a to state A.A1.A1b.

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

Event E_two Preempts E_one

7 The transition action that broadcasts event E_two executes and completes:

a The broadcast of event E_two now preempts the transition from state
A1a to state A1b that event E_one triggers.

b The broadcast of event E_two awakens the chart a second time. The
chart root checks to see if there is a valid transition as a result of E_two.
No valid transition exists.

c State A during actions (durA()) execute and complete.

d State A’s children are evaluated starting with state A.A1. State
A.A1during actions (durA1()) execute and complete. State A.A1 is
evaluated for valid transitions. There are no valid transitions as a result
of E_two within state A1.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute and
complete. State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

B-55

B Semantic Examples

i State A.A2.A2b entry actions (entA2b()) execute and complete.

Event E_one Processing Resumes

8 State A.A1.A1b is marked active.

9 State A.A1.A1b entry actions (entA1b()) execute and complete.

10 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

11 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of event
broadcast E_two.

12 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the event broadcast on a transition action to a parallel state
of event E_two. The final chart activity is that parallel substates A.A1.A1b
and A.A2.A2b are active.

Event Broadcast Condition Action Example
This example shows the behavior of a condition action event broadcast in a
parallel (AND) state. The chart uses implicit ordering of parallel states (see
“Implicit Ordering of Parallel States” on page 3-77).

B-56

Parallel (AND) State Examples

Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

B-57

B Semantic Examples

1 The chart root checks to see if there is a valid transition as a result of
E_one. No valid transition exists.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. Because implicit ordering
applies, the states are evaluated and executed from top to bottom, and
from left to right. State A.A1 is evaluated first. State A.A1 during actions
(durA1()) execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one. A
valid transition from state A.A1.A1a to state A.A1.A1b exists. A valid
condition action also exists. The condition action event broadcast of E_two
executes and completes. State A.A1.A1a is still active:

a The broadcast of event E_two awakens the Stateflow chart a second
time. The chart root checks to see if there is a valid transition as a result
of E_two. There is no valid transition.

b State A during actions (durA()) execute and complete.

c State A’s children are evaluated starting with state A.A1. State A.A1
during actions (durA1()) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

d State A1a during actions (durA1a()) execute.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b()) execute and complete.

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

B-58

Parallel (AND) State Examples

7 State A.A1.A1b is marked active.

8 State A.A1.A1b entry actions (entA1b()) execute and complete.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the condition
action event broadcast of E_two.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the event broadcast on a condition action to a parallel state
of event E_two. The final chart activity is that parallel substates A.A1.A1b
and A.A2.A2b are active.

B-59

B Semantic Examples

Directed Event Broadcasting Examples

In this section...

“Directed Event Broadcast Using Send Example” on page B-60

“Directed Event Broadcast Using Qualified Event Name Example” on page
B-62

Directed Event Broadcast Using Send Example
This example shows the behavior of directed event broadcast using the
send(event_name,state_name) syntax on a transition. The chart uses
implicit ordering of parallel states (see “Implicit Ordering of Parallel States”
on page 3-77).

Initially, the chart is asleep. Parallel substates A.A1 and B.B1 are active,
which implies that parallel (AND) superstates A and B are also active. The

B-60

Directed Event Broadcasting Examples

condition [data1==1] is true. The event E_one belongs to the chart and is
visible to both A and B.

After waking up, the chart checks for valid transitions at every level of the
hierarchy:

1 The chart root checks to see if there is a valid transition as a result of the
event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2.

3 The action send(E_one,B) executes:

a The broadcast of event E_one reaches state B. Because state B is active,
that state receives the event broadcast and checks to see if there is a
valid transition. There is a valid transition from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.

c State B.B1 becomes inactive.

d State B.B2 becomes active.

e State B.B2 entry actions (entB2()) execute and complete.

4 State A.A1 exit actions (exitA1()) execute and complete.

5 State A.A1 becomes inactive.

6 State A.A2 becomes active.

7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes execution of a chart with a directed event broadcast
to a parallel state.

B-61

B Semantic Examples

Directed Event Broadcast Using Qualified Event
Name Example
This example shows the behavior of directed event broadcast using a qualified
event name on a transition. The chart uses implicit ordering of parallel states
(see “Implicit Ordering of Parallel States” on page 3-77).

The only differences from the chart in “Directed Event Broadcast Using Send
Example” on page B-60 are:

• The event E_one belongs to state B and is visible only to that state.

• The action send(E_one,B) is now send(B.E_one).

Using a qualified event name is necessary because E_one is not visible to
state A.

After waking up, the chart checks for valid transitions at every level of the
hierarchy:

B-62

Directed Event Broadcasting Examples

1 The chart root checks to see if there is a valid transition as a result of the
event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2.

3 The action send(B.E_one) executes and completes:

a The broadcast of event E_one reaches state B. Because state B is active,
that state receives the event broadcast and checks to see if there is a
valid transition. There is a valid transition from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.

c State B.B1 becomes inactive.

d State B.B2 becomes active.

e State B.B2 entry actions (entB2()) execute and complete.

4 State A.A1 exit actions (exitA1()) execute and complete.

5 State A.A1 becomes inactive.

6 State A.A2 becomes active.

7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes execution of a chart with a directed event broadcast
using a qualified event name to a parallel state.

B-63

B Semantic Examples

B-64

Glossary

Glossary

actions
Actions take place as part of Stateflow chart execution. The action can
execute as part of a transition from one state to another, or depending
on the activity status of a state. Transitions can contain condition
actions and transition actions.

Action language defines the categories of actions you can specify and
their associated notations. For example, states can have entry, during,
exit, and on event_name actions.

An action can be a function call, an event broadcast, a variable
assignment, and so on. For more information on actions and action
language, see Chapter 10, “Using Actions in Stateflow Charts”.

API (application programming interface)
Format you can use to access and communicate with an application
program from a programming or script environment.

atomic subchart
Graphical object that enables you to reuse states and subcharts multiple
times in a chart. For more information, see Chapter 11, “Making States
Reusable with Atomic Subcharts”.

box
Graphical object that groups together other graphical objects in your
chart. For details about how a box affects chart execution, see “Using
Boxes to Extend Charts” on page 7-50.

chart instance
Link from a model to a chart stored in a Simulink library. A chart in
a library can have many chart instances. Updating the chart in the
library automatically updates all instances of that chart.

condition
Boolean expression to specify that a transition occurs when the specified
expression is true.

Glossary-1

Glossary

connective junction
Illustrates decision points in the system. A connective junction is a
graphical object that simplifies Stateflow chart representations and
facilitates generation of efficient code. Connective junctions provide
different ways to represent desired system behavior.

See “Connective Junctions” on page 2-37 for more information.

data
Data objects store numerical values for reference in the Stateflow chart.

See “Adding Data” on page 8-2 for more information on representing
data objects.

Debugger
See Stateflow® Debugger on page Glossary-7.

decomposition
A state has a decomposition when it consists of one or more substates.
A chart that contains at least one state also has decomposition. Rules
govern how you can group states in the hierarchy. A superstate has
either parallel (AND) or exclusive (OR) decomposition. All substates at
a particular level in the hierarchy must have the same decomposition.

• Parallel (AND) State Decomposition

Parallel (AND) state decomposition applies when states have dashed
borders. This decomposition describes states at that same level in the
hierarchy that can be active at the same time. The activity within
parallel states is essentially independent.

• Exclusive (OR) State Decomposition

Exclusive (OR) state decomposition applies when states have solid
borders. This decomposition describes states that are mutually
exclusive. Only one state at the same level in the hierarchy can be
active at a time.

default transition
Primarily used to specify which exclusive (OR) state is to be entered
when there is ambiguity among two or more neighboring exclusive
(OR) states. For example, default transitions specify which substate of

Glossary-2

Glossary

a superstate with exclusive (OR) decomposition the system enters by
default in the absence of any other information. Default transitions can
also specify that a junction should be entered by default. The default
transition object is a transition with a destination but no source object.

See “Default Transitions” on page 2-32 for more information.

events
Events drive chart execution. All events that affect the chart must be
defined. The occurrence of an event causes the status of states in a
chart to be evaluated. The broadcast of an event can trigger a transition
to occur or an action to execute. Events are broadcast in a top-down
manner starting from the event’s parent in the hierarchy.

See “How Events Work in Stateflow Charts” on page 9-2 for more
information.

Finder
Tool to search for objects in Stateflow charts on platforms that do
not support the Simulink Find tool. See Stateflow® Finder on page
Glossary-8.

finite state machine (FSM)
Representation of an event-driven system. FSMs are also used to
describe reactive systems. In an event-driven or reactive system, the
system transitions from one mode or state to another prescribed mode
or state, provided that the condition defining the change is true.

flow graph
Set of decision flow paths that start from a transition segment that, in
turn, starts from a state or a default transition segment.

flow path
Ordered sequence of transition segments and junctions where each
succeeding segment starts on the junction that terminated the previous
segment.

flow subgraph
Set of decision flow paths that start on the same transition segment.

Glossary-3

Glossary

graphical function
A chart function whose logic is defined by a flow graph. See “Using
Graphical Functions to Extend Actions” on page 7-30.

hierarchy
Hierarchy enables you to organize complex systems by placing states
within other higher-level states. A hierarchical design usually reduces
the number of transitions and produces neat, more manageable charts.
See “Stateflow Hierarchy of Objects” on page 1-8 for more information.

history junction
Specifies the destination substate of a transition based on historical
information. If a superstate has a history junction, the transition to
the destination substate is the substate that was most recently active.
The history junction applies only to the level of the hierarchy in which
it appears.

See the following sections for more information:

• “History Junctions” on page 2-44

• “Default Transition and a History Junction Example” on page B-20

• “Labeled Default Transitions Example” on page B-22

• “Inner Transition to a History Junction Example” on page B-31

inner transitions
Transition that does not exit the source state. Inner transitions are
useful when defined for superstates with exclusive (OR) decomposition.
Use of inner transitions can greatly simplify chart layout.

See “Inner Transitions” on page 2-27 and “Inner Transition to a History
Junction Example” on page B-31 for more information.

library link
Link to a chart that is stored in a library model.

library model
Stateflow model that is stored in a Simulink library. You can include
charts from a library in your model by copying them. When you copy a
chart from a library into your model, you create only a link to the library

Glossary-4

Glossary

chart. You can create multiple links to a single chart. Each link is called
a chart instance. When you include a chart from a library in your model,
you also include its Stateflow machine. Therefore, a Stateflow model
that includes links to library charts has multiple Stateflow machines.

When you simulate a model that includes charts from a library model,
you include all charts from the library model even if links exist only
for some of its models. However, when you generate an embedded or
standalone custom target, you include only those charts for which there
are links. You can simulate a model that includes links to a library
model only when all charts in the library model are free of parse and
compile errors.

machine
Collection of all Stateflow blocks defined by a Simulink model. This
collection excludes chart instances from library links. If a model
includes any library links, it also includes the Stateflow machines
defined by the models from which the links originate.

MATLAB function
A chart function that works with a subset of the MATLAB programming
language. See Chapter 23, “Using MATLAB Functions in Stateflow
Charts” for more information.

Mealy machine
An industry-standard paradigm for modeling finite-state machines,
where output is a function of both inputs and state. See Chapter 6,
“Building Mealy and Moore Charts” for more information.

Model Explorer
Use to add, remove, and modify data, event, and target objects in the
Stateflow hierarchy. See “Using the Model Explorer with Stateflow
Objects” on page 27-2 for more information.

Moore machine
An industry-standard paradigm for modeling finite-state machines,
where output is a function only of state. See Chapter 6, “Building Mealy
and Moore Charts” for more information.

Glossary-5

Glossary

notation
Defines a set of objects and the rules that govern the relationships
between those objects. Stateflow chart notation provides a way to
communicate the design information in a Stateflow chart.

Stateflow chart notation includes:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

parallelism
A system with parallelism can have two or more states that can be
active at the same time. The activity of parallel states is essentially
independent. Parallelism is represented with a parallel (AND) state
decomposition.

See “State Decomposition” on page 2-10 for more information.

S-function
When you simulate a Simulink model containing Stateflow charts, you
generate an S-function (MEX-file) for each Stateflow machine. This
generated code is a simulation target.

For more information, see “S-Function MEX-Files” on page 25-77.

semantics
Semantics describe how the notation is interpreted and implemented
behind the scenes. A completed Stateflow chart communicates how the
system will behave. A chart contains actions associated with transitions
and states. The semantics describe in what sequence these actions take
place during chart execution.

Simulink function
A chart function that you fill with Simulink blocks and call in the
actions of states and transitions. This function provides an efficient
model design and improves readability by minimizing the graphical and
nongraphical objects required in a model. In a Stateflow chart, this
function acts like a function-call subsystem block of a Simulink model.

Glossary-6

Glossary

See Chapter 24, “Using Simulink Functions in Stateflow Charts” for
more information.

state
A state describes a mode of a reactive system. A reactive system
has many possible states. States in a chart represent these modes.
The activity or inactivity of the states dynamically changes based on
transitions among events and conditions.

Every state has hierarchy. In a chart consisting of a single state, the
parent of that state is the Stateflow chart itself. A state also has history
that applies to its level of hierarchy in the chart. States can have actions
that execute in a sequence based upon action type. The action types are
entry, during, exit, or on event_name actions.

Stateflow block
Masked Simulink model that is equivalent to an empty, untitled
Stateflow chart. Use the Stateflow block to include a chart in a Simulink
model.

The control behavior modeled by a Stateflow block complements
the algorithmic behavior modeled in Simulink block diagrams. By
incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create
models that represent both data and decision flow by combining
Stateflow blocks with the standard Simulink and toolbox block libraries.

Stateflow chart
A Stateflow chart is a graphical representation of a finite state machine
where states and transitions form the basic building blocks of the
system. See “Stateflow Charts and Simulink Models” on page 1-4 for
more information.

Stateflow Debugger
Tool for debugging and animating your Stateflow charts. Each state
in the chart simulation is evaluated for overall code coverage. This
coverage analysis is done automatically when the target is compiled and
built with the debug options. The Debugger can also be used to perform
dynamic checking. The Debugger operates on the Stateflow machine.

Glossary-7

Glossary

Stateflow Finder
Use to display a list of objects based on search criteria you specify. You
can directly access the properties dialog box of any object in the search
output display by clicking that object. See “Finding Stateflow Objects”
on page 27-28 for more information.

subchart
Chart contained by another chart. See “Using Subcharts to Extend
Charts” on page 7-6.

substate
A state is a substate if it is contained by a superstate.

superstate
A state is a superstate if it contains other states, called substates.

supertransition
Transition between objects residing in different subcharts. See
“Using Supertransitions to Extend Transitions” on page 7-12 for more
information.

target
A container object for the generated code from the Stateflow charts in a
model. The collection of all charts for a model appears as a Stateflow
machine. Therefore, target objects belong to the Stateflow machine.

The code generation process can produce these target types: simulation,
embeddable, and custom. See Chapter 25, “Building Targets” for more
information.

transition
The circumstances under which the system moves from one state to
another. Either end of a transition can be attached to a source and a
destination object. The source is where the transition begins and the
destination is where the transition ends. Usually, the occurrence of an
event causes a transition to take place.

transition path
Flow path that starts and ends on a state.

Glossary-8

Glossary

transition segment
A state-to-junction, junction-to-junction, or junction-to-state part of a
complete state-to-state transition.

truth table function
A chart function that specifies logical behavior with conditions,
decisions, and actions. Truth tables are easier to program and maintain
than graphical functions.

See Chapter 22, “Truth Table Functions” for instructions on how to use
truth tables in Stateflow charts.

Glossary-9

Glossary

Glossary-10

Index

IndexA
abs

C library function in Stateflow action
language 10-32

calling in action language 10-33
absolute-time temporal logic 10-70

conditionally executed subsystems 10-75
effect of sample time 10-78
examples 10-73
sec keyword 10-71
tips 10-79

acos in action language 10-32
action language

array arguments 10-57
assignment operations 10-23
binary operations 10-20
bit operations 10-20
Boolean symbols 10-28
comment symbols %,//,/* 10-29
condition statements 10-10
data and event arguments 10-55
directed event broadcasting 10-59
floating-point number precision 10-31
hexadecimal notation 10-29
infinity symbol inf 10-30
keyword identifiers 10-20
line continuation symbol 10-30
literal code symbol $ 10-30
MATLAB display symbol ; 10-30
pointer and address operations 10-24
resolving symbols 25-69
semicolon symbol 10-30
single-precision floating point symbol F in

action language 10-31
symbols 10-28
temporal logic 10-63
time symbol t 10-31
types of 10-2
unary operations 10-22 to 10-23

actions 2-20

assigning to decisions in truth table 22-39
binding function call subsystem 10-108
during 2-13
entry 2-13
exit 2-13
on event_name 2-13
states 4-13
tracking rows in truth tables 22-42
unary 10-23
See also condition actions; transition actions

activation order for parallel (AND) states 4-10
active chart execution 3-40
active states 2-8

display in the Debugger 26-23
execution 3-71
exiting 3-72

addition (+) of fixed-point data 17-32
addition operator (+) 10-20
after

operator 10-64 10-71
aligning chart objects 4-37

example 4-42
animation

of Stateflow charts in external mode 26-4
of Stateflow charts in normal mode 26-4

animation controls in the Debugger 26-22
arguments 10-55
array arguments in action language 10-57
Array property of data 8-11
arrays

and custom code 10-58
indexing 10-57

arrowhead size of transitions 4-22
asin in action language 10-32
assignment operations 10-23

complex data 18-8
fixed-point data 17-28 17-34
vectors and matrices 13-12

at
operator 10-65

Index-1

Index

atan in action language 10-32
atan2 in action language 10-32

B
Back To button in Stateflow Editor 7-11
before

operator 10-65 10-71
Behavior after too many iterations property for

charts 19-9
benefits of using a SimState 12-4
bias (B) in fixed-point data 17-2
bidirectional traceability

graphical functions 25-90
states and transitions 25-84
truth tables 25-87

binary operations 10-20
complex data 18-7
fixed-point data 17-26
vectors and matrices 13-11

binary point in fixed-point data 17-6
binding function call subsystem

to state 10-108
binding function call subsystem event

muxed events 10-122
subsystem sampling times 10-115

binding function-call subsystem event
example 10-113

bit operations 10-20
bitwise & (AND) operator 10-21
block 19-13

See also Stateflow block
Boolean symbols in action language 10-28
bowing transitions 7-26
boxes

creating 7-50
definition 2-48
examples 7-53
grouping 7-50

Break button on the Debugger 26-21

breakpoints
chart entry 26-7
display in the Debugger 26-23
event broadcast 26-7
functions 7-48 22-13
overview 26-7
setting global breakpoints 26-7
setting local breakpoints 26-7
state entry 26-7
states 4-12
transitions 4-26

broadcasting directed events
examples using send keyword 10-60
send function B-60
with qualified event name B-62

broadcasting events
in condition actions B-16
in truth tables 22-14

Browse Data display in the Debugger 26-23
building charts

Mealy and Moore 6-1
building targets 25-63

options for custom target 25-61
bus support

using structures in Stateflow charts 20-1
buses

virtual and nonvirtual in Stateflow
charts 20-11

C
C functions

custom 10-36
library 10-32

C++ code 25-7 25-22
Call Stack display in the Debugger 26-23
cast operation

and type operator 10-26
cast operator 10-26
ceil in action language 10-32

Index-2

Index

change detection
example 10-94
in Stateflow actions 10-83
types you can detect 10-83

change indicator (*) in title bar 4-28
change(data_name) keyword 9-41
Changing chart types 6-24
chart

copying objects 4-36
cutting and pasting objects 4-36
selecting and deselecting objects 4-35
specifying colors and fonts 4-30

chart libraries 19-20
chart notes. See notes (chart)
charts 7-6

creating 4-2
decomposition 2-10
editing 4-27 27-4
executing active charts 3-40
executing inactive charts 3-39
how they execute 3-39
printing 7-61
printing scaled charts 7-61
properties 19-4
saving model 4-2
setting their properties in the Model

Explorer 27-8
update method 4-2
update methods for defining interface 19-13
using tiled printing 7-64
See also subcharts

charts, executing at initialization 3-49
charts, executing super step semantics 3-40
checking state activity 10-97
code generation

error messages 25-75
code generation files 25-77

make files 25-81
.mex* files 25-77

code-to-model traceability 25-91

colors in chart 4-30
command line debugger 26-44
command line debugger commands 26-45
commands for command line debugger 26-45
comment symbols %,//,/* in action language 10-29
comments (chart). See notes (chart)
comparison operators

(>, <, >=, <=, ==, -=, !=, <>) 10-21
compilation error messages 25-76
CompiledSize property 8-53
CompiledType property

typing data
using CompiledType property 8-48

complex data 18-1 to 18-2
Complexity property 18-4
example of using 18-19
operations supported 18-7
specifying 18-4
tips 18-15

complex operations 18-7
Complexity property

complex data 18-4
data 8-11

condition actions
and transition actions B-12
event broadcasts in B-56
examples B-11
in for loops B-15
simple, example of B-11
to broadcast events B-16
with cyclic behavior to avoid B-17

conditions
for transitions, guidelines 10-10
in operator 10-10
outcomes for in truth tables 22-2

configuring
custom target 25-55
simulation target 25-17

conflicting transitions
definition 26-32

Index-3

Index

detecting 26-32
example 26-32

connective junctions 2-37
backtracking transition segments to

source B-46
common events example 2-43
common source example 2-42
creating 7-2
definition 2-37
examples of B-34
flow graphs B-40
for loop 2-41
if-then-else decision B-36
in flow graphs 2-37
in for loops B-39
self-loop transitions B-37
transitions based on common event B-45
transitions from a common source B-42
transitions from multiple sources B-44
with default transitions B-19

Contains word option in Search & Replace
tool 27-15

context (shortcut) menu to properties 4-29
context-sensitive constants in fixed-point

data 17-9
Continue button on the Debugger 26-21
continuous update method 19-14
continuous update method for Stateflow

block 19-13
continuous-time modeling

defining continuous-time variables in
Stateflow charts 16-11

design considerations in Stateflow
charts 16-26

exposing continuous states to a Simulink
model 16-12

implicit time derivatives in Stateflow
charts 16-11

modeling a bouncing ball in a Stateflow
chart 16-13

when to use Stateflow charts 16-3
copying objects in a chart 4-36
corners of states 4-18
cos in action language 10-32
cosh in action language 10-32
creating a global data store across multiple

models 8-38
Creation Date property of machines 19-11
Creator property of machines 19-11
custom C code

C functions 10-36
custom code

including C++ code 25-7 25-22
path names 25-41

Custom code included at the top of generated
header file 25-10

Custom code included at the top of generated
source code 25-10

Custom include directory paths option 25-11
Custom initialization code option 25-11
Custom source files option 25-11
Custom static libraries option 25-11
custom target

configuring 25-55
generated code files 25-81

custom targets
in the Model Explorer 27-5

Custom termination code option 25-11
customizing

Stateflow Editor menus 4-65
cutting objects in a chart 4-36
cyclic behavior

debugging 26-37
definition 26-37
example 26-37
example of nondetection 26-38
in condition actions B-17
noncyclic behavior flagged as cyclic

example 26-39

Index-4

Index

D
dashed transitions 4-21
data 8-29 17-1 17-26 18-1

adding (creating) 8-2
complex 18-1
copying/moving in the Model Explorer 27-9
deleting 27-11
exported 19-25
exporting to external modules 8-40
fixed-point 17-1 17-26
imported 19-26
importing from external modules 8-41
importing from external source 8-40
inheriting size 8-53
input from other blocks 8-29
logging values to MATLAB workspace 26-60
monitor values with command line

debugger 26-44
monitoring with floating scope 26-56
operations in action language 10-20
properties of 8-5
range violations 26-35
renaming 27-8
setting their properties in the Model

Explorer 27-8
sharing between Stateflow machines and

external modules 8-40
sizing 8-52
sizing by expression 8-55
temporary data 8-58
types supported by Stateflow charts 8-47
typing 8-43
See also complex data; fixed-point data

data and events 19-3
data identifiers

dot notation 8-59
data input from Simulink port order 27-10
data output to Simulink port order 27-10
data range checking

MATLAB functions in Stateflow charts 23-21

data range violations (debugging) 26-35
data store, global

for sharing global data between Stateflow
charts and Simulink models 8-33

Data type mode property
data 8-12

Data type property
data 8-12

data types
boolean 8-47
double 8-47
inheritance 8-48
int16 8-47
int32 8-47
int8 8-47
ml 8-47
single 8-47
uint16 8-47
uint32 8-47
uint8 8-47

data typing
with other data 8-48

data values during simulation 26-42 26-53
Debugger

action control buttons 26-21
active states display 26-23
animation controls 26-22
Break button 26-21
breakpoints 26-7
breakpoints display 26-23
browse data display 26-23
call stack display 26-23
clear output display 26-23
Continue button 26-21
debugging run-time errors 26-24
display controls 26-22
main window 26-2
monitoring data values during

simulation 26-42

Index-5

Index

setting global breakpoints in Stateflow
charts 26-7

Start button 26-19
status display area 26-19
Step button 26-21
Stop Simulation button 26-21
user interface 26-2

Debugger breakpoint property
charts 19-10

Debugger breakpoints property, events 9-10
debugging

breakpoints in MATLAB function 23-17
conflicting transitions 26-32
cyclic behavior 26-37
data range violations 26-35
display variable values in MATLAB

function 23-20
displaying MATLAB function variables in

the MATLAB Command Window 23-20
error checking options 26-21
MATLAB function 23-15
MATLAB functions in charts 23-17
state inconsistency 26-29
stepping through MATLAB function 23-19
truth table during simulation 22-51

Debugging
Mealy and Moore charts 6-25

decision outcomes for truth tables 22-2
tracking action rows feature 22-42

decisions
assigning actions in truth table 22-39

decomposition
states and charts 2-10
substates 4-9

default data property values 8-27
default decision outcome for truth tables

concept 22-2
default transitions 2-32

and exclusive (OR) decomposition B-18
and history junctions B-20

creating 4-23
examples 2-33 B-18
labeled B-22
labeling 2-32
to a junction B-19

Description property
data 8-26
events 9-10
functions 7-49 22-13
junctions 5-29 7-4
states 4-13
transitions 4-26

Description property for charts 19-10
Description property of machines 19-12
design considerations

for continuous-time modeling in Stateflow
charts 16-26

Destination property of transitions 4-26
differentiating syntax elements in Stateflow

Editor 4-33
directed event broadcasting

examples B-60
send function

examples 10-60
semantics B-60

using qualified event name B-62
with qualified names 10-59

discrete update method 19-13
display controls in the Debugger 26-22
distributing chart objects 4-37

example 4-45
division (/) of fixed-point data 17-32
division operator (/) 10-20
Document link property

charts 19-10
data 8-26
junctions 5-29
states 4-13
transitions 4-26

Document Link property

Index-6

Index

events 9-10
junctions 7-4

Document link property for functions 7-49 22-13
Document link property of machines 19-12
dot notation

best practices 8-62
for data identifiers 8-59
rules for resolving data identifiers 8-60

drawing area
in Stateflow Editor 4-29

during action 2-13
example 2-16

E
E (binary point) in fixed-point data 17-6
early return logic for event broadcasts 3-85
Echo expressions without semicolons coder

option 25-18
Edit property of Search & Replace tool 27-22
editing

charts 4-27
labels in Stateflow Editor 4-52
truth tables 22-22

either edge trigger 9-12
embeddable target

generated code files 25-80
Enable C-bit operations property

for charts 19-7
operations affected 10-23

Enable C-like bit operations property of
machines 19-12

Enable debugging/animation coder option 25-17
Enable overflow detection (with debugging) coder

option 25-17
Enable super step semantics property for

charts 19-9
Enable zero-crossing detection property for

charts 19-7
entry action 2-13

example 2-16 10-5
enumerated data

supported operations 15-14
error checking

in MATLAB functions 23-15
overspecified truth tables 22-62
Stateflow charts 25-64
underspecified truth tables 22-66
when it occurs for truth tables 22-48

error messages
code generation 25-75
compilation 25-76
overview 25-74
parsing 25-74
target building 25-76

errors
data range 26-21
debugging run-time errors 26-24
detect cycles 26-21
state inconsistency 26-21
transition conflict 26-21

event actions
in a superstate B-48

event broadcasting B-60
early return logic 3-85
in condition actions B-56
in parallel state action B-50
nested in transition actions B-53
See also directed event broadcasting

event input from Simulink block
trigger 9-12

event input from Simulink function-call
subsystem
trigger 9-13

event input from Simulink models
port order 27-10

event output to Simulink port order 27-10
event triggers

defining 19-19
function-call output event 19-18

Index-7

Index

event-based temporal logic 10-64
examples 10-66

events 9-11 9-24 9-40 10-59
activating Simulink blocks with 9-24
activating Stateflow charts with 9-11
adding 9-2
and transitions from substate to substate B-9
broadcast in condition actions B-16
broadcasting 10-59
causing transitions B-5
copying/moving in the Model Explorer 27-9
counting example 9-45
defining edge-triggered output events 19-19
deleting 27-11
executing 3-36
exported 19-27
exporting events example 19-27
function-call output event to a Simulink

model 19-18
how a Stateflow chart processes them 3-37
how to count 9-45
imported 19-28
imported event example 19-28
processing with inner transition to

junction B-28
processing with inner transitions in exclusive

(OR) states B-25
properties 9-7
renaming 27-8
setting their properties in the Model

Explorer 27-8
sources for 3-37
See also directed event broadcasting; implicit
events; input events; output events

every
operator 10-66

examples
change detection in Stateflow charts 10-94

exclusive (OR) decomposition 2-10
and default transitions B-18

exclusive (OR) states
transitions 2-23
transitions to and from B-4

exclusive (OR) substates
transitions 2-26

exclusive (OR) superstates
transitions 2-25

Execute (enter) Chart At Initialization property
for charts 19-8

executing
Stateflow charts with super step

semantics 3-40
executing charts at initialization 3-49
execution order

of parallel (AND) states 3-75
Execution order property

transitions 4-26
Execution order property of states 4-12
exit action 2-13

example 2-16 to 2-17 10-5
exp in action language 10-32
explicit ordering

of parallel (AND) states 3-76
Explore property of Search & Replace tool 27-22
Export Chart Level Graphical Functions property

for charts 19-7
exporting data to external code 19-25

example 19-26
exporting data to external modules

description 8-40
exporting events to external code 19-27

example 19-28
exporting graphical functions 7-39

rules 7-40
expressions, using to set data properties in

Stateflow hierarchy 8-26
external code sources

defining interface for 19-25
definition 19-25

external mode

Index-8

Index

animating Stateflow charts 26-4

F
F (fractional slope) in fixed-point data 17-6
fabs in action language 10-32
falling edge trigger 9-12
Field types field of Search & Replace tool 27-14
final action in truth tables 22-45
Finder

dialog box 27-29
user interface 27-28

finite state machine
described 1-2
introduction 1-2
references 1-10
representations 1-2

First index property, data 8-26
fixed-point data 17-1 17-26

arithmetic 17-2
bias B 17-2
context-sensitive constants 17-9
defined 17-2
example of using inputs 17-14
example of using parameters and local

data 17-19
implementation 17-6
offline conversions 17-42
online conversions 17-42
operation (+, -, *, /) equations 17-3
operations supported 17-26
overflow detection 17-11
properties in Stateflow chart 8-15
quantized integer, Q 17-2
Scaling property 17-7
setting for Strong Data Typing with Simulink

IO 19-8
sharing with Simulink models 17-12
slope S 17-2
specifying 17-7

Stored Integer property 17-7
tips for using 17-10
Type property 17-7

fixed-point operations 17-26
assignment 17-34
casting 17-34
logical (&, &&, |, ||) 17-33
promotions 17-28
special assignment

addition example 17-35
and context-sensitive constants 17-41
division example 17-40
multiplication example 17-39

floating scope
select signals 26-58

floating scope monitor of data and states 26-56
floating-point numbers

precision in action language 10-31
floor in action language 10-32
flow graphs

connective junctions in 2-37
cyclic behavior example 26-38
example 2-41
examples 2-37
for loops 2-41
order of execution 3-52
types 3-51
with connective junctions B-40

fmod in action language 10-32
font size of labels 4-52
fonts in chart 4-30
for loops

example 2-41
with condition actions B-15
with connective junctions B-39

formatting chart objects
aligning 4-37
distributing 4-37
resizing 4-37

Forward To button in Stateflow Editor 7-11

Index-9

Index

function call subsystem
binding trigger event 10-108
mixing bound and muxed events 10-122
sampling times with bind action 10-115

function inline option
states 4-12

function-call events
output event 19-18

functions 2-46
calling functions from MATLAB

functions 23-3
data and event arguments 10-55
Description property 7-49 22-13
Document link property 7-49 22-13
Function Inline Option property 7-49 22-13
inlining 7-49 22-13
Label property 7-49 22-13
MATLAB function example 23-5
MATLAB workspace 10-42
Name property 7-48 22-13
setting breakpoints 7-48 22-13
truth table function 22-7
See also graphical functions

G
generated code files 25-77
global breakpoints

setting in Stateflow Debugger 26-7
global data store

for sharing data between Stateflow charts
and Simulink models 8-33

how to create 8-38
graphical functions 2-46

calling from action language 7-38
compared with truth tables 22-14
creating 7-31
example 2-46
exporting 7-39
properties 7-47

realizing truth tables 22-71
signature (label) 7-31

graphical objects 2-2
copying 4-36
cutting and pasting 4-36

grouping
boxes 7-50
states 4-7

H
hexadecimal notation in action language 10-29
hierarchy

described 1-8
of objects 2-8
of states 2-8
state example 2-9
transition example 2-19

history junctions 2-44
and default transitions B-20
and inner transitions 2-45
creating 7-2
definition 2-44
example of use 2-44
inner transitions to 2-30 B-31

I
if-then-else decision

examples 2-39 to 2-40
with connective junctions B-36

implicit events
definition 9-40
example 9-40
keywords in action language 9-40

implicit ordering
of parallel (AND) states 3-77

importing data from external code 19-26
example 19-27

importing data from external modules 8-41

Index-10

Index

importing data from external source 8-40
importing events from external code 19-28

example 19-29
in

operator 10-97
in action language 10-30
in operator in conditions 10-10
inactive chart execution 3-39
inactive states 2-8
infinity symbol inf in action language 10-30
inherited update method 19-13
inherited update method for Stateflow

block 19-13
inheriting data size 8-53

CompiledSize property 8-53
inheriting data type 8-48
initial action in truth tables 22-45
Initial Outputs Every Time Chart Wakes Up

property for charts 19-9
Initial value property, data 8-13
initializing matrices 13-5
initializing vectors 13-4
inlining functions

Function Inline Option property 7-49 22-13
inner transitions

after using them 2-29
before using them 2-28
definition 2-27
examples 2-27 B-25
processing events in exclusive (OR)

states B-25
to a history junction B-31
to a junction, processing events with B-28
to history junction 2-30

input data from other blocks 8-29
input events

association with control signals 9-14
states when enabling 9-16
using 9-11
using edge triggers 9-11

using function calls 9-13
integer word size

setting for target 17-29
interfaces 19-3

to external code 19-2 19-25
to MATLAB data 19-2
typical tasks to define 19-3
update methods for Stateflow block 19-13

interfaces to Simulink models 1-4
continuous Stateflow block 19-18
edge-triggered output event 19-19
function-call output event 19-18
implementing 19-15
inherited Stateflow block 19-17
sampled Stateflow block 19-16
triggered Stateflow block 19-15

interfaces to the MATLAB workspace 19-23
data 19-23

J
junctions 2-37 2-44

properties 5-28 7-3
size 5-27 7-3
See also connective junctions; history
junctions

K
keyboard shortcuts

in Stateflow Editor 4-62
moving in a zoomed chart 4-54
opening subcharts 7-9
zooming 4-53

keywords
change(data_name) 9-41
during 10-5
enter(state_name) 9-41
entry 10-5
exit 10-5

Index-11

Index

exit(state_name) 9-41
in(state_name) 10-10
ml. 10-42
ml() 10-43
on event_name action 10-7
send 10-60
summary list 10-20
tick 9-41
wakeup 9-41

L
Label property

functions 7-49 22-13
states 4-13
transitions 4-26

labels
default transitions 2-32 B-22
editing in Stateflow Editor 4-52
field 27-18
font size 4-52
format for transition segments B-34
format for transitions 4-20 B-4
graphical function signature 7-31
state example 2-15
states 2-13 4-13
transition 2-20
transitions 4-19

labs in action language 10-32
large-scale modeling

creating specialized chart libraries 19-20
ldexp in action language 10-32
left bit shift (<<) operator 10-21
length

of data names in Stateflow charts 8-8
Limit Range property, data 8-14
line continuation symbol ... in action

language 10-30
literal code symbol $ in action language 10-30
local breakpoints

setting breakpoints on specific Stateflow
objects 26-7

Lock Editor property for charts 19-10
log in action language 10-32
log10 in action language 10-32
logging data values to MATLABworkspace 26-60
logging state activity to MATLAB

workspace 26-60
logical AND operator (&) 10-21

M
MAAB-compliant logic patterns

creating, using Pattern Wizard 5-5
machine

overview of Stateflow machine 1-8
setting properties 19-11

make files 25-81
Match case

field of Search & Replace tool 27-14
search option of Search & Replace tool 27-15

Match options field of Search & Replace
tool 27-14

Match whole word option in Search & Replace
tool 27-16

MATLAB display symbol ; 10-30
MATLAB functions

argument and return values 23-6
breakpoints in function 23-17
calling from Stateflow charts 23-6
calling other functions 23-3
checking for errors 23-15
creating 23-5
data range checking 23-21
debugging 23-17
debugging function for 23-15
description 23-2
display variable value 23-20
displaying variable values in the MATLAB

Command Window 23-20

Index-12

Index

example 23-5
example model 23-5
implicitly declared variables 23-11
introduction to 23-2
Model Explorer 23-7
persistent variables 23-11
programming 23-11
signature 23-6
simulation example 23-17
stepping through function 23-19
subfunctions 23-13

MATLAB workspace 19-2 19-23
functions and data in Stateflow actions 10-42
ml. namespace operator 10-42
ml() and full MATLAB notation 10-46
ml() function call 10-43
See also interfaces to theMATLABworkspace

matrices
initializing 13-5

max in action language 10-33
Maximum iterations in each super step property

for charts 19-9
Mealy charts

building them 6-1
design considerations 6-7
how to create 6-6
vending machine example 6-10

menu bar
in Stateflow Editor 4-28

menus
customizing for Stateflow Editor 4-65

messages
error messages 25-74
of Search & Replace tool 27-25

.mex* files 25-77
min in action language 10-33
ml data type 10-47

and targets 10-47
inferring size 10-47
place holder for workspace data 10-49

scope 10-47
ml. namespace operator 10-42

expressions 10-45
inferring return size 10-50
or ml() function, which to use? 10-46

ml() function 10-43
and full MATLAB notation 10-46
dynamically construct workspace

variables 10-46
expressions 10-45
inferring return size 10-50
or ml. namespace operator, which to

use? 10-46
Model Explorer

adding data 27-4
adding events 27-4
custom targets 27-5
MATLAB functions 23-7
object hierarchy list 27-3
opening 27-2
operations 27-2
overview 27-2
user interface 27-2

model-to-code traceability 25-93
Modified property of machines 19-11
modulus operator (%%) 10-20
monitoring data values

in the Debugger 26-42
monitoring data values during simulation 26-42

26-53
monitoring data values with command line

debugger 26-44
monitoring data values with floating scope 26-56
monitoring state activity with floating

scope 26-56
Moore charts

building them 6-1
design considerations 6-13
how to create 6-6
traffic light example 6-20

Index-13

Index

multiplication (*) of fixed-point data 17-32
multiplication operator (*) 10-20

N
name length

of data in Stateflow charts 8-8
of Stateflow objects 2-5

Name property
charts 19-6
data 8-8
events 9-9
functions 7-48 22-13
states 2-14 4-12

nongraphical objects (data, events, targets) 2-3
nonsmart transitions

asymmetric distortion 7-29
graphical behavior 7-27

normal mode
animating Stateflow charts 26-4

notation
defined 1-3
introduction to Stateflow chart notation 2-1
representing hierarchy 2-8

notes (chart)
changing color 7-59
changing font 7-59
creating 7-58
deleting 7-60
editing existing notes 7-58
moving 7-60
TeX format 7-59

O
object palette

in Stateflow Editor 4-29
Object types field of Search & Replace tool 27-14
objects 2-2 to 2-3

hierarchy 2-8

overview of Stateflow objects 2-2
See also graphical objects; nongraphical
objects

offline conversions with fixed-point data 17-42
on event_name action 2-13

example 2-16 10-7
online conversions with and fixed-point

data 17-42
operations

assignment 10-23
binary 10-20
bit 10-20
complex data 18-7
defined for fixed-point data 17-3
enable C-bit operations 19-7
exceptions to undo 4-59
fixed-point data 17-26
in action language 10-20
pointer and address 10-24
type cast 10-25
unary 10-22
undo and redo 4-58
vectors and matrices 13-11
with objects in the Model Explorer 27-2

operators
addition (+) 10-20
after 10-64 10-71
at 10-65
before 10-65 10-71
bitwise AND (&) 10-21
bitwise OR (|) 10-22
bitwise XOR (^) 10-22
comparison (>, <, >=, <=, ==, -=, !=, <>) 10-21
division (/) 10-20
every 10-66
explicit type cast cast operator 10-26
explicit typing with cast 10-26
in 10-97
left bit shift (<<) 10-21
logical AND (&) 10-21

Index-14

Index

logical AND (&&) 10-22
logical OR (|) 10-22
logical OR (||) 10-22
MATLAB type cast 10-25
modulus (%%) 10-20
multiplication (*) 10-20
pointer and address 10-24
power (^) 10-20
right bit shift (>>) 10-21
subtraction (-) 10-21
temporalCount 10-66 10-71
type 10-26

ordering
of parallel (AND) states 3-75

output events
accessing Simulink subsystems from output

events 9-39
association with output ports 9-38
using 9-24

Output State Activity property of states 4-13
overflow detection

fixed-point data 17-11
overspecified truth tables 22-62

P
parallel (AND) states

activation order 4-10
assigning priorities to restored states 3-81
decomposition 2-11
entry execution 3-70
event broadcast action B-50
examples of B-50
explicit ordering 3-76
implicit ordering 3-77
maintaining order of 3-79
order of execution 3-70 3-75
ordering in boxes and subcharts 3-83
switching between explicit and implicit

ordering 3-83

parameter expressions, using to set data
properties in Stateflow hierarchy 8-26

Parent property
junctions 5-29 7-4
transitions 4-26

parsing charts
error messages 25-74
example 25-65
overview 25-64
starting the parser 25-64
tasks 25-65

passing arguments by reference
C functions

passing arguments by reference 10-40
pasting objects in a chart 4-36
path names for custom code 25-41
Pattern Wizard

creating MAAB-compliant logic patterns 5-5
pointer and address operations 10-24
Port property

data 8-10
events 9-9

ports
order of inputs and outputs 27-10

pow in action language 10-32
Preserve case

field of Search & Replace tool 27-14
search type in Search & Replace tool 27-17

printing
charts 7-61
current chart 7-69
details of chart 7-67
tiled for Stateflow charts 7-64

printing charts
scaled to fit on one page 7-61
using tiled printing 7-64

programming
MATLAB functions 23-11

promotion rules for fixed-point operations 17-28
properties

Index-15

Index

machine 19-11
of transitions 4-26
of truth tables 22-50
Search & Replace tool 27-22
states 4-10

Properties property of Search & Replace
tool 27-22

Q
quantized integer (Q) in fixed-point data 17-2

R
rand in action language 10-32
range violations, data 26-35
redo operation 4-58
references 1-10
regular expressions

Search & Replace tool 27-16
Stateflow Finder 27-30
tokens in Search & Replace tool 27-17

relational operations
fixed-point data 17-32

renaming targets 27-8
Replace button of Search & Replace tool 27-15
replace buttons in Search & Replace tool 27-24
Replace with field of Search & Replace tool 27-14
replacing text in Search & Replace tool 27-23

with case preservation 27-23
with tokens 27-24

reports
details of chart 7-67
printing charts 7-61

reserved keywords 2-5
resizing chart objects 4-37

example 4-48
resolving symbols in action language 25-69
return size of ml expressions 10-50
right bit shift (>>) operator 10-21

rising edge trigger 9-12
run-time errors

debugging 26-24

S
Sample Time property for charts 19-6
sampled update method for Stateflow block 19-13
Save final value to base workspace property,

data 8-26
saving and loading a SimState 12-1
scalar expansion

for vector and matrix assignment 13-10
in Stateflow action language 13-6
of function inputs and outputs 13-6

Scaling property of fixed-point data 17-7
Scope property

data 8-9
events 9-9

Search & Replace tool 27-12
containing object 27-21
Contains word option 27-15
Custom Code field 27-19
Description field 27-19
Document Links field 27-19
Field types field 27-14
icon of found object 27-21
Match case field 27-14
Match case option 27-15
Match options field 27-14
Match whole word option 27-16
messages 27-25
Name field 27-18
object types 27-14
Object types field 27-14
opening 27-12
portal area 27-21
Preserve case field 27-14
Preserve case option 27-17

Index-16

Index

Regular expression option in Search &
Replace tool 27-16

regular expression tokens 27-17
Replace All button 27-24
Replace All in This Object button 27-25
Replace button 27-15 27-24
Replace with field 27-14
replacement text 27-23
Search button 27-15 27-19
Search For field 27-13
Search in field 27-14
search order 27-21
search scope 27-17
search types 27-15
view area 27-19
View Area field 27-15
viewer 27-21
viewing a match 27-20

Search button of Search & Replace tool 27-15
Search for field of Search & Replace tool 27-13
Search in field of Search & Replace tool 27-14
search order in Search & Replace tool 27-21
search scope in Search & Replace tool 27-17
searching

chart 27-17
Finder user interface 27-28
machine 27-17
specific objects 27-18
text 27-12
text matches 27-18

sec keyword 10-71
selecting and deselecting objects in a chart 4-35
self-loop transitions 2-27

creating 4-23
delay 2-41
with connective junctions B-37

semantics
defined 1-3
early return logic for event broadcasts 3-85
examples B-2

executing a chart 3-39
executing a state 3-70
executing a transition 3-51
executing an event 3-36
super step 3-40

send function
and directed event broadcasting 10-59
directed event broadcasting B-60
directed event broadcasting examples 10-60

sfnew function 4-2
sharing data

between Stateflow machines and external
modules 8-40

shortcut keys
in Stateflow Editor 4-62
moving in a zoomed chart 4-54
opening subcharts 7-9
zooming 4-53

shortcut menus
in Stateflow Editor 4-29
to properties 4-29

Show portal property of Search & Replace
tool 27-22

signal resolution
explicit, in Stateflow charts 8-65

signal selection in floating scope 26-58
signature

graphical functions 7-31
SimState

benefits of using 12-4
best practices for using 12-41
dividing a simulation into segments 12-5
methods 12-35
rules for using 12-38
saving and loading 12-1
testing a chart with fault detection

logic 12-21
testing a hard-to-reach chart

configuration 12-10
simulating truth tables 22-51

Index-17

Index

simulation
MATLAB function 23-17
monitoring data values 26-42 26-53
monitoring data values in the

Debugger 26-42
simulation target

code generation options 25-17
configuring 25-17
generated code files 25-79

Simulink model and Stateflow machine
relationship between 1-4

Simulink Model property of machines 19-11
Simulink models 19-2

See also interfaces to Simulink models
Simulink Subsystem property for charts 19-6
sin in action language 10-32
single-precision floating-point symbol F 10-31
sinh in action language 10-32
Sizes (of array) property of data 8-11
sizing data 8-52

by expression 8-55
by inheritance 8-53
CompiledSize property 8-53

slits (in supertransitions) 7-12
slope (S) in fixed-point data 17-2
smart transitions

bowing symmetrically 7-26
graphical behavior 7-20
preferring straight lines 7-27

Source property of transitions
transitions

Source property 4-26
sqrt in action language 10-32
Start button on the Debugger 26-19
state activity

checking 10-97
state inconsistency

debugging 26-29
definition 26-29
detecting 26-30

example 26-30
State Machine Type property for charts 19-6
Stateflow actions

change detection 10-83
Stateflow blocks

continuous 19-18
inherited 19-17
inherited example 19-17
sampled 19-16
sampled example 19-16
triggered 19-15
triggered example 19-15
update methods 19-13

Stateflow charts
animating in external mode 26-4
animating in normal mode 26-4
checking for errors 25-64
configuring them to update in

continuous-time 16-7
continuous-time modeling 16-2
defining continuous-time variables 16-11
defining structures 20-8
design considerations for continuous-time

modeling 16-26
enabling zero-crossing detection 16-10
example of structures 20-2
explicit signal resolution 8-65
exposing continuous states to a Simulink

model 16-12
implicit time derivatives 16-11
interfacing structures with buses 20-9
length of data names 8-8
representations 1-2
setting global breakpoints in the

Debugger 26-7
setting local breakpoints on specific

objects 26-7
specify properties of truth table

functions 22-11
structures 20-2

Index-18

Index

use of structures 20-2
viewing test point data in floating scopes and

signal viewers 26-6
workflow for modeling continuous-time

systems 16-6
working with virtual and nonvirtual

buses 20-11
Stateflow Editor

differentiating syntax elements by color 4-33
drawing area 4-29
elements 4-27
menu bar 4-28
object palette 4-29
shortcut menus 4-29
status bar 4-29
title bar 4-28
toolbar 4-29
undoing and redoing operations 4-58
zoom control 4-29
zooming 4-53

stateflow function 4-2
Stateflow graphical components 1-6
Stateflow objects 1-6

length of names 2-5
naming 2-5

Stateflow software
using target function library to replace C

math library functions 10-34
Stateflow structures

elements 20-2
states 2-11

actions 4-13
active and inactive 2-8
active state execution 3-71
button (drawing) 2-8
corners 4-18
creating 4-5 7-51
debugger breakpoint property 4-13
decomposition 2-8 2-10
definition 2-8

during action 2-16
editing 27-4
entry action 2-16 10-5
entry execution 3-70
exclusive (OR) decomposition 2-10
execution example 3-72
exit action 2-16 to 2-17 10-5
exiting active states 3-72
grouping 4-7
hierarchy 2-8
how they are executed 3-70
label 2-13 4-13
label example 2-15
label notation 2-8
label property 4-13
logging activity toMATLABworkspace 26-60
monitoring activity with floating scope 26-56
moving and resizing 4-6
Name property 2-14
Name, entering 4-15
on event_name action 2-16 10-7
output activity to a Simulink model 4-16
parallel (AND) decomposition notation 2-11
properties 4-10
setting their properties in the Model

Explorer 27-8
See also parallel states

States When Enabling property
charts 19-10

status bar
in Stateflow Editor 4-29

Step button on the Debugger 26-21
Stop Simulation button on the Debugger 26-21
Strong Data Typing with Simulink I/O, and

Stateflow input and output data 8-50
Strong Data Typing with Simulink IO setting

fixed-point data 19-8
structures

about, in Stateflow charts 20-2
and bus signals in Stateflow charts 20-1

Index-19

Index

defining 20-8
elements of 20-2
example in Stateflow chart 20-2
interfacing with buses in Stateflow

charts 20-9
local scope 20-12
parameter scope 20-13
temporary in chart functions 20-14
use in Stateflow charts 20-2

subcharts
and supertransitions 7-6
creating 7-6 to 7-7
definition and description 7-6
editing contents 7-10
manipulating 7-9
navigating through hierarchy of 7-11
opening to edit contents 7-9
unsubcharting 7-7

subfunctions
in MATLAB functions 23-13

substates
creating 4-6
decomposition 4-9

subtraction (-) of fixed-point data 17-32
subtraction operator (-) 10-21
super step semantics 3-40
superstates

event actions in B-48
supertransitions 7-12

definition and description 7-12
drawing into a subchart 7-14
drawing out of a subchart 7-17
labeling 7-18
slits 7-12

Support variable-size arrays property
charts 19-9

Symbol Autocreation Wizard 25-72
symbols

comment symbols %,//,/* in action
language 10-29

hexadecimal notation in action
language 10-29

infinity symbol inf in action language 10-30
line continuation symbol ... in action

language 10-30
literal code symbol $ in action language 10-30
MATLAB display symbol ; 10-30
single-precision floating-point symbol F in

action language 10-31
time symbol t in action language 10-31

symbols in action language 10-28

T
tan in action language 10-32
tanh in action language 10-32
Target function library

using to replace C math library
functions 10-34

targets 25-17
build options for custom targets 25-61
building error messages 25-76
building procedure 25-63
configuration custom target 25-55
configuring a simulation target 25-17
copying/moving in the Model Explorer 27-9
deleting 27-11
overview 25-3
renaming 27-8
setting integer word size for 17-29
setting their properties in the Model

Explorer 27-8
See also simulation targets

temporal logic
absolute-time 10-70 10-75

examples 10-73
tips 10-79

event and conditional notations 10-68
event-based 10-64

examples 10-66

Index-20

Index

in state actions 10-63
in transitions 10-63
types 10-63

temporal logic operators 10-63
after 10-64 10-71
at 10-65
before 10-65 10-71
every 10-66
rules for using 10-63
temporalCount 10-66 10-71

temporalCount
operator 10-66 10-71

temporary data
defining 8-58

Test point property
states 4-13

Test point property, data 8-14
text

replacing 27-12
searching 27-12

tick keyword 9-41
tiled printing

of Stateflow charts 7-64
time derivatives

for continuous-time modeling in Stateflow
charts 16-11

time symbol t in action language 10-31
title bar

in Stateflow Editor 4-28
toolbar

in Stateflow Editor 4-29
traceability 25-82

bidirectional 25-84 25-87 25-90
code-to-model 25-91
examples 25-84
format of comments 25-94
model-to-code 25-93
of chart objects 25-82

traceable objects 25-82
transition actions

and condition actions B-12
event broadcasts nested in B-53
notation 2-20

transition labels
condition 4-20
condition action 4-20
event 4-20
transition action 4-20

transition segments
backtracking to source B-46
label format B-34

transitions 2-27 2-32 4-23 7-20 7-27
and exclusive (OR) states 2-23 B-4
and exclusive (OR) substates 2-26
and exclusive (OR) superstates 2-25
arrowhead size 4-22
based on events B-5
bowing 4-21
breakpoints 4-26
changing arrowhead size 4-22
condition 4-20
condition action 2-20 4-20
connection examples 2-23
creating 4-18
dashed 4-21
debugging conflicting 26-32
deleting 4-18
Description property 4-26
Destination property 4-26
Document link property 4-26
events 4-20
Execution order property 4-26
explicit ordering mode 3-56
flow graph types 3-51
from common source with connective

junctions B-42
from connective junctions based on common

event B-45
from multiple sources with connective

junctions B-44

Index-21

Index

hierarchy 2-19
implicit ordering mode 3-60
label format 4-20
Label property 4-26
labels

action semantics B-4
format 4-20
overview 2-20 4-19

moving 4-21
moving attach points 4-21
moving label 4-22
nonsmart

anchored connection points 7-28
notation 2-23
ordering by angular surface position 3-62
ordering by hierarchy 3-60
ordering by label 3-61
ordering for evaluation 3-55
overview 2-18
Parent property 4-26
properties 4-24 4-26
self-loop transitions 4-23
setting them smart 7-20
smart

connecting to junctions at 90 degree
angles 7-23

preferring straight lines 7-27
sliding and maintaining shape 7-22
sliding around surfaces 7-21
snapping to an invisible grid 7-25

straight and curved 4-19
substate to substate with events B-9
transition action 2-20 4-20
valid 2-22
valid labels 4-20
when they are executed 3-51
See also default transitions; inner transitions;
nonsmart transitions; self-loop transitions;
smart transitions

trigger

event input from Simulink block 9-12
event input from Simulink function-call

subsystem 9-13
Trigger property

events 9-9
triggered update method for Stateflow

block 19-13
truth tables

argument and return values 22-10
assigning actions to decisions 22-39
calling rules 22-14
compared with graphical functions 22-14
default decision 22-2
defined 22-7
editing 22-22
entering final actions 22-45
entering initial actions 22-45
how they are realized 22-71
how to interpret 22-2
overspecified 22-62
properties dialog 22-50
pseudocode example 22-2
signature 22-10
simulation 22-51
specify properties in Stateflow charts 22-11
underspecified 22-66

type cast operations 10-25
type cast operators

explicit cast operator 10-26
MATLAB form 10-25

type operator 10-26
using to type other data

typing data with type operator 8-48
Type property

fixed-point data 17-7
types

inheriting 8-48
types of data

supported by Stateflow charts 8-47
typing data 8-43

Index-22

Index

with other data 8-48

U
unary actions 10-23
unary operations 10-22

complex data 18-7
fixed-point data 17-27
vectors and matrices 13-11

underspecified truth tables 22-66
undo operation 4-58

exceptions 4-59
Units property, data 8-26
Up To button in Stateflow Editor 7-11
update method

continuous 19-14
discrete (sample time) 19-13
inherited 19-13

Update method property for charts 19-6
update methods for Stateflow block 19-13
Use Strong Data Typing with Simulink I/O

property for charts 19-8
user-written code

and Stateflow arrays 10-58
C functions 10-40

V
valid transitions 2-22
Variable size property

data 8-11

vector and matrix operations 13-11
vectors

initializing 13-4
vectors and matrices

operations supported 13-11
tips for using 13-14
using 13-1

Version property of machines 19-11
View Area field of Search & Replace tool 27-15
view area of Search & Replace tool 27-19

W
wakeup keyword 9-41
Watch in debugger property, data 8-15
workspace

examining the MATLAB workspace 19-23
wormhole 7-16

Z
zero-based indexing 10-57
zero-crossing detection

enabling for Stateflow charts 16-10
zoom control

in Stateflow Editor 4-29
zooming a chart

overview 4-53
shortcut keys 4-53
using zoom factor selector 4-53

Index-23

	toc
	Stateflow Chart Concepts
	Finite State Machine Concepts
	What Is a Finite State Machine?
	Finite State Machine Representations
	Stateflow Chart Representations
	Notation
	Semantics

	Stateflow Charts and Simulink Models
	The Simulink Model and the Stateflow Machine
	Overview of Defining Stateflow Block Interfaces to Simulink Mode

	Stateflow Chart Objects
	Stateflow Hierarchy of Objects
	Bibliography

	Stateflow Chart Notation
	Overview of Stateflow Objects
	Graphical Objects
	Nongraphical Objects
	Data Objects
	Event Objects
	Target Objects

	For More Information on Stateflow Objects

	Rules for Naming Stateflow Objects
	Characters You Can Use
	Restriction on Name Length
	Reserved Keywords

	States
	What Is a State?
	State Hierarchy
	State Hierarchy Example

	State Decomposition
	Exclusive (OR) State Decomposition
	Parallel (AND) State Decomposition

	State Labels
	State Name
	State Actions

	Transitions
	What Is a Transition?
	Transition Hierarchy
	Transition Label Notation
	Transition Label Example

	Valid Transitions

	Transition Connections
	Transitions to and from Exclusive (OR) States
	Transitions to and from Junctions
	Transitions to and from Exclusive (OR) Superstates
	Transitions to and from Substates
	Self-Loop Transitions
	Inner Transitions
	Before Using an Inner Transition
	After Using an Inner Transition to a Connective Junction
	Using an Inner Transition to a History Junction

	Default Transitions
	What Is a Default Transition?
	Drawing Default Transitions
	Labeling Default Transitions
	Default Transition Examples
	Default Transition to a State Example
	Default Transition to a Junction Example
	Default Transition with a Label Example

	Connective Junctions
	What Is a Connective Junction?
	Flow Graph Notation with Connective Junctions
	Connective Junction with All Conditions Specified Example
	Connective Junction with One Unconditional Transition Example
	Connective Junction and For Loops Example
	Flow Graph Notation Example
	Connective Junction from a Common Source to Multiple Destination
	Connective Junction Common Events Example

	History Junctions
	What Is a History Junction?
	Use of History Junctions Example

	History Junctions and Inner Transitions

	Graphical Functions
	What Is a Graphical Function?
	Example of Using Graphical Functions
	Advantages of Using Graphical Functions

	Boxes
	What Is a Box?
	Example of Using a Box

	Stateflow Chart Semantics
	What Do Semantics Mean for Stateflow Charts?
	What Are Chart Semantics?
	Graphical Constructs
	Nongraphical Constructs

	Common Graphical and Nongraphical Constructs
	References for Chart Semantics

	How Chart Constructs Interact During Execution
	Overview of the Example Model
	Model of the Check-In Process for a Hotel
	How the Chart Interacts with Simulink Blocks
	Chart Initialization
	Chart Interaction with Other Blocks
	Chart Inactivity

	Phases of Chart Execution
	Phase: Chart Initialization
	Phase: Evaluation of Outgoing Transitions from a Single Junction
	What happens if room_type has a value other than 1, 2, or 3?
	Phase: Execution of State Actions for a Superstate
	Phase: Function Call from a State Action
	Phase: Execution of State with Exclusive Substates
	Phase: Execution of State with Parallel Substates
	Phase: Events Guard Transitions Between States

	Modeling Guidelines for Charts with Events, States, and Transiti
	Use signals of the same data type for input events
	Use a default transition to mark the first state to become activ
	Use condition actions instead of transition actions whenever pos
	Use explicit ordering to control the testing order of a group of
	Verify intended backtracking behavior in flow graphs
	Use a superstate to enclose substates that share the same state
	Use MATLAB functions for performing numerical computations in a
	Use descriptive names in function signatures
	Use history junctions to record state history
	Do not use history junctions in states with parallel (AND) decom
	Use explicit ordering to control the execution order of parallel
	How Events Drive Chart Execution
	How Stateflow Charts Respond to Events
	Sources for Stateflow Events
	How Charts Process Events

	Types of Chart Execution
	Lifecycle of a Stateflow Chart
	Execution of an Inactive Chart
	Execution of an Active Chart
	Execution of a Chart with Super Step Semantics
	What Is Super Step Semantics?
	Enabling Super Step Semantics
	Super Step Example
	How Super Step Semantics Works with Multiple Input Events
	Detection of Infinite Loops in Transition Cycles

	Execution of a Chart at Initialization

	Process for Grouping and Executing Transitions
	Transition Flow Graph Types
	Order of Execution for a Set of Flow Graphs

	Evaluation Order for Outgoing Transitions
	What Does Ordering Mean for Outgoing Transitions?
	Detection of Transition Shadowing
	Explicit Ordering of Outgoing Transitions
	How Explicit Ordering Works
	Using Explicit Ordering for Transitions

	Implicit Ordering of Outgoing Transitions
	How Implicit Ordering Works
	Ordering by Hierarchy
	Ordering by Label
	Ordering by Angular Position of Source
	Using Implicit Ordering for Transitions

	What Happens When You Switch Between Explicit and Implicit Order
	Transition Testing Order in Multilevel State Hierarchy
	How Multilevel Transition Testing Order Works
	Example Model with Multilevel Transition Testing

	Process for Entering, Executing, and Exiting States
	Steps for Entering a State
	Steps for Executing an Active State
	Steps for Exiting an Active State
	State Execution Example
	Inactive Chart Event Reaction
	Sleeping Chart Event Reaction

	Execution Order for Parallel States
	What Does Ordering Mean for Parallel States?
	Explicit Ordering of Parallel States
	How Explicit Ordering Works
	Using Explicit Ordering for Parallel States

	Implicit Ordering of Parallel States
	Rules of Implicit Ordering for Parallel States
	Using Implicit Ordering for Parallel States

	How a Chart Maintains Order of Parallel States
	How a Chart Preserves Relative Priorities in Explicit Mode
	How a Chart Preserves Relative Priorities in Implicit Mode

	How a Chart Assigns Execution Priorities to Restored States
	What Happens When You Switch Between Explicit and Implicit Order
	How a Chart Orders Parallel States in Boxes and Subcharts

	Early Return Logic for Event Broadcasts
	Guidelines for Proper Chart Behavior
	How Early Return Logic Works
	Example of Early Return Logic

	Creating Stateflow Charts
	Creating a Stateflow Chart
	Working with States in Charts
	Creating a State
	Moving and Resizing States
	Creating Substates and Superstates
	Grouping States
	When to Group a State
	How to Group a State
	When to Ungroup a State
	How to Ungroup a State

	Specifying Substate Decomposition
	Specifying Activation Order for Parallel States
	Changing State Properties
	Labeling States
	Entering the Name
	Entering Actions

	Outputting State Activity to a Simulink Model

	Working with Transitions in Charts
	Creating a Transition
	Straight and Curved Transitions
	Labeling Transitions
	Editing Transition Labels
	Transition Label Format

	Moving Transitions
	Bowing the Transition Line
	Moving Transition Attach Points
	Moving Transition Labels

	Changing Transition Arrowhead Size
	Creating Self-Loop Transitions
	Creating Default Transitions
	Changing Transition Properties

	Using the Stateflow Editor
	Stateflow Editor Window
	Displaying the Context Menu for Objects
	Specifying Colors and Fonts in a Chart
	Changing Fonts for a Single Item
	Using the Colors & Fonts Dialog Box

	Differentiating Syntax Elements in the Stateflow Action Language
	Default Syntax Highlighting
	Editing Syntax Highlighting
	Enabling and Disabling Syntax Highlighting

	Selecting and Deselecting Graphical Objects
	Cutting and Pasting Graphical Objects
	Copying Graphical Objects
	Formatting Chart Objects
	Basic Steps for Aligning, Distributing, or Resizing Chart Object
	Options for Aligning Chart Objects
	Options for Distributing Chart Objects
	Options for Resizing Chart Objects
	Example of Aligning Chart Objects
	Example of Distributing Chart Objects
	Example of Resizing Chart Objects

	Editing Object Labels
	Zooming a Chart
	Using the Zoom Factor Selector
	Zooming with Shortcut Keys
	Moving in Zoomed Charts with Shortcut Keys

	Zooming a Chart Object Using the Stateflow API
	How to Zoom a Chart Object
	Objects You Can Zoom
	Example of Zooming States in a Chart

	Undoing and Redoing Editor Operations
	Exceptions for Undo

	Note Properties Dialog Box
	Keyboard Shortcuts for Stateflow Charts
	Customizing the Stateflow Editor
	Adding Items to Stateflow Editor Menus
	Disabling and Hiding Stateflow Editor Menu Items
	Displaying Menu Tags

	Modeling Logic Patterns and Iterative Loops Using Flow Graphs
	What Is a Flow Graph?
	Difference Between Flow Graphs and State Charts
	When to Use Flow Graphs
	Creating Flow Graphs with the Pattern Wizard
	Why Use the Pattern Wizard?
	How to Create Reusable Flow Graphs
	How do I create and open a new Stateflow chart?
	Saving and Reusing Flow Graph Patterns
	Guidelines for Creating a Pattern Folder
	How to Save Flow Graph Patterns for Easy Retrieval
	How to Change Your Pattern Folder
	How to Add Flow Graph Patterns in Graphical Functions
	Why does my dialog box not display any patterns?
	How to Add Flow Graph Patterns in Charts

	MAAB-Compliant Patterns from the Pattern Wizard
	Decision Logic Patterns in Flow Graphs
	Iterative Loop Patterns in Flow Graphs
	Switch Patterns in Flow Graphs

	Try It: Creating and Reusing a Custom Pattern with the Pattern W
	Creating the Upper Triangle Iterator Pattern
	How can I nest the loop patterns?
	What if the ordering is not correct?
	Saving the Upper Triangle Iterator Pattern for Reuse
	Adding the Upper Triangle Iterator Pattern to a Graphical Functi

	Drawing and Customizing Flow Graphs By Hand
	How to Draw a Flow Graph
	How to Change Connective Junction Size
	How to Modify Junction Properties

	Best Practices for Creating Flow Graphs
	Use only one default transition
	Provide only one terminating junction
	Converge all transition paths to the terminating junction
	Provide an unconditional transition from every junction except t
	Use condition actions to process updates, not transition actions
	Enhancing Readability of Generated Code for Flow Graphs
	Appearance of Generated Code for Flow Graphs
	Converting If-Elseif-Else Code to Switch-Case Statements
	How to Convert If-Elseif-Else Code to Switch-Case Statements
	Rules of Conversion
	How the Conversion Handles Duplicate Conditions

	Example of Converting Code for If-Elseif-Else Decision Logic to
	Verifying the Contents of the Flow Graph
	Enabling the Conversion
	Generating Code for Your Model
	Troubleshooting the Generated Code

	Building Mealy and Moore Charts
	Overview of Mealy and Moore Machines
	Semantics of Mealy and Moore Machines
	Running a Demo of Mealy and Moore Machines
	The Default State Machine Type
	What Is State?
	Availability of Output
	Advantages of Mealy and Moore Charts Over Classic Stateflow Char

	Creating Mealy and Moore Charts
	Design Considerations for Mealy Charts
	Mealy Semantics
	Design Rules for Mealy Charts
	Compute Outputs in Condition Actions Only
	Do Not Use State Actions or Transition Actions
	Restrict Use of Data
	Restrict Use of Events
	Calculate Output and State Using One Time Base

	Example: Mealy Vending Machine
	Opening the Model
	Logic of the Mealy Vending Machine
	Design Rules in Mealy Vending Machine

	Design Considerations for Moore Charts
	Moore Semantics
	Design Rules for Moore Charts
	Compute Outputs in State Actions, Not on Transitions
	Restrict Data to Inputs, Outputs, and Constants
	Reference Input Only in Conditions
	Do Not Use Actions on Transitions
	Do Not Use Graphical Functions
	Do Not Use Truth Tables, MATLAB Functions, or Simulink Functions
	Restrict Use of Events

	Example: Moore Traffic Light
	Opening the Model
	Logic of the Moore Traffic Light
	Design Rules in Moore Traffic Light

	Changing Chart Type
	Debugging Mealy and Moore Charts

	Extending Stateflow Charts
	Using History Junctions to Extend Charts and States
	About History Junctions
	Creating a History Junction
	Changing History Junction Size
	Changing History Junction Properties

	Using Subcharts to Extend Charts
	What Is a Subchart?
	Creating a Subchart
	Rules of Subchart Conversion
	Example of Converting a State to a Subchart
	Manipulating Subcharts as Objects
	Opening a Subchart
	Editing a Subchart
	Navigating Subcharts

	Using Supertransitions to Extend Transitions
	What Is a Supertransition?
	Drawing a Supertransition Into a Subchart
	Drawing a Supertransition Out of a Subchart
	Labeling Supertransitions

	Extending Transitions with Smart Behavior
	What Are Smart Transitions?
	Setting Smart Behavior in Transitions
	What Smart Transitions Do
	Smart Transitions Slide Around Surfaces
	Smart Transitions Slide and Maintain Shape
	Smart Transitions Connect States to Junctions at 90 Degree Angle
	Smart Transitions Snap to an Invisible Grid
	Smart Transitions Bow Symmetrically
	Smart Transitions Prefer Straight Lines from Junctions

	What Nonsmart Transitions Do
	Nonsmart Transitions Anchor Connection Points
	Nonsmart Transitions Distort Asymmetrically

	Using Graphical Functions to Extend Actions
	What Is a Graphical Function?
	Why Use a Graphical Function?
	Where to Use a Graphical Function
	Workflow for Defining a Graphical Function
	Creating a Graphical Function
	Programming a Graphical Function
	Defining Graphical Function Data

	Managing Large Graphical Functions
	Calling Graphical Functions in Stateflow Action Language
	Description
	Syntax
	Example

	Exporting Chart-Level Graphical Functions
	Why Export Graphical Functions?
	How to Export Chart-Level Graphical Functions
	Rules for Exporting Chart-Level Graphical Functions
	Link library charts to your main model to export graphical funct
	Do not export graphical functions that contain unsupported input
	Example of Exporting Chart-Level Graphical Functions

	Specifying Graphical Function Properties

	Using Boxes to Extend Charts
	When to Use Boxes
	Semantics of Boxes
	Visibility of Graphical Objects in Boxes
	Activation Order of Parallel States

	Rules for Using Boxes
	Drawing and Editing a Box
	Creating a Box
	Deleting a Box
	Changing a State to a Box

	Examples of Using Boxes
	Using a Box to Group Functions
	Using a Box to Group States

	Using Notes to Extend Charts
	Creating Notes
	Editing Existing Notes
	Changing Note Font and Color
	TeX Instructions

	Moving Notes
	Deleting Notes

	Printing Stateflow Charts
	Printing Scaled Charts
	Using Tiled Printing for Stateflow Charts
	Printing Charts on Tiled Pages

	Generating a Model Report
	System Report Options
	Report Format

	Printing the Current Chart

	Defining Data
	Adding Data
	When to Add Data
	Where You Can Use Data
	Diagnostic for Detecting Unused Data
	Adding Data Using the Stateflow Editor
	How to Add Data
	Visibility of Data You Add in the Stateflow Editor

	Adding Data Using the Model Explorer
	How to Add Data
	Visibility of Data You Add in the Model Explorer

	Setting Data Properties in the Data Dialog Box
	What Is the Data Properties Dialog Box?
	When to Use the Data Properties Dialog Box
	Opening the Data Properties Dialog Box
	Properties You Can Set in the General Pane
	Name
	Scope
	Port
	Data must resolve to Simulink signal object
	Size
	Variable size
	Complexity
	Type
	Lock data type setting against changes by the fixed-point tools
	Initial value
	Limit range properties
	Test point
	Watch in debugger
	Fixed-Point Data Properties

	Properties You Can Set in the Description Pane
	Save final value to base workspace
	First index
	Units
	Description
	Document link

	Entering Expressions and Parameters for Data Properties
	Default Data Property Values
	Using Parameters in Expressions
	Using Constants in Expressions
	Using Arithmetic Operators in Expressions
	Calling Functions in Expressions

	Sharing Data with Simulink Models and the MATLAB Workspace
	Sharing Input and Output Data with Simulink Models
	Sharing Simulink Parameters with Stateflow Charts
	When to Share Simulink Parameters
	How to Share Simulink Parameters

	Initializing Data from the MATLAB Base Workspace
	Time of Initialization

	Saving Data to the MATLAB Workspace

	Sharing Global Data with Simulink Models
	About Data Stores
	How Stateflow Charts Work with Local and Global Data Stores
	Accessing Data Store Memory from a Stateflow Chart
	Binding a Stateflow Data Object to Data Store Memory
	Using the Stateflow Editor to Bind a Data Object
	Using the Model Explorer to Bind a Data Object
	Resolving Data Store Bindings
	Reading and Writing Global Data Programmatically

	Diagnostics for Sharing Data Between Stateflow Charts and Simuli
	Errors to Check For
	When to Enable Diagnostics
	When to Disable Diagnostics
	How to Set Diagnostics for Shared Data

	Creating a Global Data Store Across Multiple Models
	Best Practices for Using Data Stores in Stateflow Charts
	When Binding to Data Stores in Charts
	When Enforcing Writes Before Reads in Unconnected Blocks

	Sharing Chart Data with External Modules
	Methods of Sharing Chart Data with External Modules
	Exporting Data to External Modules
	When You Export Data to External Code Assigned to the Stateflow
	When You Export Data to an External Stateflow Machine

	Importing Data from External Modules
	When You Import Data from External Code Assigned to the Stateflo
	When You Import Data from an External Stateflow Machine

	Typing Stateflow Data
	What Is Data Type?
	Specifying Data Type and Mode
	Built-In Data Types
	Inheriting Data Types from Simulink Objects
	Deriving Data Types from Previously Defined Data
	Typing Data by Using an Alias
	Strong Data Typing with Simulink I/O

	Sizing Stateflow Data
	Methods for Sizing Stateflow Data
	How to Specify Data Size
	Using the Size Field of the Data Properties Dialog Box
	Setting the Stateflow.Data Object Property

	Inheriting Input or Output Size from Simulink Signals
	Guidelines for Sizing Data with Numeric Values
	Guidelines for Sizing Data with MATLAB Expressions
	Examples of Valid Data Size Expressions
	Name Conflict Resolution for Variables in Size Expressions
	Best Practices for Sizing Stateflow Data
	Avoid use of variables that can lead to naming conflicts
	Avoid use of size(u) expressions

	Defining Temporary Data
	When to Define Temporary Data
	How to Define Temporary Data

	Using Dot Notation to Identify Data in a Chart
	What Is Dot Notation?
	Resolution of Data Identifiers with Dot Notation
	Best Practices for Using Dot Notation in Data Identifiers
	Use a Specific Path in the Identifier
	Use Unique State Names

	Resolving Data Properties from Simulink Signal Objects
	About Explicit Signal Resolution
	Inherited Properties
	Enabling Explicit Signal Resolution
	A Simple Example

	Best Practices for Using Data in Stateflow Charts
	Avoid inheriting output data properties from Simulink blocks
	Restrict use of machine-parented data

	Transferring Data Across Models
	Copying Data Objects
	Moving Data Objects

	Defining Events
	How Events Work in Stateflow Charts
	What Is an Event?
	When to Use Events
	When should I use conditions instead of events?
	Types of Events
	Where You Can Use Events
	Diagnostic for Detecting Unused Events

	How to Define Events
	Adding Events Using the Stateflow Editor
	Adding Events Using the Model Explorer

	Setting Properties for an Event
	When to Use the Event Properties Dialog Box
	Accessing the Event Properties Dialog Box
	Property Fields
	Name
	Scope
	Port
	Trigger
	Debugger Breakpoints
	Description
	Document Link

	Using Input Events to Activate a Stateflow Chart
	What Is an Input Event?
	Using Edge Triggers to Activate a Stateflow Chart
	When to Use an Edge-Triggered Input Event
	How to Define an Edge-Triggered Input Event
	Example of Using an Edge-Triggered Input Event

	Using Function Calls to Activate a Stateflow Chart
	When to Use a Function-Call Input Event
	How to Define a Function-Call Input Event
	Example of Using a Function-Call Input Event

	Association of Input Events with Control Signals
	Data Types Allowed for Input Events
	Behavior of Edge-Triggered Input Events
	Behavior of Function-Call Input Events

	Controlling States When Function-Call Inputs Reenable Charts
	Setting Behavior for a Reenabled Chart
	Behavior When the Parent Is the Model Root
	What Happens When the Setting Is Inherit or Held
	What Happens When the Setting Is Reset

	Behavior When the Chart Is Inside a Model Block
	What Happens When the Setting Is Inherit or Reset
	What Happens When the Setting Is Held

	Using Output Events to Activate a Simulink Block
	What Is an Output Event?
	Using Edge Triggers to Activate a Simulink Block
	When to Use an Edge-Triggered Output Event
	How to Define an Edge-Triggered Output Event
	Example of Using an Edge-Triggered Output Event
	Queuing Behavior for Broadcasting an Edge-Triggered Output Event
	Example of Queuing Behavior for Edge-Triggered Output Events
	Example of Using Queuing Behavior to Approximate a Function Call

	Using Function Calls to Activate a Simulink Block
	When to Use a Function-Call Output Event
	How to Define a Function-Call Output Event
	Example of Using a Function-Call Output Event
	Interleaving Behavior for Broadcasting a Function-Call Output Ev
	Example of Interleaving Behavior for Function-Call Output Events

	Association of Output Events with Output Ports
	Accessing Simulink Subsystems Triggered By Output Events

	Using Implicit Events
	What Are Implicit Events?
	Keywords for Implicit Events
	Example of an Implicit Event
	Execution Order of Transitions with Implicit Events

	Counting Events
	When to Count Events
	How to Count Events
	Example of Collecting and Storing Input Data in a Vector
	Stage 1: Observation of Input Data
	Stage 2: Storage of Input Data
	Stage 3: Display of Data Stored in the Vector

	Best Practices for Using Events in Stateflow Charts
	Use the send command to broadcast explicit events in actions
	Do not mix edge-triggered input events and function-call input e
	Avoid using the enter implicit event to check state activity

	Using Actions in Stateflow Charts
	Defining Action Types
	About Action Types
	State Action Types
	Entry Actions
	Exit Actions
	During Actions
	Bind Actions
	On Event_Name Actions

	Transition Action Types
	Event Triggers
	Conditions
	Condition Actions
	Transition Actions

	Example of Action Type Execution

	Combining State Actions to Eliminate Redundant Code
	State Actions You Can Combine
	Why Combine State Actions
	See Also

	How to Combine State Actions
	Valid Combinations
	Invalid Combinations

	Order of Execution of Combined Actions
	Rules for Combining State Actions

	Using Operations in Actions
	Binary and Bitwise Operations
	Unary Operations
	Unary Actions
	Assignment Operations
	Pointer and Address Operations
	Type Cast Operations
	MATLAB Form Type Cast Operators
	Explicit Type Cast Operator
	type Operator

	Replacing Operators with Target Functions

	Symbols in Action Language
	Boolean Symbols, true and false
	Comment Symbols, %, //, /*
	Hexadecimal Notation Symbols, 0xFF
	Infinity Symbol, inf
	Line Continuation Symbol, ...
	Literal Code Symbol, $
	MATLAB Display Symbol, ;
	Single-Precision Floating-Point Number Symbol, F
	Time Symbol, t

	Calling C Functions in Actions
	Calling C Library Functions
	Calling the abs Function
	Calling min and max Functions
	Replacement of C Math Library Functions with Target-Specific Imp
	Use of Target Function Libraries
	Supported Target Library Functions
	Replacement of Calls to abs

	Calling Custom C Code Functions
	Specifying Custom C Functions for Simulation
	Specifying Custom C Functions for Code Generation
	Guidelines for Calling Custom C Functions in Stateflow Action La
	Guidelines for Writing Custom C Functions That Access Input Vect
	Example of Function Call in Transition Action
	Example of Function Call in State Action
	Passing Arguments by Reference

	Using MATLAB Functions and Data in Actions
	MATLAB Functions and Stateflow Code Generation
	ml Namespace Operator
	Examples

	ml Function
	Examples

	ml Expressions
	Which ml Should I Use?
	ml Data Type
	Rules for Using ml Data Type
	Place Holder for Workspace Data

	How Charts Infer the Return Size for ml Expressions

	Using Data and Event Arguments in Actions
	Using Arrays in Actions
	Array Notation
	Arrays and Custom Code

	Broadcasting Events in Actions
	About Events in Actions
	Directed Event Broadcasting
	Example of Directed Event Broadcasting Using send
	Example of Directed Event Broadcasting Using Qualified Event Nam

	Using Temporal Logic in State Actions and Transitions
	What Is Temporal Logic?
	Rules for Using Temporal Logic Operators
	Operators for Event-Based Temporal Logic
	Examples of Event-Based Temporal Logic
	Notations for Event-Based Temporal Logic
	Event Notation
	Conditional Notation
	Examples of Event and Conditional Notation

	Operators for Absolute-Time Temporal Logic
	Defining Time Delays
	Example of Defining Time Delays
	Example of Detecting Elapsed Time
	Advantages of Using Absolute-Time Temporal Logic for Delays

	Examples of Absolute-Time Temporal Logic
	Running a Model That Demonstrates Absolute-Time Temporal Logic
	Behavior of Absolute-Time Temporal Logic in a Conditionally Exec
	Example of Absolute-Time Temporal Logic in an Enabled Subsystem

	How Sample Time Affects Chart Execution
	A Simple Example

	Tips for Using Absolute-Time Temporal Logic
	Use the after Operator to Replace the at Operator
	Use an Outer Self-Loop Transition with the after Operator to Rep

	Using Change Detection in Actions
	Types of Data Value Changes That You Can Detect
	Running a Model That Demonstrates Change Detection
	How Change Detection Works
	Handling Transient Changes in Local Variables
	Handling Changes When Multiple Input Events Occur

	Change Detection Operators
	hasChanged Operator
	hasChangedFrom Operator
	hasChangedTo Operator

	Change Detection Example

	Checking State Activity
	When to Check State Activity
	How to Check State Activity
	The in Operator
	Purpose
	Syntax
	Description
	Example

	How Checking State Activity Works
	State Resolution for Identically Named Substates
	Best Practices for Checking State Activity
	Use a Specific Search Path
	Use Unique State Names

	Using Bind Actions to Control Function-Call Subsystems
	About Bind Actions
	Binding a Function-Call Subsystem to a State
	Handling Outputs When the Subsystem is Disabled
	Controlling Behavior of States When the Subsystem is Enabled

	Example Model That Binds a Function-Call Subsystem to a State
	Behavior of a Bound Function-Call Subsystem
	Why Avoid Muxed Trigger Events with Binding

	Making States Reusable with Atomic Subcharts
	What Is an Atomic Subchart?
	When to Use Atomic Subcharts
	Benefits of Using Atomic Subcharts in a Stateflow Chart
	Comparison of Modeling Methods
	Modeling Without Atomic Subcharts
	Modeling With Atomic Subcharts

	Comparison of Simulation Methods
	Simulation Without Atomic Subcharts
	Simulation With Atomic Subcharts

	Comparison of Editing Methods
	Editing Without Atomic Subcharts
	Editing With Atomic Subcharts

	Comparison of Code Generation Methods
	Code Generation Without Atomic Subcharts
	Code Generation With Atomic Subcharts

	Restrictions for Converting to Atomic Subcharts
	Rationale for Restrictions
	Access to Data, Graphical Functions, and Events
	Use of Event Broadcasts
	Use of Machine-Parented Data
	Use of Strong Data Typing with Simulink Inputs and Outputs
	Use of Output State Activity
	Use of Supertransitions

	Converting to and from Atomic Subcharts
	Converting a State or Subchart to an Atomic Subchart
	Converting an Atomic Subchart to a State or Subchart
	When an Atomic Subchart Is a Library Link
	When an Atomic Subchart Is Not a Library Link

	Restrictions for Converting an Atomic Subchart to a State or Sub

	Mapping Variables for Atomic Subcharts
	Why Map Variables for Atomic Subcharts?
	How to Map Variables in an Atomic Subchart
	Mapping Input and Output Data for an Atomic Subchart
	Mapping Data Store Memory for an Atomic Subchart
	Mapping Parameter Data for an Atomic Subchart
	Mapping Input Events for an Atomic Subchart

	Generating Reusable Code for Unit Testing
	How to Generate Reusable Code for Linked Atomic Subcharts
	How to Generate Reusable Code for Unlinked Atomic Subcharts

	Reusing Utility Functions Across Multiple Models
	Rationale for Using Atomic Subcharts
	How to Enable Reuse of Utility Functions
	Example of Reusing a Timer Function Multiple Times

	Rules for Using Atomic Subcharts in Stateflow Charts
	Define data in an atomic subchart explicitly
	Map variables of linked atomic subcharts
	Match size, type, and complexity of variables in linked atomic s
	Export chart-level graphical functions if called from an atomic
	Do not mix edge-triggered and function-call input events in the
	Do not map multiple input events in an atomic subchart to the sa
	Match the trigger type when mapping input events
	Do not use atomic subcharts in continuous-time Stateflow charts
	Do not use Moore charts as atomic subcharts
	Do not use outgoing transitions when an atomic subchart uses top
	Avoid using execute-at-initialization with atomic subcharts
	Avoid using the names of subsystem parameters in atomic subchart
	Restrict use of machine-parented data
	Use consistent settings for super-step semantics
	Tutorial: Reusing a State Multiple Times in a Chart
	Goal of the Tutorial
	Editing a Model to Use Atomic Subcharts
	Converting a State to an Atomic Subchart
	Creating a Library for the Atomic Subchart
	Replacing States with Linked Atomic Subcharts
	Editing the Mapping of Input and Output Variables

	Running the New Model
	Propagating a Change in the Library Chart

	Tutorial: Reducing the Compilation Time of a Chart
	Goal of the Tutorial
	Editing a Model to Use Atomic Subcharts

	Tutorial: Dividing a Chart into Separate Units for Editing
	Goal of the Tutorial
	Editing a Model to Use Atomic Subcharts

	Tutorial: Generating Reusable Code for Unit Testing
	Goal of the Tutorial
	Converting a State to an Atomic Subchart
	Specifying Code Generation Parameters
	Setting Up a Standalone C File for the Atomic Subchart
	Setting Up the Code Generation Report
	Customizing the Generated Function Names

	Generating Code for Only the Atomic Subchart

	Saving and Restoring Simulations with SimState
	What Is a SimState?
	Benefits of Using a Snapshot of the Simulation State
	Division of a Long Simulation into Segments
	Test of a Chart Response to Different Settings

	Tutorial: Dividing a Long Simulation into Segments
	Goal of the Tutorial
	Defining the SimState
	Programmatic equivalent
	Programmatic equivalent
	Programmatic equivalent
	Loading the SimState
	Programmatic equivalent
	Programmatic equivalent
	Simulating the Specific Segment

	Tutorial: Testing a Unique Chart Configuration
	Goal of the Tutorial
	Defining the SimState
	Programmatic equivalent
	Programmatic equivalent
	Programmatic equivalent
	Loading the SimState and Modifying Values
	Programmatic equivalent
	What does the getBlockSimState method do?
	Testing the Modified SimState
	Programmatic equivalent

	Tutorial: Testing a Chart with Fault Detection Logic
	Goal of the Tutorial
	Defining the SimState
	Programmatic equivalent
	Programmatic equivalent
	Programmatic equivalent
	Modifying SimState Values for One Actuator Failure
	Programmatic equivalent
	What does the getBlockSimState method do?
	Testing the SimState for One Failure
	Programmatic equivalent
	Modifying SimState Values for Two Actuator Failures
	Testing the SimState for Two Failures

	Methods for Interacting with the SimState of a Chart
	Rules for Using the SimState of a Chart
	Limitations on Values You Can Modify
	Rules for Modifying Data Values
	Rules for Modifying State Activity
	Restriction on Continuous-Time Charts
	No Partial Loading of a SimState
	Restriction on Copying SimState Values
	SimState Limitations That Apply to All Blocks in a Model

	Best Practices for Using the SimState of a Chart
	Use MAT-Files to Save a SimState for Future Use
	Use Scripts to Save SimState Commands for Future Use

	Using Vectors and Matrices in Stateflow Charts
	How Vectors and Matrices Work in Stateflow Charts
	When to Use Vectors and Matrices
	Where You Can Use Vectors and Matrices

	How to Define Vectors and Matrices
	Defining a Vector
	Defining a Matrix

	Scalar Expansion for Converting Scalars to Nonscalars
	What Is Scalar Expansion?
	How Scalar Expansion Works for Functions

	How to Assign and Access Values of Vectors and Matrices
	Notation for Vectors and Matrices
	Assigning and Accessing Values of Vectors
	Assigning and Accessing Values of Matrices
	Using Scalar Expansion to Assign Values of a Vector or Matrix

	Operations That Work with Vectors and Matrices in Stateflow Acti
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Rules for Using Vectors and Matrices in Stateflow Charts
	Use only operands of equal dimensions for element-wise operation
	Do not define vectors and matrices with ml base type
	Use only real numbers to set initial values of vectors and matri
	Do not use vectors and matrices with temporal logic operators
	Best Practices for Vectors and Matrices in Stateflow Charts
	Using MATLAB Functions to Perform Matrix Multiplication and Divi
	Using the temporalCount Operator to Index a Vector

	Examples of Vectors and Matrices in Stateflow Charts
	Communications Example
	Storage of Complex Data in a Vector
	Scalar Expansion of a Vector

	Physics Example
	How the Model Works
	Storage of Two-Dimensional Data in Matrices
	Calculation of Two-Dimensional Dynamics of Each Ball
	Running the Demo Model

	Using Variable-Size Data in Stateflow Charts
	What Is Variable-Size Data?
	How Charts Implement Variable-Size Data
	Enabling Support for Variable-Size Data
	Declaring Variable-Size Inputs and Outputs
	Example: Computing Output Based on Size of Input Signal
	About the Model
	Chart: VarSizeSignalSource
	How the Chart Works with the Variable-Size Output
	How the MATLAB Function Works with the Variable-Size Output

	Chart: size_based_processing
	MATLAB Function: is_scalar_input
	MATLAB Function: compute_input
	MATLAB Function: reset_output

	Simulating the Model

	Rules for Using Variable-Size Data in Stateflow Charts

	Using Enumerated Data in Stateflow Charts
	What Is Enumerated Data?
	Benefits of Using Enumerated Data in a Chart
	Where to Use Enumerated Data
	Elements of an Enumerated Data Type Definition
	How to Define Enumerated Data in a Stateflow Chart
	Tasks for Defining Enumerated Data in a Chart
	Defining an Enumerated Data Type in a File
	Adding Enumerated Data to a Chart

	Ensuring That Changes in Data Type Definition Take Effect
	Notation for Referring to Enumerated Values in a Chart
	Nonprefixed Notation for Enumerated Values
	Requirements for Using Nonprefixed Notation
	Example of Nonprefixed Notation in Stateflow Action Language

	Prefixed Notation for Enumerated Values
	Requirement for Using Prefixed Notation
	Example of Prefixed Notation in Stateflow Action Language

	Operations on Enumerated Data in Stateflow Action Language
	How to View Enumerated Values in a Stateflow Chart
	Viewing Values of Enumerated Data During Simulation
	Viewing Values of Enumerated Data After Simulation

	Rules for Using Enumerated Data in a Stateflow Chart
	Use the name of the enumerated data type as the name of the MATL
	Use a unique name for an enumerated data type
	Do not define enumerated data at the machine level of the hierar
	Do not use enumerated data for inputs and outputs of exported fu
	Do not assign enumerated values to constant data
	Ensure unique name resolution for nonprefixed identifiers
	Assign to enumerated data only expressions that evaluate to enum
	Use a prefixed identifier to set the initial value of enumerated
	Do not define minimum or maximum values for enumerated data
	Do not use the ml namespace operator to access enumerated data f
	Best Practices for Using Enumerated Data in a Chart
	Add prefixes to enumerated names to enhance readability of gener
	Use unique identifiers to refer to enumerated values in Stateflo
	CD Player Model That Uses Enumerated Data
	Overview of CD Player Model
	Benefits of Using Enumerated Types in This Model
	Running the CD Player Model
	How the UserRequest Chart Works
	How the CdPlayerModeManager Chart Works
	Behavior of the CdPlayerModeManager Chart
	Control of CD Player Operating Mode

	How the CdPlayerBehaviorModel Chart Works
	Behavior of the CdPlayerBehaviorModel Chart
	Update of CD Player Behavior

	Tutorial: Using Enumerated Values for Assignment
	Goal of the Tutorial
	Building the Chart
	Adding States and Transitions to the Chart
	Defining an Enumerated Data Type for the Chart
	Adding Enumerated Data to the Chart
	Adding Integer Data to the Chart

	Viewing Results for Simulation
	Adding Scopes to View Output
	Setting the Sample Time for Simulation
	Simulating the Model

	How the Chart Works
	Stage 1: Execution of State A
	Stage 2: Execution of State B
	Stage 3: Repeat of State Execution

	Modeling Continuous-Time Systems in Stateflow Charts
	About Continuous-Time Modeling
	What Is Continuous-Time Modeling?
	When To Use Stateflow Charts for Continuous-Time Modeling
	Running Models That Demonstrate Continuous-Time Modeling

	Workflow for Creating Continuous-Time Charts
	Configuring a Stateflow Chart to Update in Continuous-Time
	When to Enable Zero-Crossing Detection
	Defining Continuous-Time Variables
	About Continuous-Time Variables
	Implicit Time Derivatives
	Rules for Using Continuous-Time Variables
	How to Define Continuous-Time Variables
	Exposing Continuous States to a Simulink Model

	Modeling a Bouncing Ball in Continuous-Time
	Try It
	Dynamics of a Bouncing Ball
	Modeling the Bouncing Ball
	Task 1: Configure the Bouncing Ball Chart for Continuous Updatin
	Task 2: Decide Whether to Enable Zero-Crossing Detection for the
	Task 3: Define Continuous-Time Variables for Position and Veloci
	Task 4: Choose a Solver for the Bouncing Ball Chart
	Task 5: Add Dynamics for a Free-Falling Ball
	Task 6: Expose Ball Position and Velocity to the Simulink Model
	Task 7: Validate Semantics of Bouncing Ball Chart
	Task 8: Simulate Bouncing Ball Chart
	Task 9: Check for the Bounce
	Why not just check for p == 0?
	Why add the second check for v < 0?

	Design Considerations for Continuous-Time Modeling in Stateflow
	Rationale for Design Considerations
	Summary of Rules for Continuous-Time Modeling
	Update local data only in transition, entry, and exit actions
	Do not call Simulink functions in state during actions or transi
	Compute derivatives only in during actions
	Do not read outputs and derivatives in states or transitions
	Use discrete variables to govern conditions in during actions
	Do not use input events in continuous-time charts
	Do not use inner transitions
	Limit use of temporal logic
	The chart must have at least one substate
	Do not use change detection operators in continuous charts
	Do not modify any SimState values for continuous-time charts

	Using Fixed-Point Data in Stateflow Charts
	What Is Fixed-Point Data?
	Before You Begin
	Fixed-Point Numbers
	Fixed-Point Operations

	How Fixed-Point Data Works in Stateflow Charts
	How Stateflow Software Defines Fixed-Point Data
	Specifying Fixed-Point Data
	Rules for Specifying Fixed-Point Word Length
	Fixed-Point Context-Sensitive Constants
	Tips for Using Fixed-Point Data
	Detecting Overflow for Fixed-Point Types
	Sharing Fixed-Point Data with Simulink Models

	Tutorial: Using Fixed-Point Chart Inputs
	Running the Fixed-Point "Bang-Bang Control" Model
	Exploring the Fixed-Point "Bang-Bang Control" Model
	sensor Block
	ADC Block
	Linear fixed point conversion Block

	Tutorial: Using Fixed-Point Parameters and Local Data
	Goal of the Tutorial
	Building the Fixed-Point Butterworth Filter
	Defining the Model Callback Function
	Adding Other Blocks to the Model
	Setting Configuration Parameters for the Model
	Running the Model

	Operations with Fixed-Point Data
	Supported Operations with Fixed-Point Operands
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Promotion Rules for Fixed-Point Operations
	Default Selection of the Number of Bits of the Result Type
	Unary Promotions
	Binary Operation Promotion for Integer Operand with Fixed-Point
	Binary Operation Promotion for Double Operand with Fixed-Point O
	Binary Operation Promotion for Single Operand with Fixed-Point O
	Binary Operation Promotion for Two Fixed-Point Operands

	Assignment (=, :=) Operations
	Assignment Operator =
	Assignment Operator :=
	When to Use the := Operator Instead of the = Operator
	Example of Using the := Operator for Addition and Subtraction
	Example of Using the := Operator for Multiplication
	Example of Using the := Operator for Division
	:= Assignment and Context-Sensitive Constants

	Fixed-Point Conversion Operations
	Offline Conversions for Initialized Data
	Online Conversions for Casting Operations
	Offline and Online Conversion Examples

	Automatic Scaling of Stateflow Fixed-Point Data

	Using Complex Data in Stateflow Charts
	How Complex Data Works in Stateflow Charts
	What Is Complex Data?
	When to Use Complex Data
	Where You Can Use Complex Data
	How You Can Use Complex Data

	How to Define Complex Data
	Operations on Complex Data in Stateflow Action Language
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Using Operators to Handle Complex Numbers
	Why Use Operators for Complex Numbers?
	Defining a Complex Number
	complex Operator

	Accessing Real and Imaginary Parts of a Complex Number
	real Operator
	imag Operator

	Working with Vector Arguments

	Rules for Using Complex Data in Stateflow Charts
	Do not use complex number notation in actions
	Do not perform math function operations on complex data in State
	Mix complex and real operands only for addition, subtraction, an
	Do not define complex data with constant or data store memory sc
	Do not define complex data with ml, struct, or boolean base type
	Use only real values to set initial values of complex data
	Do not enter minimum or maximum values for complex data
	Assign complex values only to data of complex type
	Do not pass real values to function inputs of complex type
	Do not use complex data with temporal logic operators
	Best Practices for Using Complex Data in Stateflow Charts
	Performing Math Function Operations with a MATLAB Function
	A Simple Example
	How to Calculate Absolute Value

	Performing Complex Division with a MATLAB Function
	A Simple Example
	How to Perform Complex Division

	Implementing a Frame Synchronization Controller Using a Stateflo
	What Is Frame Synchronization?
	A Frame Synchronization Controller Chart
	Key Features of the Chart
	Opening the Model
	How the Chart Works
	Stage 1: Activation of the Frame Synchronization Algorithm
	Stage 2: Calculation of Correlation Between the Input Signal and
	Stage 3: Calculation of Absolute Value of the Complex Correlatio
	Stage 4: Identification of Valid Data in a Data Frame
	Stage 5: Storage of Valid Data in a Complex Vector
	Stage 6: Output of Valid Data from a Data Frame
	Stage 7: Restart of the Frame Synchronization Algorithm

	Implementing a Spectrum Analyzer Using a Stateflow Chart
	What Is a Spectrum Analyzer?
	A Spectrum Analyzer Model
	Running the Spectrum Analyzer Model
	How the Sinusoid Generator Block Works
	Stage 1: Definition of Signal Frequency
	Stage 2: Generation of Complex Signal
	Stage 3: Update of Frequency and Complex Signal
	Stage 4: Termination of Complex Signal

	How the Analyzer Chart Works
	Stage 1: Activation of State A
	Stage 2: Calculation of Frequency Response
	Stage 3: Change Detection of Input Frequency

	How the Unwrap Chart Works

	Defining Interfaces to Simulink Models and the MATLAB Workspace
	Overview of Stateflow Block Interfaces
	Stateflow Block Interfaces
	Typical Tasks to Define Stateflow Block Interfaces
	Where to Find More Information on Events and Data

	Specifying Chart Properties
	About Chart Properties
	Setting Properties for a Single Chart
	Setting Properties for All Charts in the Model

	Setting the Stateflow Block Update Method
	Implementing Update Interfaces to Simulink Models
	Defining a Triggered Stateflow Block
	Triggered Stateflow Block Example

	Defining a Sampled Stateflow Block
	Sampled Stateflow Block Example

	Defining an Inherited Stateflow Block
	Inherited Stateflow Block Example

	Defining a Continuous Stateflow Block
	Defining Function-Call Output Events
	Defining Edge-Triggered Output Events

	Creating Specialized Chart Libraries for Large-Scale Modeling
	When to Use Chart Libraries
	How to Create Chart Libraries
	Properties You Can Specialize Across Instances of Library Blocks
	Limitations of Library Charts

	MATLAB Workspace Interfaces
	About the MATLAB Workspace
	Examining the MATLAB Workspace
	Interfacing the MATLAB Workspace with Charts

	Interface to External Sources
	Introduction
	Exported Data
	Exported Data Example

	Imported Data
	Imported Data Example

	Exported Events
	Exported Event Example

	Imported Events
	Imported Event Example

	Working with Structures and Bus Signals in Stateflow Charts
	About Stateflow Structures
	What Is a Stateflow Structure?
	What You Can Do with Structures
	Example of Stateflow Structures
	Structure Definitions in sfbus_demo Stateflow Chart
	Structure Definitions in sfbus_demo Stateflow Graphical Function
	Simulink Bus Objects Define Stateflow Structures

	Defining Stateflow Structures
	Rules for Defining Structure Data Types in Charts
	Defining Structure Inputs and Outputs
	Interfacing Stateflow Structures with Simulink Bus Signals
	Working with Virtual and Nonvirtual Buses

	Defining Local Structures
	Defining Structures of Parameter Scope
	Defining Temporary Structures
	Defining Structure Types with Expressions

	Structure Operations
	Indexing Sub-Structures and Fields
	Guidelines for Assignment of Values
	Getting Addresses

	Integrating Custom Structures in Stateflow Charts
	Debugging Structures

	Stateflow Design Patterns
	Debouncing Signals
	Why Debounce Signals
	The Debouncer Model
	Key Behaviors of Debouncer Chart
	Intermediate Debounce State Isolates Transients
	Temporal Logic Determines True State

	Running the Debouncer

	Scheduling Execution of Simulink Subsystems
	When to Implement Schedulers Using Stateflow Charts
	Types of Scheduler Patterns
	Scheduling Multiple Subsystems in a Single Time Step Using a Lad
	Key Behaviors of Ladder Logic Scheduler
	Running the Ladder Logic Scheduler

	Scheduling One Subsystem in a Single Time Step Using a Loop Sche
	Key Behaviors of Loop Scheduler
	Running the Loop Scheduler

	Scheduling Subsystems to Execute at Specific Times Using a Tempo
	Key Behaviors of Temporal Logic Scheduler
	Running the Temporal Logic Scheduler

	Implementing Dynamic Test Vectors
	When to Implement Test Vectors Using Stateflow Charts
	A Dynamic Test Vector Chart
	Key Behaviors of the Test Vector Chart and Model
	Chart Represents Test Cases as States
	Chart Uses Conditional Logic to Respond to Dynamic Changes
	Model Provides an Interface for Selecting Test Cases

	Running the Model with Stateflow Test Vectors

	Truth Table Functions
	What Is a Truth Table?
	Language Options for Stateflow Truth Tables
	Stateflow Classic Truth Tables
	MATLAB Truth Tables
	Selecting a Language for Stateflow Truth Tables
	Migration from Stateflow Classic to MATLAB Truth Tables

	Workflow for Using Truth Tables
	Building a Model with a Stateflow Truth Table
	Methods for Adding Truth Tables to Simulink Models
	Adding a Stateflow Block that Calls a Truth Table Function
	Creating a Simulink Model
	Creating a Stateflow Truth Table
	Specifying Properties of Truth Table Functions in Stateflow Char
	Calling a Truth Table in a Stateflow Action
	Creating Truth Table Data in Stateflow Charts and Simulink Model
	How do I enable the third pane in the Model Explorer?
	How do I verify type and size?

	Programming a Truth Table
	Opening a Truth Table for Editing
	Selecting An Action Language
	Entering Truth Table Conditions
	Entering Truth Table Decisions
	The Default Decision Column

	Entering Truth Table Actions
	Setting Up the Action Table
	Programming Actions in Stateflow Classic Action Language
	Programming Actions in MATLAB Action Language

	Assigning Truth Table Actions to Decisions
	Rules for Assigning Actions to Decisions
	How to Assign Actions to Decisions

	Adding Initial and Final Actions

	Debugging a Truth Table
	Checking Truth Tables for Errors
	Debugging a Truth Table During Simulation
	Using Stateflow Debugging Tools
	Using MATLAB Debugging Tools

	Correcting Overspecified and Underspecified Truth Tables
	Example of an Overspecified Truth Table
	Example of an Underspecified Truth Table

	How Stateflow Software Implements Truth Tables
	Types of Generated Content
	Viewing Generated Content
	How Stateflow Software Generates Graphical Functions for Truth T
	How Stateflow Software Generates MATLAB Code for Truth Tables

	Truth Table Editor Operations
	Adding or Modifying Stateflow Data
	Appending Rows and Columns
	Compacting the Table
	Deleting Text, Rows, and Columns
	Diagnosing the Truth Table
	Viewing Generated Content
	Editing Tables
	Inserting Rows and Columns
	Moving Rows and Columns
	Printing Tables
	Selecting and Deselecting Table Elements
	Undoing and Redoing Edit Operations
	Viewing the Stateflow Chart for the Truth Table

	Using MATLAB Functions in Stateflow Charts
	Use of MATLAB Functions in Stateflow Charts
	Building a Model with a MATLAB Function in a Chart
	Programming a MATLAB Function in a Chart
	Debugging a MATLAB Function in a Chart
	Checking MATLAB Functions for Syntax Errors
	Run-Time Debugging for MATLAB Functions in Charts
	Checking for Data Range Violations
	Specifying a Range
	Controlling Data Range Checking

	Working with Structures and Bus Signals in MATLAB Functions
	About Structures in MATLAB Functions
	Defining Structures in MATLAB Functions
	Rules for Defining Structures in MATLAB Functions
	Defining Structure Inputs and Outputs to Interface with Bus Sign
	Defining Local and Persistent Structure Variables

	Working with Enumerated Data in MATLAB Functions
	Working with Variable-Size Data in MATLAB Functions
	Enhancing Readability of Generated Code for MATLAB Functions

	Using Simulink Functions in Stateflow Charts
	What Is a Simulink Function?
	When to Use a Simulink Function in a Stateflow Chart
	Advantages of Using Simulink Functions in a Stateflow Chart
	Benefits of Using a Simulink Function to Access Simulink Blocks
	Modeling Method Without a Simulink Function
	Modeling Method With a Simulink Function

	Benefits of Using a Simulink Function to Schedule Execution of M
	Modeling Method Without Simulink Functions
	Modeling Method With Simulink Functions

	How to Define a Simulink Function in a Stateflow Chart
	Task 1: Add a Function to the Chart
	Task 2: Define the Subsystem Elements of the Simulink Function
	Task 3: Configure the Function Inputs

	How a Simulink Function Binds to a State
	Binding Behavior of a Simulink Function
	Controlling Subsystem Variables When the Simulink Function Is Di
	Example of Binding a Simulink Function to a State
	Simulation Behavior of the Chart
	How the Function Behaves When Variables Are Held
	How the Function Behaves When Variables Are Reset

	How a Simulink Function Behaves When Called from Multiple Sites
	Rules for Using Simulink Functions in Stateflow Charts
	Do not call Simulink functions in state during actions or transi
	Do not call Simulink functions in default transitions if you ena
	Use only alphanumeric characters or underscores when naming inpu
	Convert discontiguous signals to contiguous signals for Simulink
	Do not export Simulink functions
	Use the Stateflow Editor to rename a Simulink function
	Do not use Simulink functions in Moore charts
	Do not generate HDL code for Simulink functions
	Best Practices for Using Simulink Functions
	Place a Simulink function at the lowest possible level of the St
	Set properties of input ports explicitly for a Simulink function
	Verify that function-call expressions have inputs and outputs of
	Avoid using machine-parented data with Simulink functions
	Tutorial: Defining a Function That Uses Simulink Blocks
	Goal of the Tutorial
	Rationale for Improving the Model Design

	Editing a Model to Use a Simulink Function
	Open the Model
	Add a Simulink Function to the Chart
	Change the Scope of Chart Data
	Update State Action in the Chart
	Add Data to the Chart
	Remove Unused Items in the Model

	Running the New Model

	Tutorial: Scheduling Execution of Multiple Controllers
	Goal of the Tutorial
	Rationale for Improving the Model Design

	Editing a Model to Use Simulink Functions
	Open the Model
	Add Simulink Functions to the Chart
	Change the Scope of Chart Data
	Update State Actions in the Chart
	Add Data to the Chart
	Remove Unused Items in the Model

	Running the New Model

	Building Targets
	Targets You Can Build
	Code Generation for Stateflow Charts and Truth Table Blocks
	Code Generation for Simulation
	Code Generation for Production and Rapid Prototyping

	Software Requirements for Building Targets

	Choosing a Procedure to Simulate a Model
	Guidelines for Simulation
	Choosing the Right Procedure for Simulation

	Procedures for Simulation
	Starting Simulation
	Integrating Custom C++ Code for Simulation
	Task 1: Prepare Code Files
	Task 2: Include Custom C++ Source and Header Files for Simulatio
	Task 3: Choose a C++ Compiler
	Task 4: Simulate the Model

	Integrating Custom C Code for Nonlibrary Charts for Simulation
	Task 1: Include Custom C Code in the Simulation Target
	Task 2: Simulate the Model

	Integrating Custom C Code for Library Charts for Simulation
	Task 1: Include Custom C Code in Simulation Targets for Library
	Task 2: Simulate the Model

	Integrating Custom C Code for All Charts for Simulation
	Task 1: Include Custom C Code in the Simulation Target for the M
	Task 2: Ensure That Custom C Code for the Main Model Applies to
	Task 3: Simulate the Model

	Speeding Up Simulation
	Choosing a Procedure to Generate Embeddable Code for a Model
	Guidelines for Embeddable Code Generation
	Choosing the Right Procedure for Embeddable Code Generation

	Procedures for Embeddable Code Generation
	Generating Code
	Integrating Custom C++ Code for Code Generation
	Task 1: Prepare Code Files
	Task 2: Include Custom C++ Source and Header Files for Code Gene
	Task 3: Choose a C++ Compiler
	Task 4: Generate Code

	Integrating Custom C Code for Nonlibrary Charts for Code Generat
	Task 1: Include Custom C Code for Embeddable Code Generation
	Task 2: Generate Code

	Integrating Custom C Code for Library Charts for Code Generation
	Task 1: Include Custom C Code in Embeddable Targets for Library
	Task 2: Generate Code

	Integrating Custom C Code for All Charts for Code Generation
	Task 1: Include Custom C Code for Embeddable Code Generation of
	Task 2: Ensure That Custom C Code for the Main Model Applies to
	Task 3: Generate Code

	Optimizing Generated Code
	How to Optimize Generated Code for Embeddable Targets
	Design Tips for Optimizing Generated Code
	Do not access machine-parented data in a graphical function
	Be explicit about the inline option of a graphical function
	Avoid using multiple edge-triggered events in Stateflow charts
	Combine input signals of a chart into a single bus object

	Using the Command-Line API to Set Parameters for Simulation and
	How to Set Parameters at the Command Line
	Simulation Parameters for Nonlibrary Models
	Simulation Parameters for Library Models
	Code Generation Parameters for Nonlibrary Models
	Code Generation Parameters for Library Models

	Specifying Relative Paths for Custom Code
	Why Use Relative Paths?
	Searching Relative Paths
	Path Syntax Rules

	Choosing a Compiler
	Examples of Integrating Custom C Code in Nonlibrary Models
	Example of Using Custom C Code to Define Global Constants
	Example of Using Custom C Code to Define Global Constants, Varia

	How to Build a Stateflow Custom Target
	When to Build a Custom Target
	Adding a Stateflow Custom Target to Your Model
	Configuring a Custom Target
	Building a Custom Target
	Restrictions on Building a Custom Target

	What Happens During the Target Building Process?
	Parsing Stateflow Charts
	How the Stateflow Parser Works
	Calling the Stateflow Parser
	Parser Error Checking
	Parsing Chart Example

	Resolving Event, Data, and Function Symbols in Stateflow Action
	Resolving Symbols
	Symbol Autocreation Wizard

	Error Messages When Parsing Charts and Generating Code
	How Error Messages Appear
	Parser Error Messages
	Code Generation Error Messages
	Compilation Error Messages

	Generated Code Files for Targets You Build
	S-Function MEX-Files
	Folder Structure of Generated Files
	Code Files for a Simulation Target
	Code Files for an Embeddable Target
	Code Files for a Custom Target
	Makefiles

	Traceability of Stateflow Objects in Generated Code
	What Is Traceability?
	Traceability Requirements
	Traceable Stateflow Objects
	When to Use Traceability
	Comments for Large-Scale Models
	Validation of Generated Code

	Basic Workflow for Using Traceability
	Examples of Using Traceability
	Bidirectional Traceability for States and Transitions
	Bidirectional Traceability for Truth Table Blocks
	Bidirectional Traceability for Graphical Functions
	Code-to-Model Traceability for Events
	Model-to-Code Traceability for Junctions

	Format of Traceability Comments
	State
	Transition
	MATLAB Function
	Truth Table Block
	Truth Table Function
	Graphical Function
	Simulink Function
	Event

	Controlling Inlining of State Functions in Generated Code
	How Stateflow Software Inlines Generated Code for State Function
	What Happens When You Force Inlining
	What Happens When You Prevent Inlining

	How to Set the State Function Inline Option
	Best Practices for Controlling State Function Inlining

	Debugging and Testing Stateflow Charts
	Using the Stateflow Debugger
	Opening the Stateflow Debugger
	How to Open the Debugger Using the Editor
	How to Open the Debugger at the Command Line

	Animating Stateflow Charts
	Animating Stateflow Charts in Normal Mode
	Animating Stateflow Charts in External Mode

	Setting Breakpoints to Debug Charts
	Setting Global Breakpoints
	Setting Local Breakpoints
	Disabling All Breakpoints
	Clearing All Breakpoints

	How to Enable Debugging for Charts
	How to Enable Debugging for All Charts in a Model
	How to Enable Debugging for Only One Chart
	Example of Configuring a Model to Debug a Single Chart
	How to Enable or Disable Debugging for Library Link Charts

	Options for Controlling the Debugger
	Starting Simulation in the Debugger
	Options to Control Execution Rate in the Debugger
	Options for Error Checking in the Debugger
	Options to Control Chart Animation
	Options to Control the Output Display Pane

	Example of Debugging Run-Time Errors in a Chart
	Creating the Model and the Stateflow Chart
	Debugging the Stateflow Chart
	Correcting the Run-Time Error
	Identifying Stateflow Objects in Error Messages

	Debugging State Inconsistencies in a Chart
	Definition of State Inconsistency
	Causes of State Inconsistency
	Detecting State Inconsistency with the Debugger
	State Inconsistency Example

	Debugging Conflicting Transitions in a Chart
	What Are Conflicting Transitions?
	Detecting Conflicting Transitions
	Example of Conflicting Transitions
	How the Transition Conflict Occurs
	Conflict Resolution for Explicit Ordering When Check Box Is Not
	Conflict Resolution for Implicit Ordering When Check Box Is Not

	Debugging Data Range Violations in a Chart
	Types of Data Range Violations
	Detecting Data Range Violations
	Data Range Violation Example

	Debugging Cyclic Behavior in a Chart
	What Is Cyclic Behavior?
	Detecting Cyclic Behavior During Simulation
	Cyclic Behavior Example
	Flow Cyclic Behavior Not Detected Example
	Noncyclic Behavior Flagged as a Cycle Example

	Guidelines for Avoiding Unwanted Recursion in a Chart
	Do not call functions recursively
	Do not use undirected event broadcasts
	Watching Data Values During Simulation
	Watching Data in the Stateflow Debugger
	Watching Stateflow Data in the MATLAB Command Window

	Changing Data Values During Simulation
	How to Change Values of Stateflow Data
	Examples of Changing Data Values
	Scalar Example
	Multidimensional Example
	Variable-Size Example
	Fixed-Point Example
	Enumerated Example

	Limitations on Changing Data Values
	Data That Is Read-Only During Simulation
	Limitations on Changing Type and Size
	Limitations for Fixed-Point Data
	Limitations for Structures
	Cases When Casting Is Necessary

	Monitoring Test Points in Stateflow Charts
	About Test Points in Stateflow Charts
	Setting Test Points for Stateflow States and Local Data with the
	Using a Floating Scope to Monitor Data Values and State Activity

	Logging Data Values and State Activity
	What You Can Log During Chart Simulation
	See Also

	Supported Formats for Logged Data
	How to Choose a Format for Logged Data
	See Also

	Workflow for Logging States and Local Data
	Example for Illustrating Logging Workflow
	Configuring States and Local Data for Logging
	Logging Chart Signals Using the Signal Logging Dialog Box
	Logging Chart Signals Using the Command Line API

	Enabling Signal Logging for Charts
	Specifying a Format for Logged Data
	Accessing Logged Data
	Signal Logging Object
	Accessing Logged Data Saved in Dataset Format
	Accessing Logged Data Saved in ModelDataLogs Format

	Viewing Logged Data
	Logging Data in Library Charts
	Logging Multidimensional Data

	Exploring and Modifying Charts
	Using the Model Explorer with Stateflow Objects
	Viewing Stateflow Objects in the Model Explorer
	Editing Chart Objects in the Model Explorer
	Adding Data and Events in the Model Explorer
	Adding Custom Targets in the Model Explorer
	Renaming Objects in the Model Explorer
	Setting Properties for Chart Objects in the Model Explorer
	Moving and Copying Data, Events, and Targets in the Model Explor
	Changing the Port Order of Input and Output Data and Events
	Deleting Data, Events, and Targets in the Model Explorer

	Using the Stateflow Search & Replace Tool
	Opening the Search & Replace Tool
	Using Different Search Types
	Contains word
	Match case (Case Sensitive)
	Match whole word
	Regular expression
	Searching with Regular Expression Tokens
	Preserve case

	Specifying the Search Scope
	Search in
	Object Types
	Field Types

	Using the Search Button and View Area
	A Breakdown of the View Area
	The Search Order
	Additional Display Options

	Specifying the Replacement Text
	Replacing with Case Preservation
	Replacing with Tokens

	Using the Replace Buttons
	Replace
	Replace All
	Replace All in This Object

	Search and Replace Messages
	Please specify a search string
	No Matches Found
	Search Completed
	Invalid option set
	Match object not currently editable
	Search object not found
	Match object not found
	Match not found
	Search string changed

	Finding Stateflow Objects
	Types of Finder Tools
	Using the Stateflow Finder
	String Criteria
	Search Method
	Object Type
	Matches
	Search History
	Find Button
	Refine Button
	Clear Button
	Help Button
	Close Button

	Finder Display Area
	Representing Hierarchy

	Semantic Rules Summary
	Entering a Chart
	Executing an Active Chart
	Entering a State
	Executing an Active State
	Exiting an Active State
	Executing a Set of Flow Graphs
	Executing an Event Broadcast

	Semantic Examples
	Categories of Semantic Examples
	Transitions to and from Exclusive (OR) States Examples
	Label Format for a State-to-State Transition Example
	Transitioning from State to State with Events Example
	Processing of a First Event
	Processing of a Second Event
	Processing of a Third Event

	Transitioning from a Substate to a Substate with Events Example

	Condition Action Examples
	Condition Action Example
	Condition and Transition Actions Example
	Condition Actions in For-Loop Construct Example
	Condition Actions to Broadcast Events to Parallel (AND) States E
	Cyclic Behavior to Avoid with Condition Actions Example

	Default Transition Examples
	Default Transition in Exclusive (OR) Decomposition Example
	Default Transition to a Junction Example
	Default Transition and a History Junction Example
	Labeled Default Transitions Example

	Inner Transition Examples
	Processing Events with an Inner Transition in an Exclusive (OR)
	Processing One Event in an Exclusive (OR) State
	Processing a Second Event in an Exclusive (OR) State
	Processing a Third Event in an Exclusive (OR) State

	Processing Events with an Inner Transition to a Connective Junct
	Processing the First Event with an Inner Transition to a Connect
	Processing a Second Event with an Inner Transition to a Connecti

	Inner Transition to a History Junction Example

	Connective Junction Examples
	Label Format for Transition Segments Example
	If-Then-Else Decision Construct Example
	Self-Loop Transition Example
	For-Loop Construct Example
	Flow Graph Notation Example
	Transitions from a Common Source to Multiple Destinations Exampl
	Transitions from Multiple Sources to a Common Destination Exampl
	Transitions from a Source to a Destination Based on a Common Eve
	Backtracking Behavior in Flow Graphs Example

	Event Actions in a Superstate Example
	Parallel (AND) State Examples
	Event Broadcast State Action Example
	Event Broadcast Transition Action with a Nested Event Broadcast
	Start of Event E_one Processing
	Event E_two Preempts E_one
	Event E_one Processing Resumes

	Event Broadcast Condition Action Example

	Directed Event Broadcasting Examples
	Directed Event Broadcast Using Send Example
	Directed Event Broadcast Using Qualified Event Name Example

	Glossary
	Index

	tables
	How do I specify the order?
	How does this transition occur?
	How does this transition occur?
	What if my chart objects are grouped?

